
Palestine Journal of Mathematics

Vol. 11(Special Issue I)(2022) , 65–74 © Palestine Polytechnic University-PPU 2022

MRL-JAYA: A FUSION OF MRLDE AND JAYA
ALGORITHM

Pravesh Kumar and Amit Sharma

Communicated by Shimpi Singh Jadon

Abstract Jaya algorithm is a newly developed metahueristics algorithm to solve optimiza-
tion problems. In this paper we have proposed a new variant named MRL-Jaya which is a fusion
of Jaya algorithms with modified random localization based DE (MRLDE) algorithm. MRL-
Jaya connects two algorithms by a systematic approach to utilize the advantage of both in a
single variant. MRL-Jaya has tested on 13 traditional and 6 shifted benchmark problems taken
from literature. In last the result and comparison shows the efficiency of proposed variant.

Keyword: Optimization, Differential evolution Algorithm, Jaya Algorithm.

1 Introduction

A lot of problems occur in various sciences and engineering filed can be modelled as global
optimization problems. Use of traditional nonlinear programming techniques may show to be
ineffective for solving such problems because of the occurrence of non linearity, non continuity,
non differentiability and multiple local/global optima. In recent years, many non-traditional and
nature inspired based methods have been developed in the area of optimization. Some of the
well-known non-traditional techniques are GA, ACO, DE, PSO, ABC, TLBA, Jaya Algo-
rithm and so on. Differential Evolution (DE) algorithm is first proposed by Storn and Price in
[1]. The advantage of DE is including ease of implement, reliable, robust and efficient optimiza-
tion algorithm. The compact design and the use of fewer control parameters make it more pop-
ular. However it does not guarantees to converge to optimum always. So many researches have
been carried out on its improved versions and applications in different fields during some last
years. Some popular enhanced variants of DE are, JDE [2], ODE [3], SaDE [4], jADE[5],
LeDE [6], and so on. Some other DE variants which have developed recently can be found
in literature given in [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. A well organized
literature review of DE algorithm with full details can also be found in [22, 23, 24]. MRLDE
is an enhanced variant of DE algorithm proposed by Kumar and Pant [25] in 2012. It is based
on modified mutation strategy in which base vector is selected in a strategic mode to pick up the
performance of algorithm. The significance of MRLDE in optimization problems of various
engineering and science can be found in [26, 27, 28, 29]. Jaya algorithm is newly developed
metaheuristics algorithm in the field of optimization. It is proposed by Rao [30] in 2015. Like
DE, It is also a gradient-free and population based search technique which repeatedly modi-
fied the solutions. The main advantage of the algorithm is its compact design and ease to use.
Due to this reason it has become quite popular rapidly in solving many real life optimization
problems. Some of recently developed Jaya algorithms variants and its applications are given
in [31, 32, 33, 34, 35, 36, 37, 38, 39, 40] In this paper, a new variant named MRL-Jaya is
proposed. MRL-Jaya is a hybridization of Jaya algorithms with modified random localization
basedDE(MRLDE) algorithm MRL-Jaya connects two algorithms by a systematic approach
to utilize the advantage of both in a single variant. The importance of planned algorithm is dis-
cussed later in the paper. Organization of the paper as follow; Introduction of MRLDE and
Jaya Algorithm is given in section 2. Proposed MRL-Jaya is explained in section-3. In section-
4, explanation of Benchmark functions, various parameter settings, performance criteria, results
and comparison of MRL-Jaya with other variants are discussed. In last the entire study has
concluded in section 5:

66 Pravesh Kumar and Amit Sharma

2 Related Work

In this section basic structure and working of Jaya and MRLDE is explained as follows:

2.1 MRLDE:

MRLDE is an enhanced DE variant which is developed by taking base vector in an organized
way to do mutation operation. This algorithm starts by a uniform distributed and randomly
generated population of size N, say POP = {Pi(g) : i = 1 : N}. Now the search space is
divided in three sub-regions say POPbest(g), POPmedium(g), and POPworst(g) according to
fitness value of vectors After that mutation, crossover and selection operation are performed as
defined in MRLDE algorithm as below;

i Mutation: Select three mutually different vectors Pb1(g), Pb2(g) and Pb3(g) from sub-
regions OPbest(g), POPmedium(g) and POPworst(g) respectively for any target vector Pi(g)
and produce mutant vector by equation-1;

