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Abstract A new approach has been developed to obtain numerical solution of linear Volterra
type integral equations by obtaining asymptotic approximation to solutions. Using the classical
Bernoulli polynomials, a set of orthonormal polynomials have been derived, and these orthonor-
mal polynomials have been used to form an operational matrix of integration which is has been
implemented to find numerical or exact solution of non-singular Volterra integral equations. A
few numerical examples have been discussed in order to demonstrate the effectiveness of present
method. The Obtained approximate solutions have been compared with the exact solutions for
numerical values. High degree of accuracy of numerical solutions has established the credibility
of the present method.

1 Introduction

Many physical problems are formulated as integral equations. Diffusion problems, heat conduc-
tion, concrete problem of physics and mechanics, unsteady Poiseuille flow in a pipe are some
such examples. Also, such integral equations arise naturally in different applications of po-
tential theory, continuum mechanics, electricity and magnetism, geophysics, antenna, synthesis
problem, population genetics communication theory, mathematical modelling of economics, ra-
diation problems, fluid mechanics, problems of astrophysics concerning transport of particles,
and many more. Bulk of literature is available on Volterra and Fredholm integral equations
[1, 21, 10, 17, 3]. Bernoulli polynomials and its properties have been discussed by many authors
[4, 8, 13].

Volterra integral equations uncover several difficulties referring to mathematical physics such
as heat conduction difficulties. In recent years, researchers have focused their attention to find
approximate solutions of integral equations. Xu [20] adopted method of variational iteration.
Cheon [4] discussed possible applications of Bernoulli polynomials and functions in numerical
analysis. Some other latest investigations include uses of Chebyshev polynomials [10], Legendre
polynomials [14], Laguerre polynomials and Wavelet Galerkin method [15], Legendre wavelets
[21], the operational matrix [16], Bernoulli matrix method [18]. Recently, Bernoulli polynomials
were used by Tohidi and Khorsand [3, 19] to solve second-order linear system of partial differ-
ential equations, Mohsenyzadeh [11] to solve linear Volterra integral equations, and Samadyar
and Mirazee [17] to find numerical solution for singular partial integro-differential equation of
fractional order.

However, the numerical methods have certain limits and, therefore, there is always a need for
an efficient method to produce more accurate numerical solution of integral equations.

In this work, it is proposed to introduce a new operational matrix of integration for orthonor-
mal polynomials to reduce Volterra type integral equations into a system of algebraic equations.
By using operational matrix of these orthonormal polynomials, exact solution for many Volterra
integral equations can be obtained. Furthermore, the solutions to the integral equations solved
with present method have been compared with exact solution of the problem.
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2 Bernoulli Polynomials

The monic polynomials

Bn(ζ) =
n∑
j=0

(
n

j

)
Bj(0) ζn−j , n = 0, 1, 2, ... ; 0 ≤ ζ ≤ 1 (2.1)

were introduced by Jacob Bernoulli in early sixteenth century, where Bk(0) are the Bernoulli
numbers. To have a better understanding, first few Bernoulli polynomials are represented as:

B0(ζ) = 1 (2.2)

B1(ζ) = ζ − 1
2

(2.3)

B2(ζ) = ζ2 − ζ + 1
6

(2.4)

B3(ζ) = ζ3 − 3
2
ζ2 +

1
2
ζ (2.5)

B4(ζ) = ζ4 − 2ζ3 + ζ2 − 1
30

(2.6)

However, the name Bernoulli Polynomials was coined by J. L. Raabe in 1851, a thorough
study of these polynomials for arbitrary value of its variable was first done by Leonhard Euler
in 1755, who showed in his book "Foundations of differential calculus" that these polynomials
satisfy the finite difference relation.

