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Abstract In this article, non-Newtonian visco-inelastic fluid flow between two disks is inves-
tigated analytically. In this model, both disks are rotating about a z−axis and stretching radially.
The obtained higher-order, partial differential equations (PDEs) are reconstructed into a system
of nonlinear ordinary differential equations (ODEs) by using similarity transformation. Homo-
topy Perturbation Method (HPM) is used to get the solution of obtained coupled ODEs bounded
with conditions. This model is discussed under the following cases when (1) the upper disk is
getting stretched but the lower disk is not stretched (2) both disks are getting stretched (3) the
lower disk is getting stretched but the upper disk is not stretched. The impact of different phys-
ical parameters on radial, transverse and axial velocities are presented graphically in all three
cases. The results of Newtonian fluid have also been shown by putting non-Newtonian param-
eter zero. The accuracy of the results evaluated by HPM is confirmed by numerical results. A
comparison of shear stress on the lower disk in the radial and tangential direction of the present
study is shown with the literature’s value.

1 Introduction

In the last decades, the discussed model has been a huge interest area of researchers. Conse-
quently, several Mathematicians have studied the same model under various physical and experi-
mental conditions. Batchelor [5] has generated Von-Karman’s solution [30] of the Navier-Stokes
equations describing the steady viscous flow near a rotating disk. The flow between two rotating
coaxial disks has been discussed by Stewartson [24]. Cochran [6] discussed the flow due to a ro-
tating disk. The axially symmetric flow of a viscous fluid between two infinite rotating disks has
been investigated by Lance and Rogers [16]. Heat transfer in the forced flow of visco-inelastic
fluid between two infinite disks was studied by Singh and Agarwal [23]. Mustafa [28] and Das
[9] discussed flow in two stretchable rotating disks. Numerical treatment for parallel slip flow
was investigated by Tabassum and Mustafa [25] and its numerical study has been done by Naqui
[18]. Sahoo [21]-[22] discussed heat transfer and revolving flow in Reiner-Rivlin fluid. The
same model for coaxial rotating disk was discussed by Das [8]. Zangooeel et al. [34], Yao and
lian [33] and Yao and Lian [32] studied the disk model for different fluids by analytical method.
Usman et al. [29] have been studied heat transfer from a non-isothermal rotating rough disk
subjected to forced flow. Hayat et al. [12] studied the convective flow of Jeffrey nanofluid due
to two stretchable rotating disks. Numerical analysis of the sound radiation from rotating in the
presence of transverse magnet disks has been discussed by Maeder et al. [17].Turkyilmazoglu
[26] and [27] discussed the model of a rotating disk. Agarwal [1],[3] and [2] discussed some
models in her studies.

The HPM is a well-known method to find out nonlinear partial and ordinary differential
equations. This method has been proven very commanding in a variety of problems in different
fields. In many fluid mechanics problems, equations of flow and heat transfer are nonlinear, to get
their solutions many researchers use a numerical approach and some of them applied analytical
methods such as perturbation technique.
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The HPM is firstly introduced by He [13] in 1999 who [15]-[14] also did some modification.
The HPM has been shown to solve a large class of nonlinear problems efficiently, accurately, and
easily. The HPM has been applied in the disk model by Donald [4]. Homogenous and heteroge-
neous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM were
studied by Doh et al. [11]. Dinarvand [10] has discussed an explicit, purely analytic solution
of off-centered stagnation flow towards a rotating disk using HAM. An analytic approximate
solution for study flow over a rotating disk in a porous medium with heat transfer by HAM has
been investigated by Rashidi et al. [20]. Jansi et al. [19] have employed HPM to achieve the
solution of their problem. Xinhui et al. [31] have discussed flow and heat transfer of viscous
fluid between contracting rotating disks by HAM.

The main target of this article is to analyze the flow characteristics of Reiner-Rivlin fluid,
which is confined between two rotating stretchable disks by using HPM. The observation of
radial, transverse, and axial velocity components have been presented graphically for several
values of Reynolds number Ro, the non-Newtonian parameter N , and rotation parameter A.
To check the validity of HPM, obtained results are matched with numerical method results. A
comparison of shear stress on the lower disk in the radial and tangential direction of the present
study is shown with the literature’s value. Also putting the value of non-Newtonian parameter
N = 0, the fluid follows Newtonian behavior.

2 Mathematical Model

The consecutive equation for Reiner-Rivlin fluid as mentioned by Coleman and Noll [7] is as
follows

τij = −pδij + 2µnvdij + 4µcvcij (2.1)

where

dij =
1
2
(ui,j + uj,i)

cij = dimd
m
j (2.2)

τij , p, δij , ρ, µnv and µcv are stress-tensor, hydrostatic pressure, Kronecker’s delta tensor, density,
coefficient of Newtonian-viscosity and coefficient of cross-viscosity respectively. dij , cij are the
symmetric tensors and ui is velocity vector. The author used cylindrical coordinates (r, θ, z)