Yi(g) = Pb1(g) + SC ∗ [Pb2(g)− Pb2(g)] (2.1)

Here SC is control factor contain value between [0, 2].

ii Crossover: By this operation, a trial vector Ti(g) = {t1, i, t2, i, ...tD, i} for Pi(g) is generated
by equation-2;

tj, i(g) =

{
yj, i, if rand1(0, 1) < CR || j == k : k ∈ 1, 2, ...D)

pj, i,, otherwise
(2.2)

Here CR is crossover rate and rand1(0, 1) is any uniform random numbers between 0 and
1.

iii Selection: Finally the supreme vector among Pi(g) and Ti(g) is selected for the next gener-
ation by equation -3;

Pi(g + 1) =

{
Ti(g), if fun [Ti(g)] < fun [Pi(g)]

Pi(g), otherwise
(2.3)

A detailed explanation of MRLDE and its working can be found in [25]− [29].

2.2 Jaya Algorithm:

Like MRLDE, Jaya algorithm also starts with a uniform distributed and randomly generated
population of size N, say POP = {Pi(g) : i = 1 : N} and then move towards the optimum
solution by in the search space. Let Pbest(g) and Pworst(g) are the global best and global worst
vector in the search space in any generation g, then the new position for any vector Pi(g) for
next generation is created by equation-4 as below:

Pi(g + 1) = Pi(g) + rand2[0, 1] ∗ (Pbest(g)− |Pi(g)|)− rand3[0, 1] ∗ (Pworst(g)− |Pi(g)|)(2.4)

where rand2[0, 1] and rand3[0, 1] are any uniform random numbers between 0 and 1. Now old
vector Pi(g) is replaced by new generated vector Pi(g + 1) if it has greater fitness value than
Pi(g + 1) otherwise Pi(g) will be retained for the next generation as given in equation -5.

Pi(g + 1) =

{
Pi(g + 1), if fun{Pi(g + 1)} < fun{Pi(g)}
Pi(g) else

(2.5)

The process will be repeated for each vector and generated a new population for next generation.

MRL-JAYA: A FUSION OF MRLDE AND JAYA ALGORITHM 67

3 Proposed MRL-Jaya:

MRLDE and Jaya are both prominent algorithms for global optimization. However they both
do not gives assurance to grant optimum solution for all time. It has been checked that Jaya
algorithm perform with a slow convergence rate however MRLDE having fast convergence but
can be stuck in local optima due to its greedy nature. MRL-Jaya is a simple and systematic
hybridization of Jaya and MRLDE which overcome the disadvantages of both algorithms. First
it starts with MRLDE algorithm and produced a trial vector Ti(g) corresponding to target vector
Pi(g) as defined in section 2. Now if it is rejected for next generation then a new vector Pi(g+1)
being created by Jaya algorithm with respect to same Pi(g) and applied the selection procedure
based on fitness value as defined for Jaya algorithm is section 2 by equation-5. . By doing this
we have an additional choice to find a new better vector corresponding to Pi(g) and consequently
we can improve the solution quality in each generation.

4 Result and Discussion

Various experiments have been conducted to check the significance of the proposed MRL-Jaya
algorithm. A detail explanation of benchmark functions, parameter settings, comparison criteria
and statistical result analysis is discussed in this section.

4.1 Benchmark Problems:

The experiments have been carried out on 13 non-shifted traditional and 6 shifted benchmark
functions. All benchmark problems have been taken from various literatures [5],[6],[41] given
and given in Table-1with their important properties.

