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Abstract The wavelet frames have been defined with illustrative examples. Walter [14] has
discussed the pointwise convergence of wavelet expansions. Till now, wavelet frame series’
pointwise and uniform convergence have not been studied in detail. Working in the same di-
rection, the wavelet frame series and its pointwise as well as uniform convergence have been
investigated in this study. The importance of the proof of the main results was increased by the
use of Parseval’s equality for the Fourier transform as well as the Fourier series.

1 Introduction

Wavelet frames and their constructions have been studied by several researchers like Ron and
Shen [12], Benedetto [1], Benedetto and Treiber [2], Chui and Shi [3] and others. Recently Lal
and Kumar [10] have studied the approximation of functions belonging to L2(R) space by their
wavelet expansions. Now orthonormal wavelet series has become a very useful tool in several
branches of Engineering and Technology like data analysis, signal and image processions. As a
result, the study of convergence behaviour of this series becomes essential. In this direction, an
attempt has been made by Walter [14] and Hernandez and Weiss [8]. Working in the same direc-
tion, Wavelet frame series have been studied pointwise and uniformly by Zhang [15]. Similarly
a function f ∈ L2(R) is also expressible as a wavelet frame series. Wavelet frame series’ point-
wise and uniform convergence have not been studied in depth until now. The nature of pointwise
and uniform convergence of certain wavelet frame series has been investigated in detail in this
paper to make an advance study.

2 Definitions and Preliminaries

2.1 Wavelet Frames

Let’s say F ∈ L2(R). F ’s Fourier transform is defined as follows:

F̂ (ξ) =

∫ ∞
−∞

e−iξυF (υ)dυ,

and F̂ ’s compact support is defined as

suppF̂ = clos{ξ, F̂ (ξ) 6= 0},

where closS is the closure of set S, i.e. closS is the set containing all the elements of S and its
limit points. When suppF̂ is bounded, F is referred to as a band-limited function.

A Hilbert space is denoted by the symbol H. A sequence in H is denoted by {hn}∞n=−∞. If
there are two positive real constants 0 < Γ1 ≤ Γ2 <∞ such that

Γ1‖F‖2 ≤
∞∑

n=−∞
|〈F, hn〉|2 ≤ Γ2‖F‖2 for anyF ∈ H,

the frame for H is designated {hn}∞n=−∞, and the bounds of the frame are Γ1,Γ2.
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Let ϕ ∈ L2(R). Define

ϕm,n(υ) = 2
m
2 ϕ(2mυ − n), m, n ∈ Z.

Throughout the work, we use the abbreviation ONB to refer to orthonormal basis. A wavelet
frame (or a wavelet ONB) is defined as a system {ϕm,n,m, n ∈ Z} that is a frame (or an ONB)
for L2(R).

Example 1. Define the Haar function ψH as follows:

ψH(t) =


1, 0 ≤ t < 1

2 ;
−1, 1

2 ≤ t < 1;
0, otherwise.

and consider the sampling rate 1/3. Then the linearly dependent family S = {ψH,1/3;j,k : j, k ∈
Z} is a wavelet frame of L2(R) (see Chui [4], p. 70).

Example 2. Legendre wavelet (see Lal and Bhan [11]) is defined over the interval [0, 1) as
follows:

ψ 1
3 ;n,m(t) =

{ √
(m+ 1

2)2
k
2 Lm(2kt− n̂

3 ),
n̂
3 −1
2k ≤ t <

n̂
3 +1
2k ;

0, otherwise,

where n̂ = 2n− 1, n = 1, 2, · · · , 2k−1, k is the natural number and m is the degree of Legendre
polynomial. Then {ψ 1

3 ;j,k} is a wavelet frame. It can be shown following the proof of Example
1.

