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Abstract In this paper, we explain how symmetry analysis is applied to the Korteweg-de
Vries equation. This equation under study is a nonlinear partial differential equation of third
order. We develop the required Lie invariance condition using local inverse theorem, an approach
different from the existing Lie-Bicklund operators and Taylor series method. This condition is
then used to obtain the determining equations of the admitted Lie group. The corresponding Lie
algebra is found to be solvable. We obtain the invariant surface condition, symmetry algebra and
the group classification admitted by this equation. Further, we obtain the exact and similarity
solutions of this equation, comment on them and represent them graphically.

1 Introduction

Over hundred years ago, Sophus Lie introduced Lie groups to model the continuous symme-
tries of differential equations. This was the only unified understanding for solving differential
equations analytically. This powerful tool that helps study properties of solutions of differen-
tial equations has been gaining wide popularity in recent years as the theory is generalized to
classes of several differential equations. A symmetry is a transformation that leaves an object
unchanged. In [16] it is explained that the regularity of the laws that are independent of certain
inessential circumstances are accounted for by symmetries. The application of the concept of
symmetries is in physical and applied sciences. A fascinating application of symmetries is its
relationship with conservation laws. A great detail on the development of symmetry analysis can
be found in [3, 7, 8].

A highly used equation in modelling water waves, called the Korteweg-de Vries (KdV) equation
is given by
ug(t, ) + u(t, ) ug (6, ) + Ugee (t,2) =0,

where t, z € R and w is a real valued function.

This equation which contrasts the Burgers’ equation, the literature for which can be found in [4],
finds practical applications in optical fibres and shallow water theory. By using Harrison method
and first integral method, [14] exhibits solutions of the KdV equation.

While several partial differential equations like the semi linear heat equation in [17] and the re-
action diffusion equation in [18], to name a few, have been solved and analyzed numerically, a
growing research interest to investigate the symmetry properties of differential equations is on
the rise. Lie symmetry approach is used to report the admittance of continuous point symmetries
of Quispel, Roberts and Thompson type nonlinear partial differential equations by [20]. They
also analyze the integrability nature of the partial differntial equations through degree growth of
iterates. Further, invariance analysis, exact solutions and conservation laws of (2+1)-dimensional
long wave equations are reported in [22]. In addition, [6] reports the generalized group invariant
solutions of the (2+1) Date-Jimbo-Kashiwara-Miwa equations using symmetry analysis. The
wave equation with delay, a second order partial differential equation is thoroughly investigated
by [12] and the invariant solutions of this equation are given. Lot of papers can be found on sym-
metry analysis for various forms of the KdV equation. The perturbed KdV equation is studied in
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[1] using the Lagrange method and the forced KdV equation is analysed in [13]. The symmetry
reductions of the (2+1)-dimensional KdV equation with variable coefficients are obtained in [19]
and all two-dimensional solvable symmetry subalgebras have been determined. The concept of
integrable nonholonomic deformation found for KdV equations is extended by [21] to modified
KdV (mKdV) equation. It is noteworthy to mention here that a complete Lie symmetry analysis
of the damped wave equation with time dependent coefficients is investigated in [5], and the
invariant and exact solutions generated from the symmetries is presented. The Kawahara-KdV
equations have been gaining a lot of interest in recent years and [2] introduces a new solution for
these equations. Another class of solutions for the Kawahara-KdV type equations are demon-
strated by [10], and by using Lie symmetry reductions these equations are reduced to ordinary
differential equations. The (2+1)-dimensional KdV is investigated for its residual symmetries
in [25] using a truncated Painlevé expansion. Lie symmetry analysis has also been extended to
space-time fractional differential equations in [15, 24]. These papers have motivated us to thor-
oughly analyse the Lie algebraic structure of the KdV equation.

We organize this paper as follows:

In the following section some preliminaries are given. In the next section, the required Lie
invariance condition is developed using a new approach that requires local inverse theorem. This
condition is then used in the subsequent section to obtain the corresponding symmetry algebra
and determine the solvability of the equation under study. The solutions of the KdV equation
are then constructed and similarity solutions, exact solutions and soliton solutions motivated by
[23] are presented. Such soliton solutions are also constructed by [11] in studying the fifth-order
KdV equation. These solutions are represented graphically. The concluding section summarizes
the results obtained. This provides a thorough analysis of the KdV equation which is new in
literature.