Bn(ζ + 1)−Bn(ζ) = nζn−1, n ≥ 1 (2.7)

Bernoulli Polynomials form a complete basis for ℘n (the set of all polynomials of degree less
than or equal to n) over [0, 1] [7] and can also be extracted from its generating function

γeζγ

eγ − 1
=
∞∑
n=0

Bn(ζ)
γn

n!
(|ζ| < 2π) (2.8)

Some interesting properties of Bernoulli polynomials [6] are as follows:

B′n(ζ) = nBn−1(ζ), n ≥ 1∫ 1

0
Bn(z)dz = 0, n ≥ 1

Bn(ζ + 1)−Bn(ζ) = nζn−1, n ≥ 1

 (2.9)

Some more properties and generalizations of Bernoulli polynomials can be found in the sig-
nificant works [8, 13, 9, 5, 12].

3 The Orthonormal Polynomials

It can be easily verified that the polynomials Bn(x) (n ≥ 1) given by eq. (2.1) are orthogonal to
Bo(x) with respect to standard inner product on L2 ∈ [0, 1]. Using this property, an orthonormal
set of polynomials can be derived for any Bn with Gram-Schmidt orthogonalization. First few
orthonormal polynomials derived for B9(x) :

φ0 (ζ) = 1 (3.1)

φ1(ζ) =
√

3(−1 + 2ζ) (3.2)
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φ2 (x) =
√

5
(
1− 6x+ 6x2) (3.3)

φ3(ζ) =
√

7(−1 + 12ζ − 30ζ2 + 20ζ3) (3.4)

φ4(ζ) = 3(1− 20ζ + 90ζ2 − 140ζ3 + 70ζ4) (3.5)

4 Approximation of Functions

Let φ = {φ0, φ1, φ2, ..., φn} contains first n+1 orthonormal polynomials derived for Bernoulli
polynomial Bn(x). Since φ ⊂ L2[0, 1] and span{φ} is a finite dimensional space, any function
f ∈ L2[0, 1] has a unique and best approximation f̂ ∈ span{φ} such that ∀g ∈ span{φ}, ||f̂ −
f || ≤ ||f − g||, and

f = f̂ = lim
n→∞

n∑
k=0

ck φk(ζ) (4.1)

where ck = 〈f |φk〉, and 〈.|.〉 is the standard inner product on L2[0, 1] [2].
For numerical approximation, series in eq.(4.1) can be truncated after certain number of

terms, say n = m terms, so that

f(ζ) ∼=
m∑
k=0

ck φk = CT φ(ζ), (4.2)

where C = (c0, c1, c2, ..., cm) , φ(ζ) = (φ0, φ1, φ2, ..., φm) are column vectors, and number of
terms m is chosen to meet required accuracy.

5 Construction of operational matrix

The orthonormal polynomials (as shown in eq. (3.1-3.5)) can be expressed as:∫ ζ

0
φo(η)dη = φo(ζ) +

1
2
√

3
φ1(ζ) (5.1)

ζ∫
0
φi(x)dx = 1

2
√

(2i−1)(2i+1)
φi−1(ζ)

+ 1
2
√

(2i+1)(2i+3)
φi+1(ζ), ( for i = 1 , 2, ... ,m)

(5.2)

Relations (5.1-5.2) can be represented in combined form as:

ζ∫
0

φ(η)dη = Θ(m+1) φ(ζ), (5.3)

where ζ ∈ [0, 1] and Θm+1 is operational matrix of order (m+ 1) given as :

Θm+1 =
1
2



1 1√
1.3

0 · · · 0
−1√
1.3

0 1√
3.5

· · · 0

0 −1√
3.5

0
. . .

...
...

...
. . . 0 1√

(2m−1).(2m+1)

0 0 · · · −1√
(2m−1).(2m+1)

0


(5.4)
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6 Solution of Linear Volterra Integral Equations

Consider the linear Volterra integral equation of second kind:

y(ζ) = f(ζ) +

ζ∫
0

κ(ζ, x) y(x)dx, 0 ≤ ζ ≤ 1 (6.1)

where y(ζ) is some real valued function, f(ζ) and k(ζ, x) are continuous functions defined
on I = [0, 1] and S = {(ζ, x) : 0 ≤ x ≤ ζ ≤ 1} respectively. Following the classical theory of
Volterra integral equations, eq. (6.1) possesses a unique solution in C [0, 1]. Moreover, if f(ζ)
and k(ζ, x) are continuously n − differential on [0, 1] and S respectively, the unique solution
of eq. (6.1) is also continuously n− differential on [0, 1].