2.2 Wavelet Frame Series

Let ϕ ∈ L2(R) and suppϕ̂ ⊂ [−π, π]. Then

Γ1 ≤
∞∑

m=−∞
|ϕ̂(2−mξ)|2 ≤ Γ2, a.e. ξ ∈ R, (Heil and Walnat [7])

if and only if {ϕm,n,m, n ∈ Z} is a wavelet frame with bounds Γ1,Γ2. Let ϕ, ϕ̃ ∈ L2(R). The
wavelet frames {ϕm,n,m, n ∈ Z} and {ϕ̃m,n,m, n ∈ Z} which satisfy the following expression

F =
∞∑

m=−∞

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n

)
=

∞∑
m=−∞

( ∞∑
n=−∞

〈F, ϕ̃m,n〉ϕm,n

)
,∀F ∈ L2(R) (2.1)

in the sense of L2-norm, are referred to as dual wavelet frames, and both the series in (2.1) are
referred to as wavelet frame series.

Chui & Shi [3] and Frazier etal. [6] obtained a necessary and sufficient conditions for a pair
of wavelet frames {ϕm,n,m, n ∈ Z} & {ϕ̃m,n,m, n ∈ Z} to be dual frames in the following
form:

The wavelet frames {ϕm,n,m, n ∈ Z} and {ϕ̃m,n,m, n ∈ Z} become dual pairwise if and
only if the following conditions

∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
= 1, a.e. ξ

and
∞∑
m=0

ˆ̃ϕ (2m(ξ + (2k + 1)2π)) ϕ̂ (2mξ) = 0, a.e. ξ, k ∈ Z,

hold.
Researchers like Walter [14], Kelly, Kon and Raphaet [9] and Hernandez and Weiss [8] have

studied the converegence of orthonormal wavelet series as following:
Let a multi resolution analysis (MRA) originate a wavelet ONB {ϕm,n,m, n ∈ Z} with the

scaling function φ which satisfies the following inequality

|φ(υ)| ≤ C

(1 + |υ|)p
, υ ∈ R, p = 1, 2, 3, · · · .
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(i) If

FM (υ) =
M∑

m=−∞

( ∞∑
n=−∞

〈F,ϕm,n〉ϕm,n(υ)

)
, F ∈ L2(R)

then FM (υ)→ F (υ) as M →∞ for a.e. υ ∈ R.

(ii) If F ∈ L2(R) ∩ L1(R) is continuous in an open interval (a, b), then FM (υ) converges to
F (υ) uniformly as M →∞ on every compact subset of (a, b).

Let ϕ ∈ L2(R) and {ϕm,n,m, n ∈ Z} be a wavelet frame with suppϕ̂ ⊂ [−π, π] and ϕ̃(υ)
satisfies

ˆ̃ϕ(ξ) =
ϕ̂(ξ)∑∞

m=−∞ | ˆ̃ϕ
(
ξ

2m

)
|2
, a.e. ξ ∈ R. (2.2)

Then

Γ1 ≤
∞∑

m=−∞
|ϕ̂(2−mξ)|2 ≤ Γ2, a.e. ξ ∈ R, (2.3)

being Γ1,Γ2 are bounds of the frame {ϕm,n,m, n ∈ Z}.
Consequently, we have, if

ϕ̃ ∈ L2(R), supp ˆ̃ϕ = suppϕ̂ ⊂ [−π, π], (2.4)

then
1

Γ1
≤

∞∑
m=−∞

| ˆ̃ϕ(2−mξ)|2 ≤ 1
Γ2
, a.e. ξ ∈ R (see[15]). (2.5)

Thus {ϕ̃m,n,m, n ∈ Z} is a wavelet frame. Under these circumstances

∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
= 1, a.e. ξ

and
ˆ̃ϕ (2m(ξ + (2k + 1)2π)) ϕ̂ (2mξ) = 0, a.e. ξ (m ≥ 0; k ∈ Z).