4.2 Performance Measures:

The performance of algorithms has checked by following performance measures:

68 Pravesh Kumar and Amit Sharma

Table 1. Benchmark Functions
F Name Property Boundary Global value
F1 Sphere Function Unimodal, Seperable, Scalable [−100, 100]−D 0
F2 Schwefel’s Problem 2.22 Unimodal, Seperable, Scalable [−10, 10]D 0
F3 Schwefel’s Problem 1.2 Unimodal, Non-seperable, Scalable [−100, 100]D 0
F4 Schwefel’s Problem 2.21 Unimodal, Non-seperable, Scalable [−100, 100]D 0
F5 Generalized Rosenbrock’s Function Multimodal, Non-seperable, Scalable, narrow velly from local to global optimum [−30, 30]D 0
F6 Step Function Unimodal, Seperable, Scalable [−100, 100]p 0
F7 Noise Function Unimodal, Seperable, Scalable [−1.28, 1.28]D 0
F8 Quartic Noise Function Multimodal, Seperable, Scalable, many local minima [−500, 500]D 0
F9 Generalized Rastrigin’s Function Multimodal, Seperable, Scalable, many local minima [−5.12, 5.12]D 0
F10 Multimodal, Seperable, Scalable, Ackley’s Function [−32, 32]D 0
F11 Generalized Griewank Function Multimodal, Seperable, Scalable, many local minima [−600, 600]D 0
F12 Generalized Penalized Functions-I Multimodal, Seperable, Scalable, many local
F13 Generalized Penalized Functions-II Multimodal, Seperable, Scalable, many local minima [−50, 50]D 0
SFI Shifted Sphere Function Shifted, Unimodal, Seperable, Scalable [−100, 100]D −450
SF2 Shifted Schwefel 2.21 Function Shifted, Unimodal, Non-seperable, Scalable [−100, 100]D −450
SF3 Shifted Rosenbrock Function Shifted, Multimodal, Nonseperable, Scalable, Nerrow velly from local to global optimum [−100, 100]D 390
SF4 Shifted Retrigin Function Shifted, Multimodal, Seperable, Scalable, Several local optimum [−5.12, 5.12]D −330
SF5 Shifted Griewank Function Shifted, Multimodal, Nonseperable, Scalable [−600, 600]D −180
SF6 Shifted Ackley Function Shifted, Multimodal, Seperable, Scalable, [−32, 32]D −140

Table 2. Parameter Settings
S.No Parameter Name Parameter Setting
1 Population Size (N) 100
2 Dimension (D) 30
3 Scale Factor Sc for MRLDE and MRL-Jaya 0.5
4 Crossover Factor Cr for MRLDE and MRL-Jaya 0.9
5 Size of N1, N2, N3 for MRLDE and MRL-Jaya 20%, 40% and 40% respectively
6 Total Run 100
7 Software Used Matlab, Dev C++, Sigma Plot,

i Average Error: The minimum error x|f(X)− f(X∗)| where X* is the global optimum, is
verified when the fixed Max iteration is attained in each run. After that the average error and
standard deviation is taken of all run.

ii Average NFEs:The number of function evaluations (NFEs) is calculated when fixed error
(VTR) is achieved i.e counted total NFE for |f(X)− f(X∗)| ≤ V TR in each run.

iii Acceleration Rate: AR = (1− NFEA

NFEB
)

iv Convergence graphs: The convergence graphs show the average fitness presentation in an
experiment.

4.3 Parameter Setting:

Parameter settings for the study are given in Table-2. All parameter settings have been taken
same to all so that a fair comparison and analysis can be carried out. All experiments are executed
on a laptop with 8GB memory, 2.6GHZCPU , intel core™ i3 processor, 64-bit, Windows 10
and using software like Matlab R2012b and DEV C ++.

4.4 Results and Comparison of MRL-Jaya with Jaya and MRLDE Algorithm:

In this section comparison of MRL-Jaya with its parent algorithm Jaya and MRLDE algorithm
is discussed. The numerical results have been taken in term of error by fixing the maximum
iteration for all functions as shown in Table-3. Here it can be easily observed that proposed
MRL-Jaya accomplished the desire results for all function compare to others. A non-parametric
Wilcoxon statistical test is also performed which can be shown in last two columns of Table. We
can simply see that MRL-Jaya gives better performance than all other algorithm except function
F9 where Java gives superior performance among all algorithms. For function F6 and F8, all
algorithms perform similar while there is no significant difference between the performance of
MRLDE and MRL-Jaya performs for theF7 and F11.