2 Preliminaries

In this section, we introduce the terminologies and results required to understand the solvability
of differential equations. We start by defining one-parameter groups.

Definition 2.1. A one-parameter group of transformations, ¢; = g;(¢;,9), is a set of transforma-
tions satisfying the following:

(i) (Closure) Successive application of two transformations yields another transformation of
the set.

(i1) (Identity) Every transformation has an identity.

(iii) (Inverse) Every transformation has an inverse.
Lie groups are defined as:

Definition 2.2. A group that is also a differentiable manifold is known as a Lie group. Consider
the binary operation,
p:GxG—G, ptz) =t

For a Lie group, the mapping (¢, z) + ¢~z is a smooth mapping of the product manifold into
G.

Example 2.3. Consider the Lie group of rotation matrices denoted by SO(2,R). These form
a subgroup of the group (under multiplication) of 2 x 2 real invertible matrices denoted by
GL(2,R). Let the parameter ¢ denote the rotation angle. Then we can parametrize this group as

follows:
SO(2,R) = { (Cf’S(s _S‘“5> 5 R/zﬁz} .
sind  cosd

Multiplying any two elements of SO(2, R) yields another element of SO(2, R) with the rotation
angle as the addition of the two angles, and on inversion, we see that we get the opposite angle.
Therefore both multiplication and inversion are differentiable maps.
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For each i,j = 1,2,---,n, the functions g;(¢;,0), are referred to as the global form of the
group.

For three variables (the case for partial differential equations, one being dependent while the
other two being independent), we shall denote the variables by ¢, = and «. Thus, we consider the
transformations

t=f(t,z,u,9), ==g(t z,u,d), u=h(tmzud) 2.1
Representing equation (2.1) as a Taylor series about § = 0, we get

r_ CE 2\ s ﬁ AN @ 2
t=t+§ <d6>50+0(5 ), T=x+0 <d5>50+0(5 ), & =u+0 <d5>50+0(5 ), (2.2)

where O(6?) indicates terms involving only powers of § greater than or equal to two.

Let,
df) dx dii
— =T(t,z,u), () = X(t,z,u), <) =U(t,z,u). 2.3)
<d5 6=0 dd ) 5-9 dd ) 5-9

Then we get,
t=t4+0T(t, z,u)+0(0?), T =z+6X(t,z,u)+0(0?), @=u+toU(t,z,u)+0(5?). (2.4)

Equation (2.4) is referred to as infinitesimal transformations.
Further, 7', X and U are called coefficients of the infinitesimal transformations or simply in-
finitesimals.

A property that is intrinsic to determining equations is that a set of solutions of any determining
equations forms what is called a Lie algebra.

So now we turn to define Lie algebras and related concepts. (This term was introduced by H.
Weyl; Sophus Lie himself used the term infinitesimal group.)

Definition 2.4. Let L be a vector space over some field [F. Suppose that there is a binary operation
“[ , ] satisfying

[Gav Gﬂ] = _[Gﬁv Ga}v [Gav [Gﬁv G'Y”'i_[Gﬁa [G’w Ga]]+[G77 [Gm Gﬁ” =0, VGa,Gp, Gy € L.
Then L is called a Lie algebra over F.
As we require the concept of an ideal to define a solvable Lie algebra, we define an ideal first.

Definition 2.5. A Lie subalgebra M of a Lie algebra L is an ideal in L, if [G}, G2] € M,
v G] € M, Gz e L.

We conclude this section by defining a solvable Lie algebra.

Definition 2.6. A r—dimensional Lie algebra L, is said to be solvable if we can find a sequence
of Lie subalgebras such that

{0} =LcL CcL,C--CL,whereL;, 1 < i < r denotes a Lie subalgebra of
dimension 7.

(i) L;isanidealof L; 1, V1 <i<r—1.

Remark 2.7. (i) A Lie algebra of dimension two is always solvable.

(i1) A three or higher dimensional Lie algebra need not be solvable.