Thus, the formula for reconstruction

F (υ) =
∞∑

m=−∞

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)
=

∞∑
m=−∞

( ∞∑
n=−∞

〈F, ϕ̃m,n〉ϕm,n(υ)

)
(2.6)

hold in the sense of L2-norm.
When we say |F (υ)| = O{φ(υ)}, we imply that |F (υ)| < Aφ(υ), as υ approaches either

a ∈ R, or infinity, and A > 0, i.e.,

lim
υ→a

|F (υ)|
φ(υ)

= A.

O(1) denotes a bounded function in particular . Thus

sin(υ) = O(1), (υ + 1)2 = O(1)

as υ → 0; and
sin(υ) = O(1), (υ + 1)2 = O(υ2)

as υ →∞.
Sometimes, however, F (υ) = O{φ(υ)} is used to mean

|F (υ)| < Kφ(υ),

but it’s self-evident enough what parameters are involved.
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When we say F (υ) = o{φ(υ)}, we indicate that F (υ)
φ(υ) → 0 as υ approaches either a ∈ R, or

infinity, i.e.,

lim
υ→a

|F (υ)|
φ(υ)

= 0.

. Thus
sin(υ) = o(υ2), (υ + 1)2 = o(υ3)

as υ →∞. Specifically, o(1) denotes a function that approaches to zero, (Titchmarsh [13]).

3 Main theorems

Three new theorems on the convergence of the wavelet frame series are presented in this study,
and they are as follows:

Theorem 3.1. If a function F ∈ L2(R) such that its Fourier transform F̂ ∈ L1(R) and

F (υ) =
∞∑

m=−∞

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)

is a wavelet frame series having M th partial sums

(SMF ) (υ) =
M∑

m=−M

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)
,M = 0, 1, 2, · · · ,

then ((SMF )(υ))
∞
M=0 converges pointwise to F (υ) ∀υ ∈ R.

Theorem 3.2. Let F ∈ L2(R) and

FM (υ) =
∞∑

m=−M

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)
.

Then (FM (υ))
∞
M=0 converges pointwise to F (υ) everywhere on R.

Theorem 3.3. If

ϕ(t) = O

(
1

(1 + |t|) 2
α+δ

)
, 0 < α ≤ 1

2
; δ > 0,

ϕ̂(ξ) = 0, ξ ∈ (−ε, ε), 0 < ε < π, as well as F is continuous in (a, b), where −∞ < a < b <∞
and it belongs to L2(R)∩L1(R) then (FM (υ))

∞
M=0 converges uniformly to F (υ) in every closed

subinterval of (a, b).

4 Proof of Theorem 3.1

The Fourier transform of ϕ̃m,n is defined by

ˆ̃ϕm,n(ξ) =

∫ ∞
−∞

e−iξυϕ̃m,n(υ)dυ

=

∫ ∞
−∞

e−iξυ2
m
2 ϕ̃(2mυ − n)dυ, setting 2mυ − n = u

=

∫ ∞
−∞

e−iξ(
u+n
2m )2

m
2 ϕ̃(u)

1
2m

du

=
e−iξ

n
2m

2m2

∫ ∞
−∞

e−i
ξ

2m uϕ̃(u)du

=
e−i

n
2m ξ

2m2
ˆ̃ϕ
(
ξ

2m

)
. (4.1)
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Using the inverse Fourier transform formula, we have

ϕ̃m,n(υ) =
1

2π

∫ ∞
−∞

eiυξ ˆ̃ϕm,n(ξ)dξ, for every υ ∈ R

=
1

2π

∫ ∞
−∞

eiυξ
e−i

n
2m ξ

2m2
ˆ̃ϕ
(
ξ

2m

)
dξ (from(4.1))

=
1√
2π

∫ 2mπ

−2mπ
eiυξ ˆ̃ϕ

(
ξ

2m

)
e−i

n
2m ξ

√
2m+1π

dξ (∵ supp ˆ̃ϕ ⊂ [−π, π])

=
1√
2π

∫ 2mπ

−2mπ

(
eiυξ ˆ̃ϕ

(
ξ

2m

))
h
(m)
n (ξ)dξ, (4.2)

where

h(m)
n (ξ) =

ei
n

2m ξ

√
2m+1π

.