MRL-JAYA: A FUSION OF MRLDE AND JAYA ALGORITHM 69

Table 3. Results and Comparisons in term of Mean Error, standard deviation and Wilcoxon test
at a = 0.05. Here ‘1‘,‘2′,‘3′ denote ’Jaya’, ’MRLDE’ and ’MRL-Jaya’ respectively

Fun Max-Iteration Mean Error (Standard Deviation) Wilcoxon Test
Jaya MRLDE MRL-Jaya 3/1 3/2

F1
1500

2.06E-16 1.37E-42 1.33E-47 + +
-7.87E-16 -1.56E-42 -6.81E-47

F2
1500

5.23E-08 4.66E-21 7.48E-23 + +
-5.37E-08 -3.20E-21 -2.15E-23

F3
3000

2.86E-05 1.72E-21 1.11E-22 + +
-1.44E-05 -1.03E-21 -2.36E-22

F4
3000

5.74E-05 1.96E-15 7.71E-22 + +
-1.11E-05 -1.37E-15 -7.37E-22

F5
2000

6.05E+00 8.90E-18 2.71E-23 + +
-1.16E-01 -3.87E-18 -2.36E-23

F6
1500

0.00E+00 0.00E+00 0.00E+00 = =
0.00E+00 0.00E+00 0.00E+00

F7
3000

5.51E-03 2.03E-03 1.50E-03 + =
-4.91E-03 -7.45E-05 -9.93E-05

F8
3000

1.01E-03 1.01E-03 1.01E-03 = =
-8.21E-03 -2.40E-03 -1.42E-03

F9
3000

8.20E-17 9.01E-01 3.10E-07 - +
-2.31E-17 -2.30E-01 -5.60E-07

F10
1500

4.67E-09 3.40E-15 4.15E-16 + +
-4.77E-09 0.00E+00 0.00E+00

F11
1000

5.96E-09 0.00E+00 0.00E+00 + =
-2.07E-09 0.00E+00 0.00E+00

F12
1000

1.02E-10 1.35E-19 0.00E+00 + +
-6.69E-10 0.00E+00 0.00E+00

F13
1000

1.19E-09 1.29E-19 0.00E+00 + +
-9.96E-10 0.00E+00 0.00E+00

SF1
500

3.08E-02 5.68E-11 1.70E-13 + +
-3.56E-02 -1.21E-11 -2.32E-13

SF2
1500

4.22E-01 4.45E-07 9.76E-08 + +
-1.06E-01 -8.27E-07 -8.78E-08

SF3
1500

1.23E+00 4.34E-06 1.81E-11 + +
-3.21E+00 -6.64E-06 -6.34E-11

SF4
1500

3.73E+02 1.38E+02 1.85E+01 + +
-3.12E+01 -2.80E+01 -4.45E+00

SF5
500

5.33E-03 1.17E-09 1.70E-13 + +
(6.28E-03 -1.45E-09 -1.67E-14

SF6
500

4.04E-02 2.85E-06 2.85E-08 + +
(2.17E-02 -2.24E-06 -2.24E-08

‘+’,‘=’ and ‘-’ indicate best, equal and worst performance respectively.

70 Pravesh Kumar and Amit Sharma

Table 4. Results and Comparisons in term of average NFE and Acceleration Rate

Fun VTR
Mean NFE AR

Jaya MRLDE MRLJaya MRL-Jaya vs/Jaya MRL-Jaya vs/MRLDE
F1 10−08 982100 42000 38300 96.10 8.81
F2 10−08 182000 68000 64800 64.40 4.71
F3 10−05 265000 118000 104000 60.75 11.86
F4 10−05 188000 114000 94000 50.00 17.54
F5 10−08 NA 148000 127100 NA 14.12
F6 10−08 22000 14000 12400 43.64 11.43
F7 10−02 152000 68000 46500 69.41 31.62
F8 10−03 106000 112000 96000 9.43 14.29
F9 10−08 264000 NA 322000 −21.97 NA
F10 10−08 144000 62000 59900 58.40 3.39
F11 10−08 100000 44000 40900 59.10 7.05
F12 10−08 84500 36000 34700 58.93 3.61
F13 10−08 96000 41000 36700 61.77 10.49
SF1 10−08 81000 43000 38000 53.09 11.63
SF2 10−06 NA 122000 105000 NA 13.93
SF3 10−06 NA 140000 135000 NA 3.57
SF4 10−08 NA NA NA NA Na
SF5 10−08 83000 47000 38000 54.22 19.15
SF6 10−06 128000 65000 55000 57.03 15.38