Figure 1: Flow model of the stretchable disks

here. The non-Newtonian fluid is filled between two rotating disks at a distance ` apart. The disk
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coinciding with the plane z = 0 rotates along the z−axis with angular velocity ω1 and stretches
radially with the constant rate κ1. The disk situated at the plane z = ` rotates along the z−axis
with angular velocity ω2 and stretches radially with the constant rate κ2. Let u, v and w are the
velocities in r, θ and z direction respectively, and ∂

∂θ = 0 (due to symmetrical rotation)
The equation of continuity and momentum equations are

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (2.3)

ρ

(
u
∂u

∂r
− v2

r
+ w

∂u

∂z

)
=
∂τrr
∂r

+
∂τrz
∂z

+
τrr − τθθ

r
(2.4)

ρ

(
u
∂v

∂r
+
uv

r
+ w

∂v

∂z

)
=
∂τrθ
∂r

+
∂τθz
∂z

+
2τrθ
r

(2.5)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
=
∂τzr
∂r

+
∂τzz
∂z

+
τrz
r

(2.6)

The boundary conditions of the present model are

z = 0 : u = rκ1, v = rω1, w = 0,

z = ` : u = rκ2, v = rω2, w = 0. (2.7)

The velocity profile as suggested by Von Karman [30] is given by

u = rω1f
′
(ξ)

v = rω1h(ξ)

w = −2`ω1f(ξ) (2.8)

where ξ = z
` is a dimensionless parameter.

The obtained higher-order, PDEs are now reformed into a system of nonlinear ODEs. So by
using Equation (2.8) in Equation (2.4)-(2.6), we get

f iv + 2Ro
(
hh
′
+ ff

′′′
)
−NRo

(
f
′
f iv + 3h

′
h
′′
+ 2f

′′
f
′′′
)
= 0 (2.9)

h
′′
+ 2Ro

(
fh
′
− f

′
h
)
+NRo

(
f
′′
h
′
− f

′
h
′′
)
= 0 (2.10)

Reduced boundary conditions are

ξ = 0 : f = 0, h = 1, f
′
= K1,

ξ = 1 : f = 0, h = A, f
′
= K2. (2.11)

where Ro = ω1`
2

µnv
, is the Reynolds number, K1 = κ1

ω1
and K2 = κ2

ω2
are stretching parameters,

A=ω2
ω1

is a rotation number and N = 2µcv

ρ`2 in non-Newtonian parameter.

3 Methodology

3.1 Description of Method

According to He [13], to describe the fundamentals of HPM, we form the equation

K(u)−m(r) = 0, rεΩ (3.1)
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with the boundary conditions

β

(
u,
∂u

∂n

)
= 0, rεδ (3.2)

Distribute K(u) in Lr(u) and Nr(u) where Lr(u) is linear, Nr(u) is nonlinear and m(r) is
known analytic function.
∴ We can rewrite Equation (3.1) as

Lr(u) +Nr(u)−m(r) = 0, rεΩ (3.3)

The homotopy can be defined as

H(u, ε) = (1− ε)) [Lr(u)− Lr(u0)] + ε [K(u)−m(r)] = 0 (3.4)

where
u(r, ε) : Ω× [0, 1]→ R (3.5)

In equation (3.5), ε is an embedded parameter which lies between [0, 1] and u0 is the initial
approximation which satisfies the boundary condition.
The solution of equation (3.4) in the power of ε can be written as

u = u0 + εu1 + ε2u2 +−−−− (3.6)

Hence the best result is
u = lim

ε→1
u = u0 + u1 + u2 +−−−− (3.7)

3.2 Implementation of the Method

A homotopy for equations (2.9) and (2.10) are

H(f, ε) = (1− ε))
[
f iv − f iv0

]
+ ε

[
f iv + 2Ro

(
hh
′
+ ff

′′′
)
−NRo

(
f
′
f iv + 3h

′
h
′′
+ 2f

′′
f
′′′
)]

= 0 (3.8)

H(h, ε) = (1− ε))
[
h
′′
− h

′′

0

]
+ ε

[
h
′′
+ 2Ro

(
fh
′
− f

′
h
)
+NRo

(
f
′′
h
′
− f

′
h
′′
)]

= 0 (3.9)

where ε lies between 0 and 1. f0 and h0 are an initial approximation that satisfies conditions
at the boundary. Consider approximate outcomes of equations (3.8) and (3.9) in the ascending
power of ε are

f(ξ) =
∞∑
i=0

fiε
i = f0(ξ) + εf1(ξ) + ε2f2(ξ) +−−−−−− (3.10)

h(ξ) =
∞∑
i=0

hiε
i = h0(ξ) + εh1(ξ) + ε2h2(ξ) +−−−−−− (3.11)

For the best approximation for solution at ε→ 1 is

f = f0 + f1 + f2 + f3 +−−−− (3.12)

h = h0 + h1 + h2 + h3 +−−−− (3.13)

coefficient of ε0:
d4

dξ4 f0 (ξ) = 0 (3.14)
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d2

dξ2h0 (ξ) = 0 (3.15)

coefficient of ε1:

d4

dξ4 f1 (ξ) + 2Ro
(
h0 (ξ)

d
dξ
h0 (ξ) + f0 (ξ)

d3

dξ3 f0 (ξ)

