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Abstract A study on the behaviour of DNA strands lead to the introduction of the mathe-
matical term ‘partial word’ by Berstel and Boasson and extended partial words with an arbitrary
number of holes. The concept of a special partial word is crucial for these extensions. In this
paper, we consider some cases on non-primitive partial words in which we have fixed the po-
sition of the hole and constructed a sequence of (k, l)-special for a fixed k where l varies. The
periodicity is generalized for the considered partial words with the help of gcd(k, l) and it can be
determined whether a partial word is (k, l)-special or not.

1 Introduction

The origin of combinatorics on words goes back to the 20th century and initiated by the work of
Axel Thue on square-free words [2]. Loithaire’s [13, 10, 11] works on combinatorics on words
was the stimulus for recent works on partial words. A study on the behaviour of DNA strands
lead to the introduction of the mathematical term ‘partial word’ by Berstel and Boasson in [1].
Since then, the term has evolved into a theory due to its many diverse applications. Blanchet-
Sadri established the fact that partial words are useful in the determination of suitable encoding
for DNA calculations [7]. Relations like containment (⊂) and compatibility (↑) were defined by
Blanchet-Sadri to aid in reconstruction of information of a partial word [6]. Blanchet-Sadri and
Luhmann have extended many results from words to partial words [3] and they have established
that a partial word with a single hole behave similar to a word [4] while partial words with
more number of holes act differently. Tomasz Kociumaka et.al., extend Fine and Wilf’s result to
partial words and followed with extensions of the periodicity lemma which include a variant with
three and an arbitrary number of specified periods [9]. On an extension work of a theorem due
to Berstel et.al., defined the concepts of special partial words: (k, l) which contains at least two
hole and {k, l} which contains two consecutive holes speciality. Primitivity of partial words with
finite alphabet was studied in [5] and their perioidcity properties were established by A.M.Shur
et al. in [14, 12]. All the existing literature related to speciality and primitivity of partial words
deal only with a single hole or only a restricted rule of two holes. For certain higher powers, John
Machacek [8] exhibits binary partial words containing three powers all of which start at the same
position. Motivated by the work on [3], in this paper we have generalized (k, l) special concept
to partial words with three holes. In section 2, we first summarize the properties of partial words
and (k, l)-speciality, which aid in understanding the constructions and the results. In section 3,
the periodicity is generalized for the considered partial words with the help of gcd(k, l) and it
can be determined whether a partial word is (k, l)-special or not.

2 Preliminaries

In this section, we analyse some basic notions including: partial word, periodicity, compatible
and (k, l)-special.

A finite set of symbols, denoted by Σ is defined as alphabet. Symbols in Σ are referred to
as letters. A word is any finite sequence of letters. Let Σ∗ denotes the set of words from Σ
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and Σ+ = Σ∗ \ {ε}. A factor r (or subword) of a word x if there exists the word u and v such
that r = uxv. x is a proper subword of r if uv 6= ε. The factor x is prefix of r if u = ε.
Likewise, x is a suffix of r if v = ε. A partial word t of length l over Σ is a partial function
t : {0, 1, 2 · · · , y − 1} → Σ. If 0 ≤ j < y, then j ∈ Domain(t) (denoted by D(t) ), otherwise
j ∈ Hole(t) (denoted by H(t) the set of holes). The companion of t, denoted by t♦ is the total
function t♦ : {0, 1, 2 · · · , y − 1} → Σ♦ = Σ ∪ {♦} defined by

r♦(j) =

{
t(j) if j ∈ D(t)
� if j ∈ H(t).

If t is p-periodic, it can be interpreted by writing the letters of t into p-columns with the same
symbol in each column (if any). Let x, y be partial words such that |x| = |y|. If D(x) are in
D(y) and x(i) = y(i) for all i ∈ D(x) then x is said to be contained in y, indicated by x ⊂ y. If
y = βxγ for strings β and γ then x is a substring of y . If x and y partial words are said to be
compatible, denoted by x ↑ y, if a partial word z exists such that x ⊂ z and y ⊂ z. It is clear that
x ↑ y implies y ↑ x.

Let Γ be a partial word of length k + l where k, l be positive integers satisfying k less than
or equal to l. Γ is (k, l)-special if there exists 0 ≤ j < gcd(k, l) such that sequence seq(k,l)(j) =
{j0, j1, · · · , jn, jn+1} contains atleast two holes while Γ(j0)Γ(j1) · · ·Γ(jn+1) is not 1-periodic.
For {k, l}-special partial word it’s the extension of (k, l)-special whereas the conditions are it
contains two consective holes or not 1-periodic.