Average AR 51.62 11.92

Table-4 demonstrates the numerical results in term of average NFE and acceleration rate
(AR) of 100 runs. Here it can be observed that proposed MRL-Jaya takes fewer NFE to attain
the set error for each function except for function F9 except F9 where Jaya takes less NFE
than all others. All algorithms are unable to reach the fixed error in case of function SF4. By
acceleration rate (AR), we can also verify the fast convergence speed of proposed algorithm
compare to both Jaya and MRLDE for each function (except F9 and SF4). It is also observed
that MRL-Jaya improves the average convergence speed by 51.62% and 11.92% compare to
Jaya and MRLDE respectively.

4.5 Results and Comparison of MRL-Jaya with DE, ODEjDE, LeDE:

In this section comparison of proposed MRL-Jaya with DE and its other modified variants ODE
[2], jDE [3] and LeDE [6] has been carried out. The numerical results have taken in term of
average-NFE of 100 runs by fixing error as 10−08 for all function except function F7 for which
error is taken as 10 − 02. Parameter settings and numerical results for ODE, jDE and LeDE
are taken from [6]. From the Table-5, it can be easily observed that proposed MRL-Jaya attain
desire results rapidly compare to all other algorithm for all function exceptF3, F8 and F9. LeDE
gives best performance for F3 while jDE gives perform superior for F8 and F9. The rank-wise
performance of all algorithms is also given in Table-5 for each function. The average rank of
LeDE, jDE, ODE and DE are 1.92, 2.92, 3.85 and 4.77 whereas the average rank of MRL-Jaya
is 1.54 which proved the superiority and robustness in performance of proposed MRL-Jaya on
others.

REFERENCES 71

Table 5. Comparison of MRL-Jaya with DE, ODE, LeDE and SaDE in term of average NFE

Fu
Average NFE Rank

n DE ODE jDE LeDE MRL-Jaya DE OD E jDE LeDE MRL -Jaya
F1 104000 67,524 60000 49,494 38300 5 4 3 2 1
F2 174000 140,170 83000 77,464 64800 5 4 3 2 1
F3 422000 489,210 340000 140,176 146000 4 5 3 1 2
F4 NA 145,880 300000 157,499 132100 5 3 4 2 1

F5 424000 NA 580000 282,972 127100 3 5 4 2 1

F6 36000 25,008 23000 17,123 12400 5 4 3 2 1

F7 90500 60,230 100000 33,302 46500 5 3 4 2 1

F8 NA 147,472 89000 111,013 488000 5 3 1 2 4
F9 NA 190,604 120000 187,813 322000 5 3 1 2 4
F10 165000 10,6694 91000 76,111 59900 5 4 3 2 1

F11 112000 79,888 63000 50,579 40900 5 4 3 2 1

F12 96000 63,710 55000 41,384 34700 5 4 3 2 1

F13 106000 63,202 60000 46,529 36700 5 4 3 2 1

4.6 Convergence Graph:

In this section, the convergence graphs of Jaya, MRLDE and proposed MRL-Jaya is presented
for function F1, F4, F5 and F10. The convergence speed of MRL-Jaya can be easily analyzed
by these graphs over Jaya and MRLDE.