Using equation (2.4) and the Parseval equality of the Fourier transform, we have

〈F,ϕm,n〉 =
1

2π
〈F̂ , ϕ̂m,n〉

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)ϕ̂m,n(ξ)dξ

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)

e−i
n

2m ξ

2m2
ϕ̂

(
ξ

2m

)
dξ (using(4.1))

=
1√
2π

∫ 2mπ

−2mπ

(
F̂ (ξ)ϕ̂

(
ξ

2m

))
h
(m)
n (ξ)dξ. (4.3)

The system {h(m)
n (ξ)}∞n=−∞ is an orthonormal basis for L2[−2mπ, 2mπ]. By using equations

(2.2) and (2.5), It is simple to demonstrate that the functions F̂ (ξ)ϕ̂
(
ξ

2m

)
and eiυξ ˆ̃ϕ

(
ξ

2m

)
are

in L2[−2mπ, 2mπ].
Using equations (4.2) and (4.3), for all υ ∈ R, we have

〈F,ϕm,n〉ϕ̃m,n(υ) =

(
1√
2π

∫ 2mπ

−2mπ

(
F̂ (ξ)ϕ̂

(
ξ

2m

))
h(m)
n (ξ)dξ

)

×

(
1√
2π

∫ 2mπ

−2mπ

(
eiυξ ˆ̃ϕ

(
ξ

2m

))
h
(m)
n (ξ)dξ

)

=

(
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξ ˆ̃ϕ

(
ξ

2m

)
ϕ̂

(
ξ

2m

)
dξ

)(∫ 2mπ

−2mπ
|h(m)
n (ξ)|2dξ

)
.

Using the Parseval equality formula for the Fourier series, we have
∞∑

n=−∞
〈F,ϕm,n〉ϕ̃m,n(υ) =

1
2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξ ˆ̃ϕ

(
ξ

2m

)
ϕ̂

(
ξ

2m

)
dξ

=
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξ ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
dξ (by(2.4)).

(4.4)

As a result, for every υ ∈ R, the series on the left hand side of equation (4.4) is convergent.
Now, using equation (2.2), we get

M∑
m=−M

∣∣∣∣ ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)∣∣∣∣ = M∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
(4.5)
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Therefore

(SMF ) (υ) =
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξ
(

M∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ ∀ υ ∈ R.

This implies that

lim
M→∞

(SMF ) (υ) =
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξ
( ∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ ∀ υ ∈ R

=
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξdξ

(
∵

∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
= 1

)
= F (υ).

As a result, Theorem 3.1 has been fully proved.

5 Proof of Theorem 3.2

Using equations (4.4) and (2.4) for m < M, we have

lim
N→∞

N∑
n=−N

〈F,ϕm,n〉ϕ̃m,n(υ) =
∞∑

n=−∞
〈F,ϕm,n〉ϕ̃m,n(υ)

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξ ˆ̃ϕ

(
ξ

2m

)
ϕ̂

(
ξ

2m

)
dξ.

(5.1)

Since the functions F ∈ L2(R) and F̂ are both Lebesgue-integrable on [−2Mπ, 2Mπ]. Using
Lebesgue’s dominant convergence theorem and equation (4.5) in equation (5.1) for every υ ∈ R,
we have

∞∑
m=−M

(
lim
N→∞

N∑
n=−N

〈F,ϕm,n〉ϕ̃m,n(υ)

)

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξ

( ∞∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ.

Taking M →∞ in above expression, we get

lim
M→∞

lim
N→∞

FM,N (υ) =
∞∑

m=−∞

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξ lim

M→∞

( ∞∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξ

( ∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ

=
1

2π

∫ 2mπ

−2mπ
F̂ (ξ)eiυξdξ

=
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξdξ = F (υ).