3 Main Results

All the following cases have Σ
+
♦ = {p, q, r}. Let the partial word v be fixed as v♦ = pqrpq♦ with

length 6, where v♦ is 3-periodic. For an even integer l ≥ 6, define W♦ = {w♦|w♦ = (pqr)(l/2)}
where l = 2t ∀t = 1, 2, 3, · · · . In the cases below, we consider the partial word v♦ and w♦,
for w♦ we place the hole in alternate positions as qr, pq and qp whereas the concatenation and
reverse of v♦w♦ are denoted as Γ and Γ̃.

3.1 Cases

(i) Case c1,1

Given v♦ defined above, let v♦ ⊂ (pqr)3 and w♦ ⊂(pqr)(l/2) where l is any even number (l ≥ 6)
be two partial words. According to the position of hole, let v♦ = a♦ andw♦ = aw♦bw♦cw where
ax, bx and cx designate the partial word x. The product of Γ1,1 of v♦w♦ = av♦aw♦bw♦cw.
(ii) Case c1,2

For the same v♦, w♦ mentioned in c1,1, define Γ̃1,2 = rev(av)♦rev(aw)♦rev(bw)♦rev(cw).
(iii) Case c2,1
Given v♦ and for all partial words w♦ ∈ W♦. Referring to the position of holes, let v♦ = av♦
and w♦ = ♦aw♦bw. The product of Γ2,1 of v♦w♦ = av♦♦aw♦bw.
(iv) Case c2,2

For the same v♦, w♦ mentioned in c2,1, define Γ̃2,2 = rev(av)♦♦rev(aw)♦rev(bw).
(v) Case c3,1
Given v♦ and for all partial words w♦ ∈ W♦. According to the position of holes, let v♦ = av♦
and w♦ = aw♦bw♦cw. The product of Γ3,1 of v♦w♦ = av♦aw♦bw♦cw.
(vi) Case c3,2

For the same v♦,w♦ mentioned in c3,1, define Γ̃3,2 = rev(av)♦rev(aw)♦rev(bw)♦rev(cw).

Proposition 3.1. Let v♦ = pqrpq♦ and W♦ = {w♦|w♦ = (pqr)(l/2)}. Then the partial words v♦
and w♦ are 3-periodic.

Proof. Given v♦ ⊂ (pqr)3 and w♦ ⊂ (pqr)(l/2) and by the definition of periodicity the partial
words are 3-periodic.
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Proposition 3.2. Let Γi,j and Γ̃i,j ; 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 are all of length 6 + l from the above
constructed cases of partial words .

Proof. The evidence is obvious from the cases as all the factors are exactly from v♦, w♦ and
h(Γi,j) = h(Γ̃i,j) = h(v) + h(w) = h(v) + h(w)∀ i, j.

Lemma 3.1. Let (v♦, w♦) be non-empty partial words and if gcd(v♦, w♦) = 1 from all the cases
defined in section 3, then Γ and Γ̃ are (k, l)-special.

Proof. We know that |v♦| = 6 and |w♦|=l where l varies i.e., w ⊂ (pqr)l/2. If gcd(v♦, w♦) = 1
then we have l = 6(s+ 1) (for some positive integer s). Hence the sequence is ordered as:
seq(k,l)(0) : 0, 6, 12, · · · , 6(s+ 1), 5, 11, · · · , 6(s+ 1)− 1, 4, 10, · · · , 6(s+ 1)− 2, 3, · · · , 6(s+
1)− 3, 2, · · · , 6(s+ 1)− 4, 1, · · · , 6(s+ 1)− 5, 0.
Hence in this single sequence all the elements of Γ, Γ̃ are placed. All the construction of Γ has
atleast two holes and satisfies the basic definition of (k, l)-special. Thus, Γ, Γ̃ are special.

Lemma 3.2. Let gcd(v♦, w♦) = 2 then from lemma 1 it shows that Γ and Γ̃ are (k, l)-special.

Proof. The proof is consistent to the previously mentioned lemma, |k| = 6 and |l| = 6(s + 1)
(for some positive integer s). Two sequences are constructed as:
seq(k,l)(0) : 0, 6, 12, · · · , 6(s+ 1), 4, 10, · · · , 6(s+ 1)− 2, 2, 8, · · · , 6(s+ 1)− 4, 0.
seq(k,l)(1) : 1, 7, 13, · · · , 6(s+ 1) + 1, 5, 11, · · · , 6(s+ 1)− 1, 3, · · · , 6(s+ 1)− 3, 1.
Hence the sequences satisfies the basic definition of (k, l)-special. Hence Γ, Γ̃ are special.