More details on Lie algebras can be found in [9].
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3 Invariance Condition for Partial Differential Equations of Third Order

On differentiating equation (2.1) with respect to ¢t and x, we can calculate the prolongation of a
given transformation. We define the following total derivatives:

0 0 0 0
Dy =% +Uta +u1ta +utt67t+ (3.1
0 0 0 0

Assuming that the Jacobian is non-zero, the first two equations of (2.1) can be locally inverted
to give ¢ and z in terms of # and Z, that is,

Dit DT

T=\p.i D,z

#0, where u=u(z,t). (3.3)

Since the last equation of (2.1) contains @ as a function of some variables, one of which is u(t, z),
we see that if equation (3.3) is satisfied, then by local inverse function theorem, the last equation
of (2.1) can be rewritten as

u=u(t,T). (3.4)

Application of the chain rule to equation (3.4), gives

Dii|  |DiE Dzl |ag
D,ua| |D,E D.z| |uz|’

and therefore by (Cramer’s rule)

)

_ 1 |Din D& _ 1 |Di D
Y= 7 \p,a D.iT T T\ Dza‘ (3-5)
Equation (3.5) can be simplified to get the extended infinitesimal representation,
i = uy + 0Up 4+ O(6%), iz = ug + 60U + O(8%), (3.6)
where
U = Di(U) — ue Di(X) — us D(T), a7
Ui} = D2(U) — up Dy (X) = uy Dy (T).
The explicit expression for equation (3.7) is
Uy = U — Xpug + (Uy — T)w — Xuuguy — Tuuf, 48)
Uy = Uz + (Uu — Xa)uz — Tous — Xu? — Tyuguy.
Continuing the procedure, we can obtain the second-order prolongations as follows:
=7 |os T o o e
=7 |be Dome| "7 |p Do @10

On simplifying (3.9) and (3.10) we get the extended infinitesimal representations, namely
ligp = up+ 06U+ O0(0%),  lizz = Ung +0U}y) +0(0%), gy = Ute + 06Uy +O(67), (3.11)
where

U[tt] = Dt (U[t]) - uth (X) - uttDt (T), U[m;] = Dx (U[I]) - Ume (X) - ume (T), (3 12)
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and,

Uta] = Di(Ula)) — e Di(X) — uie Di(T) 3.13)
= D,(Uyy) — uta Da(X) — uu Do (T) '
The explicit expressions for Uy}, Uya), Uiy given by equations (3.12) and (3.13) are

Uy = Use — Xpptiw + 2Usu — Tie)us — 2Xputiztty + (Unu — 2T )uf — XuuUauy
— Tty — 2 Xt — 2X gy + (Uy — 2T uge — Xyugtie — 3Ty gy, (3.14)

U[:nm] - Uzr + (2U:1:u - Xzz)um - szut + (Uuu - 2X:L’u)ui - 2Tzuuxut - quui
- uuuiut + (Uu - 2Xx)umc — 2T ugt — 3 X Up Uy — Ty UtUpy — 2Tuuxuxt7 (315)

U[zt] - Uzt + (Utu - th)ua: + (Umu - th)ut - Xtuui + (Uuu - X:L’u - Ttu)ua:ut
- Txuu% - quuiut - Tuuuzu% - Xtua;w - qutuzx + (Uu - Xl - Tt)uwt

- 2quxu:rt - 2Tuutuzt - Txutt - Tuumutt~

Extending this procedure to third-order prolongations, we get

_ 1 DtCE Dt’l_l,g 1 Dt’l_l,ﬁ Dtt

e = L e = — _ 3.16

M T Dy Dy J |Dyiizz Dyt (3.16)
i 1 |Diz D | | Dy D 1 |D,z Dy
e J— €T = — = — | = T — — x 3.17
U= 7 pg Dea| - T T Dy Dui| U T Dy Dy O
P i Dti'_ Dt'l_fﬁ — i — l Dﬂ_fﬁ Dtt__ i — l Dtl_fg Dtt__ (3.18)

On simplifying (3.16), (3.17) and (3.18) we get the extended infinitesimal representations,
namely

ﬂ% = Uttt + 6U[ttt] + 0(62), ﬂm = Uggx + 5U[wmx] + 0(62),

o i (3.19)
Uggy = Utte + 6U[ttz] + 0(5 )7 Ugzy = Utzx + 5U[tzz] + O((S )7

where

U[ttt] = Dt(U[tt]) - uttht(X) - utttDt(T)a U[za::r] = Da:(U[zz]) - uwwwa(X) - utwme(T)7

(3.20)
U[tm] - Dt(U[m]) — Uty D (X)) — tee D (T) (3.21)
= DT(U[tt]) — UttxDa:(X) - ’thtth(T) .
and,
U[th] = Dt(U[zz]) — Umzth(X) - utszt(T) (3.22)