)

−NRo

((
d
dξ
f0 (ξ)

)
d4

dξ4 f0 (ξ) + 3
(

d
dξ
h0 (ξ)

)
d2

dξ2h0 (ξ)

+ 2
(

d2

dξ2 f0 (ξ)

)
d3

dξ3 f0 (ξ)

)
= 0 (3.16)

d2

dξ2h1 (ξ) + 2Ro
(
f0 (ξ)

d
dξ
h0 (ξ)−

(
d
dξ
f0 (ξ)

)
h0 (ξ)

)

+NRo

((
d2

dξ2 f0 (ξ)

)
d
dξ
h0 (ξ)−

(
d
dξ
f0 (ξ)

)
d2

dξ2h0 (ξ)

)
= 0 (3.17)

coefficient of ε2:

d4

dξ4 f2 (ξ) + 2Ro

(
h0 (ξ)

d
dξ
h1 (ξ) + h1 (ξ)

d
dξ
h0 (ξ) + f0 (ξ)

d3

dξ3 f1 (ξ)

+ f1 (ξ)
d3

dξ3 f0 (ξ)

)
−NRo

((
d
dξ
f0 (ξ)

)
d4

dξ4 f1 (ξ)

+

(
d
dξ
f1 (ξ)

)
d4

dξ4 f0 (ξ) + 3
(

d
dξ
h0 (ξ)

)
d2

dξ2h1 (ξ) + 3
(

d
dξ
h1 (ξ)

)
d2

dξ2h0 (ξ)

+ 2
(

d2

dξ2 f0 (ξ)

)
d3

dξ3 f1 (ξ) + 2
(

d2

dξ2 f1 (ξ)

)
d3

dξ3 f0 (ξ)

)
= 0 (3.18)

d2

dξ2h2 (ξ) + 2Ro

(
f0 (ξ)

d
dξ
h1 (ξ) + f1 (ξ)

d
dξ
h0 (ξ)−

(
d
dξ
f0 (ξ)

)
h1 (ξ)

−
(

d
dξ
f1 (ξ)

)
h0 (ξ)

)
+NRo

((
d2

dξ2 f0 (ξ)

)
d
dξ
h1 (ξ)

+

(
d2

dξ2 f1 (ξ)

)
d
dξ
h0 (ξ)

)
−NRo

((
d
dξ
f0 (ξ)

)
d2

dξ2h1 (ξ)

+

(
d
dξ
f1 (ξ)

)
d2

dξ2h0 (ξ)

)
= 0 (3.19)
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coefficient of ε3:

d4

dξ4 f3 (ξ) + 2Ro

(
h0 (ξ)

d
dξ
h2 (ξ) + h1 (ξ)

d
dξ
h1 (ξ) + h2 (ξ)

d
dξ
h0 (ξ)

+ f0 (ξ)
d3

dξ3 f2 (ξ) + f1 (ξ)
d3

dξ3 f1 (ξ)

)
+ 2Ro

(
f2 (ξ)

d3

dξ3 f0 (ξ)

)

−NRo

((
d
dξ
f0 (ξ)

)
d4

dξ4 f2 (ξ) +

(
d
dξ
f1 (ξ)

)
d4

dξ4 f1 (ξ)

+

(
d
dξ
f2 (ξ)

)
d4

dξ4 f0 (ξ)

)
− 3NRo

((
d
dξ
h0 (ξ)

)
d2

dξ2h2 (ξ)

+

(
d
dξ
h1 (ξ)

)
d2

dξ2h1 (ξ) +

(
d
dξ
h2 (ξ)

)
d2

dξ2h0 (ξ)

)

− 2NRo

((
d2

dξ2 f0 (ξ)

)
d3

dξ3 f2 (ξ) +

(
d2

dξ2 f1 (ξ)

)
d3

dξ3 f1 (ξ)

+

(
d2

dξ2 f2 (ξ)

)
d3

dξ3 f0 (ξ)

)
= 0 (3.20)

d2

dξ2h3 (ξ) + 2Ro

(
f0 (ξ)

d
dξ
h2 (ξ) + f1 (ξ)

d
dξ
h1 (ξ) + f2 (ξ)

d
dξ
h0 (ξ)

−
(

d
dξ
f0 (ξ)

)
h2 (ξ)

)
− 2Ro

((
d
dξ
f1 (ξ)

)
h1 (ξ) +

(
d
dξ
f2 (ξ)

)
h0 (ξ)

)

+NRo

((
d2

dξ2 f0 (ξ)

)
d
dξ
h2 (ξ)

)
+NRo

((
d2

dξ2 f1 (ξ)

)
d
dξ
h1 (ξ)

+

(
d2

dξ2 f2 (ξ)

)
d
dξ
h0 (ξ)−

(
d
dξ
f0 (ξ)

)
d2

dξ2h2 (ξ)

)

−NRo

((
d
dξ
f1 (ξ)

)
d2

dξ2h1 (ξ) +

(
d
dξ
f2 (ξ)

)
d2

dξ2h0 (ξ)

)
= 0 (3.21)