Representing y(ζ) and f(ζ) as :

y(ζ) = CT φ(ζ) (6.2)

f(ζ) = FT φ(ζ), (6.3)

eq. (6.1) can be re-written as:

CTφ(ζ) = FTφ(ζ) + CT
ζ∫

0

κ(ζ, x) φ(x)dx = FTφ(ζ) + CT Φm+1 φ(ζ) (6.4)

which gives
CT = (I −Φm+1)

−1
FT (6.5)

where, Φm+1 φ(ζ) =
ζ∫
0
κ(ζ, x) φ(x)dx, and Φm+1 is associate matrix of Θm+1 of order

m+1, for illustration, it can be readily observed from eq. (5.3), that Φm+1 = cΘm+1 if κ(ζ, x) =
c (constant) and Φm+1 = Θ

j
m+1 if κ(ζ, x) = (ζ − x)j , (j > 0).

7 Error Estimate and Convergence Analysis

Theorem 7.1. Let y(ζ) be continuous on [0, 1] and φyn(ζ) =
∞∑
n=0

ckφk be an approximation of

y(ζ) in terms of orthonormal Bernoulli polynomials (φk) , and Rn(ζ) be the remainder due
truncation, then following relations hold.

φyn(ζ) = y(ζ) +Rn(ζ); ∀ x ∈ [0, 1] (7.1)

φyn(ζ) =

1∫
0

y(η)dη +
n∑
k=0

φk(ζ)

k

(
y(k−1)(1)− y(k−1)(0)

)
(7.2)

Rn(ζ) = −
1
n!

1∫
0

φ∗n(ζ − η)y(n)(η)dη (7.3)

where φ∗n(ζ) = φn(ζ − [ζ]) and [·] is the greatest integer function.

Proof. See Tohidi and Kiliçman [18] or Mahmoud [2].

Theorem 7.2. Suppose that y(ζ) ∈ C∞[0, 1] and φyn(ζ) is an approximation of y(ζ) using or-
thonormal Bernoulli polynomials. Then the error bound of approximation can be obtained as:

e(y) = ‖y(ζ)− φyn(ζ)‖∞ ≤
1
n!
M (7.4)

where, M = Max
ζ∈[0,1]

φyn(ζ)y(ζ).
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Proof. See Tohidi and Kiliçman [18] or Mahmoud [2].
From these theorems, it is clear that the error may be minimized to required level by including

φn of higher degree. Furthermore, it is also obvious that the error vanishes faster with the
inclusion of higher degree φn.

8 Numerical Examples

In order to discuss and establish the accuracy and effectiveness of the present method, following
examples have been taken.

Example 8.1. The Volterra integral equation

y(ζ) = 6ζ + 3ζ2 −
ζ∫

0

y(η)dη (8.1)

has exact solution y(ζ) = 6ζ.
Comparing eq. (8.1) to standard eq. (6.1) and taking m = 5, equations (6.2-6.5) yield

FT =

[
4,−3

√
3

2
,

1
2
√

5
, 0, 0, 0

]
(8.2)

CT =
[
3, −
√

3, 0, 0, 0, 0
]

(8.3)

Substituting eqs. (8.2-8.3) and φ(ζ) = [φ0, φ1, φ2, ..., φ5]T back into eq. (6.2), the exact
solution y(ζ) = 6ζ of eq. (8.1) is obtained.

Example 8.2. Let us consider the Volterra integral equation of second kind

y(ζ) = 1 + ζ − ζ2 +

ζ∫
0

y(η)dη, 0 < ζ < 1 (8.4)

which has exact solution y(ζ) = 1 + 2ζ.
Applying the present method to eq. (8.4) for m = 5 as in example− 1, we get:

FT =

[
7
6
, 0,− 1

6
√

5
, 0, 0, 0

]
(8.5)

CT =

[
2,− 393379

398959
√

3
− 1860

√
3

398959
, 0, 0, 0, 0

]
(8.6)

Substituting the values of CT and FT from eqs. (8.5-8.6) and φ(ζ) into eq. (6.2), the exact
solution y(ζ) = 1 + 2ζ of eq. (8.4) is obtained.