= DT(U[tx]) - utT’I'D’I‘(X) - utttDm<T)



6 Jervin Zen Lobo

For any interval I in R and for any open set D, if G : I x D'' — R is a differentiable function,
then by the invariance condition we should have,

0 = H(%, &, @, Gz, Uz, U, Uz, Uy, Uzze U U, T
= H(t+ 6T + O(5%),x + 6X 4+ O(8*),u + 6U + O(6%), uy + 6Up + O(5%),
Uy + 86Uy + O(6), tgy + 6U gy + O(0%), g + Uy + O(67),
st + Uy + O(8%), Ugaa + 0Ujza) + O(6%), e + 6Ujy) + O(52),
Ustr + 6Ujtra) + O(6%), Utgs + 0Uiza) + O(6%))
= H(t, 2,1, U, Uz, Ust, Uz, Uttt , Upaes Ute, Utte, Utz ) + 6(THt +XH,+UH,
+ UpHu, + U Hu, + UpgHuy, + Ul Huyo + Ut Huser + Uz Huo

+ U[t:c] Huta: + U[ttI]Huttz + U[trz]Hutzz) + 0(52)

On comparing the coefficient of §, we see that

TH;+XH,+UH, + U[t]Hut + U[I]Huz + U[tt]Hutt + U[x:r]Hum

+ U[ttt]HUttt + U[ww:c]HUzzx + U[tw]Hutr + U[ttI]HUttx + U[th]Hutrm =0.
We have the extension of the prolongation given by,
C(l) =TH +XH, +UH, +UyHy, + Uy Hy, + UpgHu,, + Uga)Hu,, (3.23)

+ U[ttt]Huttt + U[wwa:]H

Ugzs T U[tm]Hum + U[tt:v]Huttw + U[twa:]Hutam
Summarizing the above, we get the following:

Theorem 3.1. The invariance condition for nonlinear second-order partial differential equations
is given by (W H |_o= 0, where

H(t, 2,0, Uy, Uy Ugt, Uz, Uttty Yzza s Uta, Utz Utze) = 0, and the operator ¢ is defined by
equation (3.23) .

Remark 3.2. The infinitesimal generator of the Lie group (or tangent vector field) is,

c=1dix2 vl (3.24)
4 Symmetry Analysis of the Korteweg-de Vries Equation
Consider the KdV equation given by
Up + Uy + Uggy =0 4.1)
Applying the invariance condition given by equation (3.23) to equation (4.1), we get
Uy + Uy + Uug + Ulpy) = 0. 4.2)

Using equations (3.19) and (3.8) in equation (4.2), then substituting
Uy = —Us — Uly, and splitting the resulting equation with respect to
Upy Ugy Uty Uy Uttt Uttz , Utz ANS vVarious products, we get

Up +uUy + Ugyr = 0, 4.3)

Ty + uTy — 3Xy + Tope = O, 4.4)
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Xt —2uXy + Xoga — 3Upgu — U =0,
Xy = Trau =0,
uXy — Xogu + Uzuu = 0,
Towe =0, Uyuuw —3Xz0u =0, Tyuuw =0,
Xoww =0, Top =0, Ugy— Xue =0,

Txu = 07 Uuu - X:z:u = 07 qu = 07

Solving equations (4.3)-(4.11), we get
7,=0, T7,=0, X,=0, U, =0,
solving which we get,
T(t,x,u)=a(t), X(t,z,u)=p8Ez), Ulzu) =5 x)u+ pt ),

where o = a(t), 8 = B(t,z),y = v(¢,z) and p = p(t, x) are arbitrary functions.
Substituting these values of «, 3, and p in equations (4.3)-(4.11), we get

(’YtU + ,Ot) + (’qu + pm)u + Yezzth + Praz = 0,

Bt - 2“61 + ﬁwww - 3'Ya:$ —yu—p= Oa

O‘t_3ﬁmzoa 7$_wa:0
Splitting equations (4.12) and (4.13) with respect to u, we get

at_3ﬁz:07 Vz_ﬁwz:07 7+2Bm207 '705207

4.5)

(4.6)

4.7

4.8)

4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

In order to get the coefficients of the infinitesimal transformations, we solve equations (4.15)-

(4.16), the solutions of which are

T(t,z,u) =3ct+c1, X(t,z,u) =cat + 2z + 3, Ult,z,u) = —2cou + ca,

where ¢; — ¢4 are arbitrary constants.
The general form of the infinitesimal generator given by

0 0 0
¢* = (Bet + cl)& + (cat + 2z + 03)% + (2cu+ 04)%.