Solving equations (3.14)-(3.21) with boundary conditions given below

fn(0) = 0 ∀n ≥ 0, f
′

0(0) = K1, f
′

n(0) = 0 ∀n ≥ 1, h0(0) = 1, hn(0) = 0 ∀n ≥ 1

fn(1) = 0 ∀n ≥ 0, f
′

0(1) = K2, f
′

n(1) = 0 ∀n ≥ 1, h0(1) = A, hn(1) = 0 ∀n ≥ 1
(3.22)

After simplification, we get

f0 (ξ) = 1/6 (6K2 + 6K1) ξ
3 + 1/2 (−2K2 − 4K1) ξ

2 +K1ξ (3.23)

h0 (ξ) = (A− 1) ξ + 1 (3.24)
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f1 (ξ) = −2Ro

(
ξ7K1

2

140
+
ξ7K1K2

70
+
ξ7K2

2

140
− 3/10Nξ5K1

2 − 3/5Nξ5K1K2

− 3/10Nξ5K2
2 − 1/30 ξ6K1

2 − 1/20 ξ6K1K2 −
ξ6K2

2

60
+
A2ξ5

120
+Nξ4K1

2

+ 3/2Nξ4K1K2 + 1/2Nξ4K2
2 + 1/20 ξ5K1

2 + 1/20 ξ5K1K2 −
ξ5A

60

+ 1/24 ξ4A+
ξ5

120
− 1/24 ξ4

)
+ 1/6

(
66NK1

2Ro
5

+
72NK1K2Ro

5

+ 6/5NK2
2Ro + 3/10RoA2 +

22K1
2Ro

35
+

9RoK1K2

35
− 13RoK2

2

35

+ 2/5ARo −
7Ro
10

)
ξ3 + 1/2

(
− 8/5NK1

2Ro − 6/5NK1K2Ro

+ 2/5NK2
2Ro − 1/15RoA2 − 4K1

2Ro
35

− 1/35RoK1K2 +
3RoK2

2

35

− 1/30ARo + 1/10Ro

)
ξ2 (3.25)

h1 (ξ) = −2Ro

(
− 1/10Aξ5K1 − 1/10Aξ5K2 + 1/2ANξ3K1 + 1/2ANξ3K2

+ 1/6Aξ4K1 + 1/12Aξ4K2 + 1/10 ξ5K1 + 1/10 ξ5K2 −ANξ2K1

− 1/2ANξ2K2 − 1/2K1ξ
3N − 1/2 ξ3NK2 −

5 ξ4K1

12
− 1/3 ξ4K2 +K1ξ

2N

+ 1/2 ξ2NK2 + 2/3K1ξ
3 + 1/3 ξ3K2 − 1/2K1ξ

2

)
+

(
−ANK1Ro

+ 2/15RoAK1 − 1/30RoAK2 +NK1Ro − 3/10K1Ro + 1/5RoK2

)
ξ (3.26)
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f2 (ξ) = −
Ro

2

105

[(−648K1
3 − 1944K1

2K2 − 1944K1K2
2 − 648K2

3
)
ξ11

7920

+

(
3024K1

3 + 7560K1
2K2 + 6048K1K2

2 + 1512K2
3
)
ξ10

5040

+
ξ9

3024

(
16632NK1

3 + 49896NK1
2K2 + 49896NK1K2

2 + 16632NK2
3

+ 21A2K1 + 21A2K2 − 5376K1
3 − 10752K1

2K2 − 6216K1K2
2 − 840K2

3

− 42AK1 − 42AK2 + 21K1 + 21K2

)
+

ξ8

1680

(
− 55440NK1

3 − 138600NK1
2K2

− 110880NK1K2
2 − 27720NK2

3 + 70A2K1 + 35A2K2 + 4200K1
3 + 6300K1

2K2

+ 2100K1K2
2 + 70AK1 + 140AK2 − 140K1 − 175K2

)
+

ξ7

840

(
− 83160N2K1

3

− 249480N2K1
2K2 − 249480N2K1K2

2 − 83160N2K2
3 + 210A2NK1 + 210A2NK2

+ 65184NK1
3 + 130872NK1

2K2 + 75432NK1K2
2 + 9744NK2

3 − 84A2K1 + 126A2K2

−420ANK1−420ANK2−996K1
3−888K1

2K2−48K1K2
2−156K2

3+28AK1−112AK2

+ 210NK1 + 210NK2 + 476K1 + 406K2

)
+

ξ6

360

(
166320N2K1

3 + 415800N2K1
2K2

+332640N2K1K2
2+83160N2K2

3+840A2NK1+420A2NK2−29232NK1
3−44604NK1

2K2

− 15372NK1K2
2 − 168A2K1 − 105A2K2 + 210ANK1 + 1050ANK2 − 336K1

3

−330K1
2K2+138K1K2

2+132K2
3+21AK1−105AK2−1050NK1−1470NK2−693K1

− 210K2

)
+

ξ5

120

(
1890A2N2K1 + 1890A2N2K2 − 101304N2K1

3 − 205632N2K1
2K2

−122472N2K1K2
2−18144N2K2

3−966A2NK1−756A2NK2−3780AN2K1−3780AN2K2

+ 2448NK1
3 + 2052NK1

2K2 + 540NK1K2
2 + 936NK2

3 + 119A2K1 − 14A2K2

+ 252ANK1 − 588ANK2 + 1890N2K1 + 1890N2K2 + 132K1
3 + 54K1

2K2 − 78K1K2
2

− 98AK1 + 98AK2 + 714NK1 + 1344NK2 + 399K1 − 84K2

)]
+ .......... (3.27)