Lemma 3.3. Let v♦, w♦ be non-empty partial words and if gcd(v♦, w♦) = 3 then Γ, Γ̃ are not
(k, l)-special.

Proof. The cardinality of k is 6 and l is 6(s + 1) (for some positive integer s). The proof is
obvious as the above lemma. Here the sequences are constructed as:
seq(k,l)(0) : 0, 6, 12, · · · , 6(s+ 1), 3, 9, · · · , 6(s+ 1)− 3, 0.
seq(k,l)(1) : 1, 7, 13, · · · , 6(s+ 1) + 1, 4, 10, · · · , 6(s+ 1)− 2, 1.
seq(k,l)(2) : 2, 8, 14, · · · , 6(s+ 1) + 2, 5, 11, · · · , 6(s+ 1)− 1, 2.
These are the sequence constructed from the basic definition of (k, l)-special. Hence Γ, Γ̃ are not
(k, l)-special. Since it does not satisfy the condition as per definition.

Lemma 3.4. If gcd(v♦, w♦) = 6 then Γ, Γ̃ are not (k, l)-special.

Proof. From the above lemma, the proof is evident. The constructed sequences are:
seq(k,l)(0) : 0, 6, 12, · · · , 6(s+ 1), 0.
seq(k,l)(1) : 1, 7, 13, · · · , 6(s+ 1) + 1, 1.
seq(k,l)(2) : 2, 8, 14, · · · , 6(s+ 1) + 2, 2.
seq(k,l)(3) : 3, 9, 15, · · · , 6(s+ 1) + 3, 3.
seq(k,l)(4) : 4, 10, 16, · · · , 6(s+ 1) + 4, 4.
seq(k,l)(5) : 5, 11, 17, · · · , 6(s+ 1) + 5, 5.
It clearly shows that Γ and Γ̃ are not special. Since it does not satisfy the condition as per
definition of (k, l)-special.

For example: Let v♦ = pqrpq♦ and w♦ = ♦qrp♦rpqr be a partial words of length k = 6 and
l = 9 respectively. Then the concatenation of v♦, w♦ is Γ = v♦w♦ = pqrpq♦♦qrp♦rpqr. We
generate the requisite sequences:

Figure 1
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Figure 2

Figure 3

From the figures(1, 2, 3) we obtain, seq(6,9)(0) = (0, 6, 12, 3, 9, 0), seq(6,9)(1) = (1, 7, 13, 4,
10, 1) and seq(6,9)(2) = (2, 8, 14, 5, 11, 2). seq(6,9)(0) = p♦pppp, this sequence contain a hole
and it is 1-periodic. seq(6,9)(1) = qqqq♦q, this sequence contain one hole and it is 1-periodic.
seq(6,9)(2) = rrr♦rr, it does not satisfy the conditions of {k, l}-special. Hence Γ is (6,9)-not
special partial word.

Theorem 3.5. Let v♦,w♦ be a non-compatible partial words with three holes such that l ≥ 6.
Then from the c1,1 and c1,2 as defined in section 3, the periodicity for each gcd(6, l) is general-
ized.

Proof. Let Γ = v♦w♦ be a non-compatible partial word where v♦ ⊂ (pqr)3 and w♦ ⊂ (pqr)(l/2)

is of length l. We can check whether Γ is (k, l)-special or not if there exists 0 ≤ i < gcd(k, l) such
that the sequences constructed contains atleast two positions that are holes while Γ(i0)Γ(i1) · · ·
Γ(i(n+1)) is not 1-periodic. Once the sequence satisfies the conditions then Γ can be declared
(k, l)-special. However, it is necessary to calculate all sequences in order to classify Γ as not
(k, l)-special. The periodicity for each gcd(6, l). From the case c1,1 as follows:

gcd(1)

Γ = v♦w♦=(6,l)=

{
l − (3m+ 2), l+ 1, l+ 4,Γ when l=3n+2 n is odd
l − (3m+ 1), l+ 2, l+ 5,Γ when l=3n+1 n is even

where m ∈ N

Γ̃ = v♦w♦ = (6, l) = (l − 3, l, l+ 3,Γ)

gcd(2)