We see that the infinitesimal generators are

0 G2:3tg—0—1272u27 G3:27 G4:t2—0—2.

Gr=gp ot " " ox ou oz dr | ou

The commutator table is given by
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G Gy Gz | Ga
Gy 0 3G, 0 G3
Gy | —3G4 0 G3 | 2G,
G 0 —G3 0 0
Gy | -Gy | 2G4 | O 0

Choosing,

Ly ={0}, L =span{Gs}, L3 =span{G3,Gs}, Ls= span{Gi,G3,G4},
L5 = Span{Gla G27 G3a G4} = L7

we see that

{0}=L1 Cl,CclsCLyCLs=1L.
Consequently, the Lie algebra L is solvable.
The following theorem summarizes our results:

Theorem 4.1. The KdV equation given by equation (4.1) admits a four dimensional solvable Lie
algebra generated by

4 G2:3tg+$g—2ug, G3:27 G’4:t£-‘r2

G =g ot oz ou’ 0T Bz or | ou

5 Invariant Surface Condition and Solutions of the Korteweg-de Vries
Equation

To the characteristic equations given by

dt _dz _du

T X U’
we can associate the first-order partial differential equation
Tu; + Xu, = U. (5.1

Equation (5.1) is referred to as the “invariant surface condition.”
So for the KdV equation under study, equation (5.1), becomes

(Beat + cp)ug + (cat + 2 + c3)up = —2c0u + 4. (5.2)

This is the invariant surface condition for the KdV equation.
We will now explain the reason for this name. Consider the solution

u=u(t,z).

If we consider
a=u(, ) (5.3)

then under the infinitesimal transformations given by equation (2.1), equation (5.3) becomes
u+ U (t,z,u) + O(6?) = u(t + 0T (t, z,u) + O(0?), z + 6 X (t, z,u) + O(6%)),
then on expanding, we get
u+ U (t,2,u) + O(0%) = u(t, ) + 6(T(t, z, u)us + X (t, ,u)uy) + O(6%).
If u = u(t, z), then comparing the coefficients of §, we get equation (5.1).

Having obtained the invariant surface condition associated with the KdV equation, we will now
this to find explicit solutions of equation (4.1). We will take particular cases of the invariant
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surface condition given in equation (5.2).

Let us first consider, ¢; = 1,¢; = 0,¢3 = ¢,cqa = 0, where c is an arbitrary constant. Equation
(5.2) reduces to
us + cugy = 0.

whose solution is
u=0(x — ct).

Substituting this into equation (4.1) yields the third order ordinary differential equation
0" (r) 4+ 0(r)0'(r) — ct'(r) =0,
where r = = — ct. Integrating this equation once and suppressing the constant of integration
gives
1
0" + 592 —ch=0.
One particular solution of this equation is

u(t,z) = 0(z — 4p*t) = 12p*sech(pzx), (5.4)

where the constant c is chosen as 4p?.

As this solution does not depend on time, it is a “steady state solution”.

This solution is referred to as the “one solition” solution and is graphically represented in Figure
1:

Figure 1. One Soliton Solution u(¢, z) = 12p?sech(pz), t,z € (=5,5), p=1

We will now explicitly find, for this case, the Lie group under which the KdV equation is invari-
ant. To do this, we need to solve the system (2.3) subjected to

t=t, T=ux, 4=u, when 6§ =0.

Therefore, with T'(¢,z,u) = 1, X(¢,z,u) = ¢, U(t,z,u) = 0, the above system can be solved
to give
t=t+4, T=x+cb, u=u.

We illustrate another choice of constants in equation (5.2) to find solutions of equation (4.1).
Consider ¢; = 0,¢; = 0,¢3 = 0,¢4 = 1 in equation (5.2), which then gives

tu, = 1,
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which can be solved to yield

u= %(;S(t). (5.5)

Substituting this in the original equation gives

tg'(t) + o(t) = 0,

whose solution with an arbitrary constant k is

o(t) = (5.6)

k
e
Substituting equation (5.6) in equation (5.5), we get the exact solution of the KdV equation given
by
k

u(t,z) = Jtr . (5.7)
If the space is bounded, then the solution tends to zero as time ¢ tends to infinity while if the
space is unbounded, then with the passage of time, the solution becomes bounded.
Equation (5.7) is graphically represented in Figure 2:

5.0

k+x

Figure 2. Exact Solution u(t, ) = ,te(1,5), ze(-5,9), k=1

For this case, with T'(t,z,u) = 0, X(¢,z,u) =t, U(t,z,u) = 1, we see that the KdV equation
is invariant under
t=t, T=z+15, a=u+9.