Table 1: Different cases of stretchability

case K1 K2

1 0 0.5
2 0.5 0.5
3 0.5 0
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h2 (ξ) =
Ro

2

210

[
ξ9

72

(
− 204AK1

2 − 408AK1K2 − 204AK2
2 + 204K1

2 + 408K1K2

+ 204K2
2

)
+
ξ8

56

(
784AK1

2 + 1176AK1K2 + 392AK2
2 − 1036K1

2 − 1680K1K2

− 644K2
2

)
+ 1/42

(
2394NAK1

2 + 4788NAK1K2 + 2394NAK2
2 − 28A3

− 1064AK1
2 − 1064AK1K2 − 140AK2

2 − 2394NK1
2 − 4788NK1K2 − 2394NK2

2

+ 84A2 + 2072K1
2 + 2576K1K2 + 644K2

2 − 84A+ 28

)
ξ7

+ 1/30

(
− 6300NAK1

2 − 9450NAK1K2 − 3150NAK2
2 + 420AK1

2 + 210AK1K2

+ 8820NK1
2 + 14490NK1K2 + 5670NK2

2 − 140A2 − 1960K1
2 − 1750K1K2

− 280K2
2 + 280A− 140

)
ξ6 + 1/20

(
− 2520N2AK1

2 − 5040N2AK1K2

− 2520N2AK2
2 + 70NA3 + 5348NAK1

2 + 5516NAK1K2 + 728NAK2
2

+ 2520N2K1
2 + 5040N2K1K2 + 2520N2K2

2 + 42A3 − 210NA2 + 200AK1
2

+ 120AK1K2 − 80AK2
2 − 12068NK1

2 − 15596NK1K2 − 4088NK2
2 + 14A2

+ 210NA+ 780K1
2 + 440K1K2 + 220K2

2 − 294A− 70N + 238

)
ξ5

]
+ ...... (3.28)

The value of f3(ξ) and h3(ξ) are too lengthy to be mention. The values of f(ξ) and h(ξ) can be
obtained after substituting the values of fi, hi (i = 0, 1, 2, 3) in the equations (3.12) and (3.13).
In case 1, when the upper disk is getting stretched but lower disk is not stretched, f(ξ) and h(ξ)
for specific values K1 = 0,K2 = 0.5, Ro = 10, N = 0.1, A = 0.5 are

f(ξ) = −0.00312485 ξ15 + 0.0156243 ξ14 + 0.00690224 ξ13 − 0.119596 ξ12

+ 0.0588717 ξ11 + 0.225700 ξ10 + 0.183324 ξ9 − 0.953439 ξ8 + 0.546993 ξ7

+ 0.577577 ξ6 − 0.536506 ξ5 + 0.0583129 ξ4 + 0.0227114 ξ3

− 0.0833504 ξ2 (3.29)

h(ξ) = −0.0665307 ξ13 + 0.437109 ξ12 − 0.756764 ξ11 − 0.221506 ξ10

+ 1.08009 ξ9 + 0.197704 ξ8 − 0.371151 ξ7 − 0.333662 ξ6 + 1.14274 ξ5

− 2.06742 ξ4 + 0.880162 ξ3 − 0.243070 ξ2 − 0.177707 ξ + 1 (3.30)

In case 2, when both disks are getting stretched, f(ξ) and h(ξ) for specific valuesK1 = 0.5,K2 =
0.5, Ro = 10, N = 0.1, A = 0.5 are

f(ξ) = −0.0499976 ξ15 + 0.374982 ξ14 − 0.653025 ξ13 − 1.41371 ξ12 + 5.56761 ξ11

− 3.20133 ξ10 − 7.39027 ξ9 + 10.6239 ξ8 − 0.379992 ξ7 − 8.76374 ξ6

+ 8.87515 ξ5 − 5.34507 ξ4 + 2.98047 ξ3 − 1.72503 ξ2 + 0.500000 ξ (3.31)
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h(ξ) = −0.532246 ξ13 + 4.53102 ξ12 − 13.6972 ξ11 + 14.7568 ξ10 + 8.46025 ξ9

− 36.0726 ξ8 + 33.8676 ξ7 − 5.69780 ξ6 − 17.1663 ξ5 + 21.6626 ξ4 − 15.7763 ξ3

+ 6.39303 ξ2 − 1.22885 ξ + 1 (3.32)