As a result, the Theorem 3.2’s proof is complete.
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6 Proof of Theorem 3.3

Since

FM (υ) =
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξ
( ∞∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ for every υ ∈ R. (6.1)

Take a look at its kernel functions:
∞∑

m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
.

Since
supp ˆ̃ϕ = suppϕ̂ ⊂ [−π,−ε] ∪ [ε, π] (6.2)

and ϕ(t) = O

(
1

(1+|t|)
2
α

+δ

)
, 0 < α < 1

2 therefore it is obvious that both ϕ̂(ξ) and |ϕ̂
(
ξ

2m

)
|2 are

differentiable three times on R. When |m| is large enough, then suppϕ̂
(
ξ

2m

)
∩ (ξ−η, ξ+η) = φ

by equation (6.2), for ξ 6= 0, 0 < η < |ξ|. As a result, there are only finitely many nonzero terms

of the sum
∞∑

m=−∞

∣∣∣∣ϕ̂( ξ

2m

)∣∣∣∣2 in any neighbourhood ξ 6= 0 that does not contain ξ = 0, and the

sum
∞∑

m=−∞

∣∣∣∣ϕ̂( ξ

2m

)∣∣∣∣2 is three times differentiable on non zero real ξ. From equations (2.2) and

(2.3), ˆ̃ϕ
′′′
(ξ) exists on ξ ∈ R− {0}.

Define function g ∈ L2(R) as

ĝ(ξ) =


∞∑
m=0

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
, ξ 6= 0;

1, ξ = 0.
(6.3)

By ϕ̂(ξ) = 0, ξ ∈ (−ε, ε) , we have

∞∑
m=0

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
=

∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
= 1

for ξ ∈ (−ε, ε)− {0}. Using the above expression and equation (6.3), we have

ĝ(ξ) = 1, for ξ ∈ (−ε, ε). (6.4)

A similar argument demonstrates that in some neighborhood of ξ 6= 0,
∞∑
m=0

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
has a finite number nonzero terms. Also by equations (6.2), (6.3) and (6.4), ĝ′′′(ξ) exists on R
and

suppĝ ⊂ [−π
2
,
π

2
]. (6.5)

Allow g̃ to satisfy the following conditions once more:

supp ˆ̃g ⊂ [−π, π], ˆ̃g(ξ) = 1, ξ ∈ [−π
2
,
π

2
] (6.6)

and ˆ̃g′′′(ξ) exists on R.
Because both ĝ and ˆ̃g are three-time differentiable,

g(y) = O
(
(1 + |y|)−3) and g̃(y) = O

(
(1 + |y|)−3) . (6.7)

By equations (2.2), (6.5) and (6.6), we have ĝ(ξ) ≥ 0 and

ĝ(ξ) ˆ̃g(ξ) = ĝ(ξ) = ĝ(ξ) for ξ ∈ R. (6.8)
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Using equations (6.3) and (6.8), we have
∞∑

m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
= ĝ

(
ξ

2M

)
= ĝ

(
ξ

2M

)
ˆ̃g
(

ξ

2M

)
, ξ 6= 0. (6.9)

By equations (6.1), (6.5) and (6.9), it is easily obtained that

FM (υ) =
1

2π

∫ 2Mπ

−2Mπ
F̂ (ξ)eiυξ ĝ

(
ξ

2M

)
ˆ̃g
(

ξ

2M

)
dξ for every υ ∈ R.

Since

{h(M)
n (ξ)}n∈Z := { e

−i n
2M

ξ

√
2M+1π

}n∈Z

is an ONB on L2[−2Mπ, 2Mπ], and the functions

F̂ (ξ)ĝ

(
ξ

2M

)
, e−iυξ ˆ̃g

(
ξ

2M

)
∈ L2[−2Mπ, 2Mπ].