As a final illustration, we exhibit the similarity solutions admitted by the KdV equation. For this,
consider ¢; = 0, = 1,¢3 = 0, ¢4 = 0 in equation (5.2), which then gives

3tuy + xu, = —2u,

which can be solved to yield the similarity solution of the KdV equation given by

u(t,z) =723 (tl%) .

Substituting the similarity solution in the KdV equation (4.1) gives

¥(r) = (21/’(’“”3%’(”) — B (1), (5.8)
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T
where r = Y

Solutions of equation (5.8) will give exact solutions of the KdV equation.

As we now have T(¢,z,u) = 3t, X(t,z,u) = =, U(t,z,u) = —2u, we see that the KdV
equation is invariant under the stretching group
T=e¥t, z=¢2, a=eu

The graphical representation of the similarity solution is shown in Figure 3:

oo ‘3}
T
O .00 - - -
2325233
: .-SD § :‘ 5.0
3.0 oo
S0 -5.0

T

Figure 3. Similarity Solution u(t, z) = t—2/3) (t1/3)  te(1,5),z € (=5,5), ¥(-) =sin(")

6 Conclusion

We have established the Lie invariance condition for third-order nonlinear partial differential
equations using local inverse theorem — a novel approach. Using this, we have computed the
symmetry algebra of the KdV equation and found that it is 4-dimensional. We have seen that
this algebra is solvable. We then obtained the invariant surface condition associated with this
partial differential equation. Using this, we have computed the exact solutions of the KdV equa-
tion, commented on them and represented them graphically. We have also obtained a similarity
solution and represented a particular case graphically.

Acknowledgement: We are thankful to the Reviewers and Editors for constructive sugges-
tions.

References

[1] T. Ayaz, F. Ali, W. K. Mashwani, I.A. Khan, Z. Salleh, and Ikramulla, Approximate Symmetry Analysis
and Conservation Laws Corresponding to Perturbed Korteweg-de Vries Equation, Innovative Applications
of Fractional Calculus, 2021, Article ID 7710333, (2021) DOI: https://doi.org/10.1155/2021/7710333.

[2] A.H.Badali, M. S. Hashemi, and M. Ghahremani, Lie Symmetry Analysis for Kawahara-KdV Equations,
Computational Methods for Differential Equations, 1(2), pp. 135-145 (2013).

[3] G. W.Bluman, and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, (1989).

[4] M. P. Bonakile, A. Awasthi, C. Lakshmi, V. Mukundan, and V. S. Aswin, A Systematic Literature Review
of Burgers’ Equation with Recent Advances, Pramana Journal of Physics, 90, Article ID 69, pp. 69-90
(2018).



12

Jervin Zen Lobo

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. B. Chamazkoti, and M. Alipour, Lie Symmetry Classification and Numerical Analysis of KdV Equation
with Power-Law Nonlinearity, Mathematical Reports, 22(72), pp. 163-176 (2020) .

A. Chauhan, K. Sharma, and R. Arora, Lie Symmetry Analysis, Optimum System, and Generalized
Group Invariant Solutions of the (2+1)-Dimensional Date—Jimbo—Kashiwara—Miwa Equation, Mathemat-
ical Methods in Applied Sciences, 43(15), pp. 8823-8840 (2020).

L. E. Dickson, Differential Equations from the Group Standpoint, Annals of Mathematics, 25, pp. 287-378
(1924).

L. Dressner, Applications of Lie’s Theory of Ordinary and Partial Differential Equations, Institute of
Physics Publishing, Bristol and Philadelphia, (1999).

K. Erdmann, and M. Wildon, Introduction to Lie Algebras, Springer-Verlag, United States of America,
(2006).

B. Ghanbari, S. Kumar, M. Niwas, and D. Baleanu, The Lie Symmetry Analysis and Exact Jacobi Elliptic
Solutions for the Kawahara—KdV Type Equations, Results in Physics, 23, Article ID: 104006, (2021) DOI:
https://doi.org/10.1016/j.rinp.2021.104006.