In case 3, when the lower disk is getting stretched but upper disk is not stretched, f(ξ) and h(ξ)
for specific values K1 = 0.5,K2 = 0, Ro = 10, N = 0.1, A = 0.5 are

f(ξ) = −0.00312485 ξ15 + 0.0312485 ξ14 − 0.102468 ξ13 + 0.0442971 ξ12

+ 0.489653 ξ11 − 1.18058 ξ10 + 0.870068 ξ9 + 0.527294 ξ8 − 1.35263 ξ7

+ 0.713135 ξ6 + 0.630089 ξ5 − 1.42785 ξ4 + 1.50936 ξ3

− 1.24850 ξ2 + 0.5 ξ (3.33)

h(ξ) = −0.0665307 ξ13 + 0.695647 ξ12 − 2.84370 ξ11 + 5.47795 ξ10 − 3.44647 ξ9

− 6.27998 ξ8 + 16.2582 ξ7 − 14.8495 ξ6 + 2.71625 ξ5 + 8.49723 ξ4

− 11.1228 ξ3 + 6.14115 ξ2 − 1.67749 ξ + 1 (3.34)

In radial directions shear stress at lower disk is denoted by τzr, which is defined as

τzr = µ1

[
∂u

∂z

]
z=0

=
µ1rω1

`
f
′′
(0)

4 Results and Discussion

the author presented and analyzed outcomes of the theory in tabular form along with graphs. To
fulfill the objective, we choose to present shear stress at the lower disk and flow of velocities for
the different parameters. All the considered cases of stretchability are shown in Table 1. These
values are taken arbitrarily to analyze the present model as chosen customarily in the literature
by [28], [9].

To validate the present result of the study, a comparison between the results achieved by HPM
and NM is done. The value of different parameters for comparison are taken as a non-Newtonian
parameter N = 0.1, Reynolds number Ro = 10 and rotation parameter A = 0.5. A comparison
between HPM and NM is shown graphically in Figure 2 for all three cases of stretchability. The
error between the results obtained by HPM and NM is tabulated in Table 2-Table 4 which gives
a good agreement. The formula for calculating an error between the results is

error =| fHPM − fNM |
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(a) Radial Velocity (b) Transverse Velocity (c) Axial Velocity

Figure 2: Matching results of flow profile of HPM and NM for N = 0.1, Ro = 10 and A = 0.5.
Solid lines represent case1, dotted lines represent case2 and dashed lines represent case3

Table 2: Error in values of radial velocity profile calculated by HPM and NM when K1 = 0,
K2 = 0.5, Ro = 10, N = 0.1, A = 0.5

ξ HPM NM Error
0.2 -0.0317791250 -0.0299096836 0.0018694414
0.4 -0.0691671858 -0.0777960511 0.0086288652
0.6 -0.0885581670 -0.0943947661 0.0058365991
0.8 0.0127247939 0.0216767469 0.0089519530
1 0.5000000000 0.5000000000 0.0000000000

Table 3: Error in values of transverse velocity profile calculated by HPM and NM when K1 = 0,
K2 = 0.5, Ro = 10, N = 0.1, A = 0.5

ξ HPM NM Error
0.2 0.9588096810 0.9700891182 0.0112794372
0.4 0.9035215361 0.9146988296 0.0111772935
0.6 0.8019349578 0.8014292526 0.0005057052
0.8 0.6309745630 0.6274739615 0.0035006015
1 0.5000000000 0.5000000000 0.0000000000

Table 4: Error in values of axial velocity profile calculated by HPM and NM when K1 = 0,
K2 = 0.5, Ro = 10, N = 0.1, A = 0.5

ξ HPM NM Error
0.2 -0.0031890742 -0.0024316401 0.0007574341
0.4 -0.0131741919 -0.0132069443 0.0000327524
0.6 -0.0298309610 -0.0315776038 0.0017466428
0.8 -0.0408378869 -0.0423305430 0.0014926561
1 0.0000000000 0.0000000000 0.0000000000

Another source of verification of present results is Table 5-7 in which the results calculated
by HPM and NM have been compared with the literature results [28]. Turkyilmazoglu [28] com-
puted the values of shear stress on the lower disk in the radial and tangential directions for all
three cases of stretchability, mentioned in Table 1, for Ro = 0 and Ro = 10. A perfect verifica-
tion of the results obtained by NM and HPM for the case of Newtonian fluid with the literature
can be seen in Table 5-7. This comparison confirms the guarantee of the present attempt.
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Table 5: Numeric data of f
′′
(0) for A = −0.5, 0, 0.5 when K1 = 0, K2 = 0.5, N = 0

Rotation Parameter Ro = 0 [28] NM (Present) HPM (Present) Ro = 10 [28] NM (Present) HPM (Present)
A = -0.5 -1.00000000 -1.00000000 -1.00000000 0.19385791 0.19385790 0.20503384

A = 0 -1.00000000 -1.00000000 -1.00000000 0.047184 0.04718399 0.05987216
A = 0.5 -1.00000000 -1.00000000 -1.00000000 -0.36279802 -0.36279801 -0.35464816

Table 6: Numeric data of f
′′
(0) for A = −0.5, 0, 0.5 when K1 = 0.5, K2 = 0.5, N = 0