Example 8.3. Consider the following convolution integral equation

y(ζ) = 2− 2eζ + ζ +
1
2
ζ2 − ∫ ζ0 (ζ − x) y(x)dx (8.7)

having exact solution y(ζ) = 1− eζ . Application of present method for m = 9 to eq. (8.7), CT
and FT are obtained as :

FT =

 −
3130455131
4066070400 ,

2002713497
2129846400

√
3
,− 1425989

7260840
√

5
,− 578590253

20766002400
√

7
,

− 77072
116475975 ,−

1454399
13214728800

√
11
,− 445943

89453548800
√

13
,

− 35531
188278421760

√
15
, 47

8132140800
√

17
,− 1

8821612800
√

19

 (8.8)
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CT =

 −0.7182286, 0.4878996,−0.0624901,−0.0063109,
−0.0003189,−0.101188× 10−4,−2.177076× 10−7,

4.442934× 10−9, 8.4884008× 10−10,−7.7385133× 10−12

 (8.9)

With help of eqs. (8.8-8.9),an approximate solution to eq. (8.7) is obtained as :

y(ζ) = 0.002879− 1.033944ζ − 0.416883ζ2 − 0.2173745ζ3

−0.048615ζ4 − 0.005751ζ5 − 0.001212ζ6 + 0.000225ζ7

−0.000038ζ8 − 0.000002ζ9

(8.10)

Figure 1. Comparison of Exact Solution and Approximate Solution of Example 3 for m = 9.

Figure 2. Absolute error, ê(ζ), between exact and approximate solution of example 3 form = 9.

Example 8.4. Consider the following integral equation

y(ζ) = −1− ζ2 − ζ3

3 + 2 cosh ζ − sinh ζ

+
ζ∫
0
(ζ − η)2

y(η)dη ; (0 < ζ < 1)
(8.11)

The exact solution of this equation is y(ζ) = 1− sinh ζ.
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Applying the present method for m = 9 , we get,

FT =


1417609
3628800 ,−

1025707
1478400

√
3
,− 205349

1995840
√

5
,− 322261

18532800
√

7
,

19
54600 ,−

17
5896800

√
11
, 19

7257600
√

13
,− 1

130690560
√

15
,

1
345945600

√
17
,− 1

17643225600
√

19

 (8.12)

CT =

 0.45687367, −0.33369513, −0.0197673, −0.00360093,
−0.00010456, −0.00001135, −2.18846562× 10−7,

−1.69010986× 10−8, −2.33670044× 10−10, 0

 (8.13)

and the solution y(ζ) is obtained as-

y(ζ) = CT .φ(ζ) (8.14)

Figure 3. Comparison of Exact and Approximate Solutions of Example 4 for m = 9.

Figure 4. Absolute error, ê(ζ), between exact and approximate solutions of example 4 for m =
9.

9 Conclusion

In this work, we have discussed a newly developed method to find approximate solution of linear
Volterra integral equations of second kind by using Bernoulli polynomials. The process includes
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the derivation of an operation matrix and orthonormal polynomials. With the present process, an
integral equation is converted into a system of algebraic equations with unknown coefficients,
which are easily obtained with the help of coefficients generated from known part of the integral
equation and operational matrix. With the help of four examples, it has been demonstrated that
this method gives either exact solution of an integral equation or an approximation in series form.
Required accuracy of solution can be attained with approximation series by taking Bernoulli
Polynomials of appropriate order.

In examples 1 and 2, present method gives the exact solution with just 5 orthonormal polyno-
mials. While, in examples 3 and 4, an approximate solution was derived with help of first nine
orthonormal polynomials. The errors in examples 3 and 4 are very small in magnitude, which
establish the efficacy of the present method.

The beauty of this method lies in that the method is easy for computer programming due to
trigonal operational matrix, which enables to employ desired number of orthonormal Bernoulli
polynomials to increase the accuracy of numerical solution.
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