Using the Fourier series’ Parseval equality, we have

FM (υ) =
1

2π

∞∑
n=−∞

(∫ 2Mπ

−2Mπ

(
F̂ (ξ)ĝ

(
ξ

2M

))
h
(M)
n (ξ)dξ

)(∫ 2Mπ

−2Mπ
e−iυξ ˆ̃g

(
ξ

2M

)
h
(M)
n (ξ)dξ

)
.

(6.10)
Consider

gM,n(t) = 2
M
2 g(2M t− n) and g̃M,n(t) = 2

M
2 g̃(2M t− n).

Then the Fourier transforms of gM,n and g̃M,n are given by

ĝM,n(ξ) =
e−in

ξ

2M

2M2
ĝ

(
ξ

2M

)
and ˆ̃gM,n(ξ) =

e−in
ξ

2M

2M2
ˆ̃g
(

ξ

2M

)
, (using equation (4.1)),

respectively. From the above expressions and equations (6.5), (6.6) and (6.10), we have

FM (υ) =
∞∑

n=−∞

(
1

2π

∫ ∞
−∞

F̂ (ξ)ĝM,n(ξ)dξ

)(
1

2π

∫ ∞
−∞

ˆ̃gM,n(ξ)e
iυξdξ

)

=
∞∑

n=−∞

(∫ ∞
−∞

F (t)gM,n(t)dt

)
g̃M,n(υ), υ ∈ R. (6.11)

Define the kernel functions

KM (t, υ) :=
∞∑

n=−∞
gM,n(t)g̃M,n(υ). (6.12)

By equation (6.7), it observes that

gM,n(t)g̃M,n(υ) = 2
M
2 g(2M t− n)2M2 g̃(2Mυ − n)

= O(2M )(1 + |2M t− n|)−3(1 + |2Mυ − n|)−3

= O(2M )(1 + |2M t− n|)−3/2(1 + |2Mυ − n|)−3/2.

As a result, given t, υ ∈ R, the series in equation (6.12) is convergent, and the kernel functions
KM (t, υ) are properly defined. Also, by using the inequality (1+ |p|)(1+ |q|) ≥ 1+ |p− q|, we
get

KM (t, υ) =
∞∑

n=−∞
O(2M )(1 + |2M t− n|)−3/2(1 + |2Mυ − n|)−3/2

=
∞∑

n=−∞
O(2M )(1 + 2M |t− υ|)−3/2

= O(2M )(1 + 2M |t− υ|)−3/2. (6.13)
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Therefore, the integral∫ ∞
−∞
|KM (t, υ)|dt =

∫ ∞
−∞

O(2M )(1 + 2M |t− υ|)−3/2dt

= O(2M )

(∫ υ

−∞

(
1 + 2M (υ − t)

)−3/2
dt+

∫ ∞
υ

(
1 + 2M (t− υ)

)−3/2
dt

)
= O(2M )

1
2M

∫ ∞
1

2u−3/2du, (∵ 1 + 2M (t− υ) = u)

= O(1) (6.14)

and ∫ ∞
−∞

KM (t, υ)dt =

∫ ∞
−∞

( ∞∑
n=−∞

gM,n(t)g̃M,n(υ)

)
dt

=
∞∑

n=−∞

(∫ ∞
−∞

gM,n(t)dt

)
g̃M,n(υ)

=
∞∑

n=−∞

(∫ ∞
−∞

2Mg(2M t− n)dt
)
g̃(2Mυ − n), setting 2M t = u

=
∞∑

n=−∞

(∫ ∞
−∞

g(u− n)du
)
g̃(2Mυ − n)

=
∞∑

n=−∞
g̃(2Mυ − n)

(∵
∫ ∞
−∞

g(u− n)du =

∫ ∞
−∞

g(t)dt = ĝ(0) = 1, by equation (6.4)).

(6.15)

Further, the Poisson’s summing formula and equation (6.6) ensure that

∞∑
n=−∞

g̃(2Mυ − n) =
∞∑

k=−∞

ˆ̃g(2kπ)ei2
M+1kπυ

= ˆ̃g(0) = 1, υ ∈ R.