5 Conclusion:

In this paper, a new algorithm ’MRJ-Jaya’ by fusion of MRLDE and Jaya algorithm is proposed
for solving global optimization problems. The combination of two algorithms is taken in a sys-
tematic way so that the advantage of both algorithms can be utilized to improve the search ability
with a high convergence speed. The proposed MRL-Jaya has been compared with its parent al-
gorithms i.e Jaya and MRLDE in term of average error and average NFE on 13 non-shifted and
6 shifted unconstrained benchmark functions. A non-parametric Wilcoxon statistical test is also
performed to analyze the comparison. Furthermore MRL-Jaya is also compared with DE and
other DE variants: ODE, jDE and LeDE on 13 traditional unconstrained benchmark functions in
term of average NFE and acceleration rate. The results and comparisons have revealed that the
MRL-Jaya perform superior compared to other algorithms in terms of search process efficiency,
solution quality and the convergence speed.

References

[1] R. Storn, K. Price, Differential evolution–a simple and efficient adaptive scheme for global
optimization over continuous, Spaces. Berkeley, CA, Tech. Rep. TR-95-012

[2] J Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self adapting control parameters
in differential evolution: a comparative study on numerical benchmark problems, IEEE
Transaction of Evolutionary Computing 10, 646–657 (2006).

[3] S. Rahnamayan, H. Tizhoosh, M. Salama, Opposition based differential evolution IEEE
Transaction of Evolutionary Computing 12, 64–79 (2008).

[4] A.K Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with strategy adap-
tation for global numerical optimization IEEE Transaction of Evolutionary Computing 13,
398–417 (2009).

[5] J. Zhang, A. Sanderson, JADE: adaptive differential evolution with optional external
archive, IEEE Transaction of Evolutionary Computing 13, 945–958 (2009).

[6] Y. Cai, J. Wang, J. Yin, Learning enhanced differential evolution for numerical optimiza-
tion, Springer-Verlag, Soft Computing, doi:10.1007/s00500-011-0744-x (2011).

72 REFERENCES

[7] W. Zhu, Y. Tang, J.-A. Fang, and W. Zhang, Adaptive population tuning scheme for differ-
ential evolution, Information Sciences 223, 164–191 (2013).

[8] M. Asafuddoula, T. Ray, and R. Sarker, An adaptive hybrid differential evolution algorithm
for single objective optimization, Applied Mathematics and Computation 231, 601–618
(2014).

[9] W. L. Xiang, X. L. Meng, M. Q. An, Y. Z. Li, and M. X. Gao, An enhanced differential
evolution algorithm based on multiple mutation strategies, Computational Intelligence and
Neuroscience 2015, Article ID 285730, 15 pages (2015).

[10] L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, Adaptive differential evolution algorithm with
novel mutation strategies in multiple sub-populations, Computers & Operations Research
67, 155–173 (2016).

[11] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen, Differential evolution with
multi-population based ensemble of mutation strategies, Information Sciences 329, 329–
345 (2016).

[12] L. M. Zheng, S. X. Zhang, K. S. Tang, and S. Y. Zheng, Differential evolution powered by
collective information, Information Sciences 399, 13–29 (2017).

[13] Z. Meng, J.-S. Pan, and L. Kong, Parameters with adaptive learning mechanism (palm) for
the enhancement of differential evolution, Knowledge-Based Systems 141, 92–112 (2018).

[14] P. Singh, P. Chaturvedi, P. Kumar, A novel differential evolution approach for constraint
optimization, International Journal of Bio-Inspired Computation 12, 254–265 (2018).

[15] Z. Meng, J.-S. Pan, and K.-K. Tseng, PaDE: an enhanced differential evolution algorithm
with novel control parameter adaptation schemes for numerical optimization, Knowledge-
Based Systems 168, 80–99 (2019).

REFERENCES 73

[16] Z. Wei, X. Xie, T. Bao, and Y. Yu, A random perturbation modified differential evolution
algorithm for unconstrained optimization problems, Soft Computing 23, 6307–6321 (2019).

[17] M. Duan, H. Yang, H. Liu, and J. Chen, A differential evolution algorithm with dual pre-
ferred learning mutation, Applied Intelligence 10, 605–627 (2019).

[18] M. Tian and X. Gao, Differential evolution with neighborhood-based adaptive evolution
mechanism for numerical optimization, Information Science 478, 422–448 (2019).