Γ = v♦w♦=(6,l)=

{
l − (3m+ 2), l+ 1, l+ 4,Γ when l=3n+1 n is odd
l − (3m+ 1), l+ 2, l+ 5,Γ when l=3n+2 n is even

where m ∈ N

Γ̃ = v♦w♦ = (6, l) = (l − 3, l, l+ 3,Γ)
Here gcd(1) and gcd(2) are (k, l)-special. The periodicity for gcd(3),gcd(6) are same and not
(k, l)-special.

gcd(3)

Γ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)
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Γ̃ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)

where m ∈ N

gcd(6)

Γ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)
Γ̃ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)

where m ∈ N

Theorem 3.6. Let v♦,w♦ be a non-empty partial words such that l ≥ 6. The periodicity is
generalized for each gcd(6, l) from the c2,1 and c2,2. If v♦ ↑ w♦ then there exists a word Γ such
that v♦ ⊂ (pqr)3 and w♦ ⊂ (pqr)(l/2) is of length l.

Proof. Let Γ = v♦w♦ be a partial word with three holes. The periodicity for each gcd(6, l).
From the constructions c2,1 and c2,2 the periodicity of Γ and Γ̃ are

gcd(1)

Γ = v♦w♦=(6,l)=

{
l − (3m+ 1), l+ 2, l+ 5,Γ when l=3n+1 n is even
l − (3m+ 2), l+ 1, l+ 4,Γ when l=3n+2 n is odd

where m ∈ N

Γ̃ = v♦w♦ = (6, l) = (l − 3, l, l+ 3,Γ)

gcd(2)

Γ = v♦w♦=(6,l)=

{
l − (3m+ 1), l+ 2, l+ 5,Γ when l=3n+1 n is even
l − (3m+ 2), l+ 1, l+ 4,Γ when l=3n+2 n is odd

where m ∈ N

Γ̃ = v♦w♦ = (6, l) = (l − 3, l, l+ 3,Γ)
Here gcd(1) and gcd(2) are (k, l)-special. The periodicity for gcd(3),gcd(6) are same and not
(k, l)-special.

gcd(3)

Γ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)
Γ̃ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)

where m ∈ N

gcd(6)

Γ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)
Γ̃ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)

where m ∈ N

Theorem 3.7. Let v♦,w♦ be a non-empty partial words such that l ≥ 6. The periodicity is
generalized for each gcd(6, l) from the c3,1 and c3,2. If v♦ ↑ w♦ then there exists a word Γ such
that v♦ ⊂ (pqr)3 and w♦ ⊂ (pqr)(l/2) is of length l.

Proof. Assume v♦ ⊂ (pqr)3 and w♦ ⊂ (pqr)(l/2) which is of length l. To check whether a partial
word is {k, l}-special the sequence is constructed and if it satisfies the conditions then Γ can be
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declared (k, l)-special. However, it is necessary to calculate all sequences in order to classify Γ

as not (k, l)-special. We can note that the reverse of every partial word which are constructed
from the cases c3,1 and c3,2 has the same periodicity.

gcd(1)

Γ = v♦w♦=(6,l)=

{
l − (3m+ 2), l+ 1, l+ 4,Γ when l=3n+2 n is odd
l − (3m+ 1), l+ 2, l+ 5,Γ when l=3n+1 n is even

where m ∈ N

Γ̃ = v♦w♦ = (6, l) = (l+ 2, l+ 5,Γ)

gcd(2)

Γ = v♦w♦=(6,l)=

{
l − (3m+ 2), l+ 1, l+ 4,Γ when l=3n+2 n is even
l − (3m+ 1), l+ 2, l+ 5,Γ when l=3n+1 n is odd

where m ∈ N

Γ̃ = v♦w♦ = (6, l) = (l+ 2, l+ 5,Γ)

gcd(3)

Γ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)
Γ̃ = v♦w♦ = (6, l) = (l+ 2, l+ 5,Γ)

where m ∈ N

gcd(6)

Γ = v♦w♦ = (6, l) = (l − 3m, l+ 3,Γ)
Γ̃ = v♦w♦ = (6, l) = (l+ 2, l+ 5,Γ)

where m ∈ N

4 Conclusion

In this paper, we generalize the periodicity for non-empty partial words of gcd(6, l). Further this
work can be done by increasing the number of ‘do not know’ symbols and a bipartite graph can
be constructed from this generalization.

Acknowledgement: We are thankful to the Reviewers and Editors for constructive sugges-
tions.
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