Thus, ∫ ∞
−∞

KM (t, υ)dt = 1, υ ∈ R. (6.16)

Using the dominant convergence theorem of Lebesgue in equation (6.11), we now obtain

FM (υ) =

∫ ∞
−∞

F (t)

( ∞∑
n=−∞

gM,n(t)g̃M,n(υ)

)
dt

=

∫ ∞
−∞

F (t)KM (t, υ)dt for all υ ∈ R (using equation (6.12)).

(6.17)

Let [β, γ] ⊂ (a, b). Since F is continuous in (a, b), we may deduce that for each ε = 1
M > 0,

there exists a δ > 0 such that

|F (t)− F (υ)| ≤ ε for |t− υ| ≤ δ.
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Let us simplify equation (6.17) as following:

FM (υ) =

∫
|t−υ|≤δ

(F (t)− F (υ))KM (t, υ)dt+

∫
|t−υ|≤δ

F (υ)KM (t, υ)dt

+

∫
|t−υ|≥δ

F (t)KM (t, υ)dt

= I1 + I2 + I3, (say). (6.18)

Therefore,

I1 = O(ε)

∫ ∞
−∞
|KM (t, υ)|dt

= O

(
1
M

)
for υ ∈ [β, γ] (by equation(6.14)). (6.19)

Using equations (6.13) and (6.16), we have

I2 = F (υ)

(∫ ∞
−∞

KM (t, υ)dt−
∫
|t−υ|≥δ

KM (t, υ)dt

)

= F (υ)

(
1 +O(1)

∫
|u|≥2Mδ

(1 + |u|)− 3
2 du

)
= F (υ)(1 + o(1)) for M →∞
= F (υ) + o(1). (6.20)

For |t− υ| ≥ δ, by equation (6.13), we have

KM (t, υ) = O

(
1

2M (1 + 2M |t− υ|)

) 3
2

= O

(
1

2M (1 + 2Mδ)

) 3
2

= O

(
1

22Mδ)

) 3
2

= O

(
1

23Mδ
3
2

)
= O

(
1

2M2

)
, taking δ =

1
2 5M

2
. (6.21)

Lastly,

|I3| ≤
∫
|t−υ|≥δ

|F (t)||KM (t− υ)|dt

≤ max
|t−υ|≥δ

|KM (t− υ)|
∫
|t−υ|≥δ

|F (t)|dt

= O

(
1

2M2

)
O(1), by equation (6.21) andF ∈ L1(R)

= O

(
1

2M2

)
. (6.22)

By equations (6.19), (6.20) and (6.22), we have

|FM (υ)− F (υ)| = O

(
1
M

)
+ o(1) +O

(
1

2M2

)
= o(1), as M →∞ ∀ υ ∈ [β, γ].
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As a result, {FM}∞M=0 on [β, γ] converges uniformly to F (υ) .
Thus the Theorem 3.3 has been completely established.

7 Corollaries

Following corollary can be derived from our theorem:
If a function F ∈ L2(R) such that its Fourier transform F̂ ∈ L1(R) and

F (υ) =
∞∑

m=−∞

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)

is a wavelet frame series having M th partial sums

(SMF ) (υ) =
M∑

m=−M

( ∞∑
n=−∞

〈F,ϕm,n〉ϕ̃m,n(υ)

)
,M = 0, 1, 2, · · · ,

then
F (υ)− (SMF )(υ) = o(1) as M →∞ ∀ υ ∈ R.

Proof Following the proof of Theorem 3.1, we have

F (υ)− (SMF )(υ)

=
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξdξ − 1
2π

∫ ∞
−∞

F̂ (ξ)eiυξ
(

M∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ

=
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξ
( ∞∑
m=−∞

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ

− 1
2π

∫ ∞
−∞

F̂ (ξ)eiυξ
(

M∑
m=−M

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

))
dξ

=
1

2π

∫ ∞
−∞

F̂ (ξ)eiυξ

 ∑
m≤−(M+1)

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

)
+

∑
m≥(M+1)

ˆ̃ϕ
(
ξ

2m

)
ϕ̂

(
ξ

2m

) dξ

→ 0 as M →∞.