Rotation Parameter Ro = 0 [28] NM (Present) HPM (Present) Ro = 10 [28] NM (Present) HPM (Present)
A = -0.5 -3.00000009 -3.00000000 -3.00000000 -2.26713850 -2.26713850 -2.26383874

A = 0 -3.00000009 -2.99999999 -3.00000000 -2.38938053 -2.38938053 -2.38462036
A = 0.5 -3.00000009 -3.00000000 -3.00000000 -3.00199603 -3.00199604 -3.02297732

Table 7: Numeric data of f
′′
(0) for A = −0.5, 0, 0.5 when K1 = 0.5, K2 = 0, N = 0

Rotation Parameter Ro = 0 [28] NM (Present) HPM (Present) Ro = 10 [28] NM (Present) HPM (Present)
A = -0.5 -2.00000007 -2.00000000 -2.00000000 -1.60562889 -1.60562889 -1.59405521

A = 0 -2.00000007 -2.00000000 -2.00000000 -1.44561724 -1.44561724 -1.44174574
A = 0.5 -2.00000007 -2.00000000 -2.00000000 -1.89459839 -1.89459839 -1.89315515

The nature of f
′
(ξ), h(ξ) and f(ξ) for the different values of Ro, non-Newtonian parameter

N and rotation parameter A are presented graphically in Figure 3 - 11. Also, the behavior
of velocities are discussed in three different cases of stretchability when (1) the upper disk is
getting stretched but the lower disk is not stretched (2) both disks are getting stretched (3) the
lower disk is getting stretched but the upper disk is not stretched.

(a) Case1 (b) Case2 (c) Case3

Figure 3: Radial velocity for different Ro when N = 0.1, A = 0.5

The performance of velocity profile for distinct values of Ro when N = 0.1 and A = 0.5
is presented in Figure 3a-3c. Figure 3 displays the variation of radial velocity for all three
cases of stretchability. Figure 3a analyzes that the radial velocity falls in the nearby area of
the lower boundary while raise in the nearby area of the upper boundary. Also, near the lower
disk, velocity rises with the rise in Ro but its nature is opposite near the upper disk. Figure
3b reflects symmetric nature of radial velocity in case2. This figure displays that the minimum
value of radial velocity shifts towards the upper disk as increasing the Reynolds number. Also,
it decreases with an increase of Ro near the upper disk. Figure 3c analyzes the behavior of
the velocity in case3. This figure tells that velocity decreases from the stretching parameter of
the lower disk very rapidly but increases near the upper disk. The magnitude of radial velocity
decreases for increasing values of Ro near the upper disk in all the cases of stretchability. It is
because of that as we increase the value of Ro, the inertial force increases which reduces the
fluid motion.
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(a) Case1 (b) Case2 (c) Case3

Figure 4: Transverse velocity for different Ro when N = 0.1, A = 0.5

The behavior of transverse velocity for different cases of stretchability is presented in Figure
4a-4c. It is clear from all three cases that when Ro = 0, velocity declines linearly from the lower
end to the upper end. In Figure 4a, velocity rises with a rise in the values of Ro while it falls
down in the nearby of the upper disk with an increase in Ro due to stretching and rotation in the
upper disk. The opposite behavior can be seen in Figure 4c.

(a) Case1 (b) Case2 (c) Case3

Figure 5: Axial velocity for different Ro when N = 0.1, A = 0.5

The variation of axial velocity for three cases of stretchability is presented in Figure 5a-5c.
Figure 5a says that the f(ξ) increases with an increase in Ro. In Figure 5b, the fluid is moving
outwards over the faster-rotating disk and moving inside over the slower rotating disk. This
figure also shows the same behavior but no change can be seen near the lower and upper disks.
Figure 5c analyzes that velocity achieves its maximum value near the lower disk. A decrement
in the velocity with an increment in Ro near the lower disk can be observed while its nature is
opposite near the upper disk.
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(a) Case1 (b) Case2 (c) Case3

Figure 6: Radial velocity for different N when Ro = 10, A = 0.5

The effect of non-Newtonian parameter N = 0.01, 0.05, 0.1, in all three cases of stretchabil-
ity, when Ro = 10 and A = 0.5 on the f

′
(ξ) is presented in Figure 6. Figure 6a depicts that

velocity decreases near the lower disk but increases rapidly near the upper disk. Also, on in-
creasing the value of N , velocity is increasing near the lower disk while its behavior is reversed
near the upper disk. Figure 6b investigates the symmetric behavior of velocity. Figure 6c ana-
lyzes that the velocity decreases sharply from the stretching parameter of the lower disk while it
increases near the upper disk.