K. R. Khusnutdinova, Y. A. Stepanyants, and M. R. Tranter, Soliton Solutions to the Fifth-Order
Korteweg-de Vries Equation and their Applications to Surface and Internal Water Waves, Physics of Flu-
ids, 30, Article ID: 022104, (2018) DOI: https://doi.org/10.1063/1.5009965.

J. Z. Lobo, and Y. S. Valaulikar, Group Analysis of the One-Dimensional Wave Equation
with Delay, Applied Mathematics and Computation, 378, Article ID 125193, (2020) DOI:
https://doi.org/10.1016/j.amc.2020.125193.

M. Molati, and C. M. Khalique, Lie Group Analysis of a Forced KdV Equation, Recent Advances on
Methods and Applications of Nonlinear Differential Equations, 2013, Article ID 845843, (2013) DOI:
https://doi.org/10.1155/2013/845843.

M. Nadjafikhah, and S-R Hejazi, Lie Symmetries and Solutions of KdV Equation, International Mathe-
matical Forum, 4, pp. 165-176 (2009).

A. M. Nass, Symmetry Analysis of space-time fractional Poisson equation With Delay, Quaestiones Math-
ematicae, 42(9), pp. 1221-1235 (2018).

F. Oliveri, Lie Symmetries of Differential Equations: Classical Results and Recent Contributions, Sym-
metry Journal, 2(2), pp. 658-706 (2010).

M. A. Rasheed, R. A. Hameed, S. Kareem, and A. Jameel, On Numerical Blow-Up Solutions of Semilin-
ear Heat Equations, Iraqi Journal of Science, 61(8), pp. 2077-2086 (2020).

M. A. Rasheed, and F. Ghaffoori, On Blow-Up Time and Growth Rate of a Reaction-Diffusion Equation,
Italian Journal of Pure and Applied Mathematics, 44, pp. 805-813 (2020).

R. de la Rosa, E. Recio, T. M. Garrido, and M. S. Bruz/ on, Lie Symmetry Analysis of (2+1)-Dimensional
KdV Equations with Variable Coefficients, International Journal of Computer Mathematics, 92, (2020)
DOIL: https://doi.org/10.1080/00207160.2019.1599107.

R. Sahadevan, and G. Nagavigneshwari, Continuous Symmetries of Certain Nonlinear Partial Differential
Equations and their Reductions, Physics Letters A, 378(43), pp. 3155-3160 (2014).

A. Kundu, R. Sahadevan, and L. Nalinidevi, Nonholonomic Deformation of KdV and mKdV Equation
and their Symmetries, Hierarchies and Integrability, Journal of Physics A: Mathematical and Theoretical,
42(11), (2009) DOIL: https://doi.org/10.1088/1751-8113/42/11/115213.

K. Sharma, R. Arora, and A. Chauhan, Invariance Analysis, Exact Solutions and Conservation
Laws of (2+1)-Dimensional Dispersive Long Wave Equations, Physica Scripta, 95(5), (2020), DOI:
https://doi.org/10.1088/1402-4896/ab5eae.

C. Tung, Constructions of the Soliton Solutions to the Good Boussinesq Equation, Advances in Difference
Equations, 629, (2020) DOI: https://doi.org/10.1186/s13662-020-03089-8.

G. Wang, Y. Liu, Y. Wu, and X. Su, Symmetry Analysis for a Seventh-Order Generalized
KdV Equation and its Fractional Version in Fluid Mechanics, Fractals, 28(3), (2020) DOI:
https://doi.org/10.1142/S0218348X20500449.

Z. Zhao, Bicklund Transformations, Nonlocal Symmetry and Exact Solutions of a Generalized (2+1)-
Dimensional Korteweg-de Vries Equation, Chinese Journal of Physics, Journal Pre-Proof, (2021) DOI:
https://doi.org/10.1016/j.cjph.2021.07.026.

Author information

Jervin Zen Lobo, Department of Mathematics, St. Xavier’s College, Mapusa — Goa, India.
E-mail: zenlobo1990@gmail . com



	1 Introduction
	2 Preliminaries
	3 Invariance Condition for Partial Differential Equations of Third Order
	4 Symmetry Analysis of the Korteweg-de Vries Equation
	5 Invariant Surface Condition and Solutions of the Korteweg-de Vries Equation
	6 Conclusion