8 Comparision and Justification

(1) Theorem 3.1-3.3 are verified and justified when the wavelet ϕ is
replaced by Haar wavelet as well as Legendre wavelet.

(2) The results of this paper are verified by Haar wavelet which is
discontinuous. These are also justified by Legendre wavelet which are continuous.

9 Acknowledgments

One of the authors, Shyam Lal, is grateful to DST-CIMS for supporting his work.
Manoj Kumar is thankful to the Director, Institute of Engineering and Technology, Luchnow

for promoting this research activity.
The authors appreciate both reviewers’ insightful remarks and suggestions, which have im-

proved the presentation of this study report.



ON THE CONVERGENCE OF WAVELET FRAME SERIES 57

References
[1] J. J. Benedetto and S. Li, The theory of multiresollution analysis frames and applications to filter bands,

Appl. Comp. Harmonic Anal., 5, 389-427 (1998).

[2] J. J. Benedetto and O. M. Treiber, Wavelet frame: multiresolution analysis and extension principle, in
Wavelet Transform and Time-Friquency Signal Analysis (ed. L. Debnath) Birkhause, Boston, 2000.

[3] C. K. Chui and X. Shi, On a Littlewood-Palay identity and characterization of wavelets, J. Math. Anal.
Appl., 177, 608-626 (1993).

[4] C. K. Chui, An introduction to wavelets (Wavelet analysis and its applications), Academic Press, USA,
Vol. 1, 1992.

[5] L. Daubechies, Ten lectures on wavelets, CBMS-Conference Lecture Notes, V. 61, SIAM Philadelphia,
1992.

[6] M. Frazier, G. Garrigos, K. C. Wang and G. Weiss, A characterization of functions that generate wavelet
and related expansion, J. Fourier Anal. Appl., 3, 883-906 (1997).

[7] C. Heil and D. Walnat, Continuous and discrete wavelet transforms, SIAM Review, 31, 628-666 (1989).

[8] E. Hernandez and G. Weiss, A first course on wavelets, CRC Press, Boca Raton, 1996.

[9] S. E. Kelly, M. A. Kon and L. A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer.
Math. Soc., 30, 87-94 (1994).

[10] S. Lal and M. Kumar, Approximation of Functions of Space L2(R) by Wavelet Expansions, Lobachevskii
Journal of Mathematics, 2013, Vol. 34, No. 2, pp. 163-172.

[11] S. Lal and Bhan Indra, Legendre Wavelet expansion of functions and their Approximations, Ratio Math-
ematica, vol 37, pp 85-109 (2019).

[12] A. Ron and Z. Shen, Affine system in L2(Rd) the analysis of the analysis operator, J. Functional Anal.,
148, 408-447 (1997).

[13] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, New York, 1939.

[14] G. G. Walter, Pointwise convergence of wavelet expansion, J. Approx. Theory, 80, 108-118 (1995).

[15] Z. H. Zhang, Pointwise Convergence and Uniform Convergence of Wavelet Frame Series, Acta Math
Sin., Vol. 22, No. 3, pp. 653-658, (2006).

Author information

Manoj Kumar and Shyam Lal, 1Applied Sciences and Humanities Department, Institute of Engineering and
Technology, Lucknow-226021; 2Department of Mathematics, Institute of Science, Banaras Hindu University,
Varanasi-221005, India.
E-mail: manojkumar@ietlucknow.ac.in


	1 Introduction
	2 Definitions and Preliminaries
	2.1 Wavelet Frames
	2.2 Wavelet Frame Series

	3 Main theorems
	4 Proof of Theorem 3.1
	5 Proof of Theorem 3.2
	6 Proof of Theorem 3.3
	7 Corollaries
	8 Comparision and Justification
	9 Acknowledgments