(a) Case1 (b) Case2 (c) Case3

Figure 7: Transverse velocity for different N when Ro = 10, A = 0.5

The variation of h(ξ) for different N is presented in Figure 7. Figure 7a-7c present case1,
case2 and case3 respectively. Figure 7a analyzes that velocity increases slightly near the lower
disk and then decreases up to the upper disk. Figure 7b analyzes the behavior of transverse
velocity when both the disks are getting stretched. In Figure 7c, velocity decreases from the
lower end to the upper end.
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(a) Case1 (b) Case2 (c) Case3

Figure 8: Axial velocity for different N when Ro = 10, A = 0.5

The variation of axial velocity for different value of non-Newtonian parameter N when Ro =
10 and A = 0.5 is discussed in Figure 8. The behavior of f(ξ) in case1 is shown in figure
8a. When the lower disk is getting stretched and the upper disk is not stretching, axial velocity
decreases rapidly from the lower disk whereas it increases fastly near the upper disk. It is also
clear that velocity increases with an increase in N while its magnitude is almost the same near
the upper disk. Figure 8b presents axial velocity behavior when both disks are getting stretched.
It can be seen from this figure that axial velocity is positive near the lower disk but negative near
the upper disk. It can also be observed that velocity gets its maximum value near the lower disk
while gets its minimum value near the upper disk. Also, velocity decreases with an increase in
N near the lower disk while its behavior is reversed near the upper disk. Figure 8c shows the
behavior of axial velocity in case3. It is clear from this figure that velocity achieves its maximum
value near the lower disk. Also, velocity decreases with an increase of N while near both disks,
there is no specific change in velocity.

(a) Case1 (b) Case2 (c) Case3

Figure 9: Radial velocity for different A when Ro = 10, N = 0.1

Figure 9 explains the behavior of radial velocity for all cases of stretchability. In this section,
A < 0 means lower and upper disks are rotating in opposite directions, A = 0 means there is no
rotation in the upper disk, andA > 0 means both disks are rotating in the same directions. Figure
9a is discussed for case1 of stretchability. This figure depicts that when A = −0.5, 0, there is a
small increment in the magnitude of the radial velocity near the lower disk while near the upper
disk it increases rapidly. when A = 0.5, velocity decreases up to ξ ∼ 0.6 then increases up to
the stretching parameter of the upper disk. It can also be observed that velocity increases with an
increase in A near the region 0.4 < ξ < 0.7. Figure 9b is discussed when both disks are getting
stretched. This figure analyses that the behavior of the velocity is symmetric. Also, the minimum
value of velocity shifts towards the upper disk on increasing the value of the rotation parameter
A. It can also be seen that radial velocity increases with an increase in A near the middle region
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of disks. In figure 9c, case3 is discussed. According to this figure, velocity decreases rapidly
from the lower disk but increases near the upper disk.

(a) Case1 (b) Case2 (c) Case3

Figure 10: Transverse velocity for different A when Ro = 10, N = 0.1

Figure 10 explains the behavior of transverse velocity for all cases of stretchability. This
figure depicts that when lower and upper disks are rotating in opposite directions i.e.A < 0,
and when there is no rotation in the upper disk i.e.A = 0, the behavior of transverse velocity is
almost the same in all cases of stretchability. It is also clear from Figure 10a-10c that velocity
decreases from lower disk to the stretching parameter of upper disk (K2). It can also be noted
from Figure 10 that velocity increases with an increase in rotation parameter.

(a) Case1 (b) Case2 (c) Case3

Figure 11: Axial velocity for different A when Ro = 10, N = 0.1

Figure 11 explains the behavior of axial velocity for all cases of stretchability. Figure 11a
depicts that when A = −0.5, 0, axial velocity decreases in the region 0.2 < ξ < 0.8 after a small
increment in magnitude in the region 0 < ξ < 0.2 and increases rapidly near the upper disk.
when A = 0.5, axial velocity decreases up to the region ξ ∼ 0.8 and increases sharply up to the
upper disk. Figure 11b shows that the behavior of axial velocity is symmetric but opposite along
z = 0. It can also be observed that when both disks are getting radially stretched, velocity gets
its maximum value near the lower disk while gets its minimum value near the upper disk. Figure
11c shows that axial velocity is positive throughout the gap length. Its behavior is almost the
same for a different value of A. This figure also investigates that velocity increases rapidly near
the stretching disk and decreases up to the non-stretching disk. It can also be noted that when
there is no rotation, velocity achieves its maximum value.
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5 Conclusion

In this article, a flow of Reiner-Rivlin fluid between two rotating stretchable disks is studied.
The Homotopy Perturbation Method is successfully employed in this model. This study is done
for three cases of stretchability, when the upper disk is getting stretched but the lower disk is
not stretched, when both disks are getting stretched, and when the lower disk is getting stretched
but the upper disk is not stretched. The effect of Reynolds number Ro, the non-Newtonian
parameter N , and rotation parameter A on velocity profiles are discussed and shown graphically.
The following key points can be concluded

• The comparison between HPM and NM shows that the proposed analytical method is highly
accurate and provides rapid achievement to compute the flow velocities.

• By substituting the non-Newtonian parameter N = 0, the results are verified by [28].

• Shear stress on the lower disk in the radial direction for all three cases of stretchability is
compared with literature [28], which also verified the accuracy of results.

• When both disks are stretching, the behavior of radial velocity is the same for all parame-
ters.

• Minimum value of radial velocity shifts towards the upper disk in case2 of stretchability.

• Transverse velocity decreases from the lower disk to the upper disk for different values of
Reynolds number and non-Newtonian parameter.

• The behavior of axial velocity is the same for different values of Ro and N .
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