[19] S. H. Wang, Y. Z. Li, and H. Y. Yang, Self-adaptive mutation differential evolution algo-
rithm based on particle swarm optimization, Applied Soft Computing 81, (2006).

[20] J. S. Pan, C. Yang, F. J. Meng, Y. X. Chen, and Z. Y. Meng, A parameter adaptive DE
algorithm on real-parameter optimization, Journal of Intelligent and Fuzzy Systems 38, 1–
12 (2020).

[21] M. Di Carlo, M. Vasile, and E. Minisci, Adaptive multipopulation inflationary differential
evolution, Soft Computing 24, 3861–3891 (2020).

[22] F. Neri, V. Tirronen, Recent advances in differential evolution: a survey and experimental
analysis, Artif Intell Rev 33, 61–106 (2010).

[23] S. Das., P.N. Suganthan, “Differential evolution: a survey of the state-of-the-art IEEE
Transaction of Evolutionary Computing 15, 4–13 (2011).

[24] P. M. Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, and A. Abraham, “Differential evolu-
tion: a review of more than two decades of research, Engineering Applications of Artificial
Intelligence 90, 103479 (2020).

[25] P. Kumar, M. Pant, Enhanced mutation strategy for differential evolution, Proceeding of
IEEE Congress on Evolutionary Computation (CEC-12) 1–6 (2012).

[26] S. Kumar, P. Kumar, T.K. Sharma, M. Pant, M., Bi-level thresholding using PSO, Artificial
Bee Colony and MRLDE embedded with Otsu method, Memetic Computing 5, 323–334
(2013).

[27] P. Kumar, M. Pant, V.P.Singh, Modified random localization based de for static economic
power dispatch with generator constraints, International Journal of Bio-Inspired Computa-
tion 6, 250–261 (2014).

[28] P. Kumar, D. Singh, S. Kumar, MRLDE for solving engineering optimization problems, In
proc of IEEE conference ICCCA-2015 DOI: 10.1109/CCAA.2015.7148512 (2015).

[29] P. Kumar, M. Pant, Recognition of noise source in multi sounds field by modified random
localized based DE algorithm, International Journal of System Assurance Engineering and
Management, Springer 9, 245–261 (2016).

[30] R. V. Rao, Jaya: A simple and new optimization algorithm for solving constrained and
unconstrained optimization problems, Int. J. Ind. Eng. Comput 7, 19–34 (2016).

[31] S Mishra and PK Ray, Power quality improvement using photovoltaic fed DSTATCOM
based on Jaya optimization, IEEE Trans. Sust. Energy 99, 1–9 (2016). [31] , Vol. 99, 2016,
pp. 1-9.

[32] C. Gong, An Enhanced Jaya Algorithm with a Two Group Adaption, International Journal
of Computational Intelligence Systems 10, 1102–1115 (2017).

[33] K. Yu, J. Liang, B. Qu, X. Chen and H. Wang, Parameters identification of photovoltaic
models using an improved JAYA optimization algorithm, Energy Conversion and Manage-
ment 150, 742–753 (2017).

[34] K. Gao, Y. Zhang, A. Sadollah, A. Lentzakis and R. Su, Jaya harmony search and water
cycle algorithms for solving large-scale real-life urban traffic light scheduling problem,
Swarm and Evolutionary Computation 37, 58–72 (2017).

[35] R. V. Rao and K. C. More, Design optimization and analysis of selected thermal devices us-
ing self-adaptive Jaya algorithm, Energy Conversion and Management 140, 24–35 (2017).

74 REFERENCES

[36] S. P. Singh, T. Prakash, V. Singh, and M. G. Babu, Analytic hierarchy process based auto-
matic generation control of multi-area interconnected power system using jaya algorithm,
Engineering Applications of Artificial Intelligence 60, 35–44 (2017).

[37] R. V. Rao and A. Saroj, Economic optimization of shell-and-tube heat exchanger using
jaya algorithm with maintenance consideration, Swarm and Evolutionary Computation
116, 473–487 (2017).

[38] R. Venkata Rao and A. Saroj, A self-adaptive multi-population based jaya algorithm for
engineering optimization, Swarm and Evolutionary Computation 37, 1–37 (2017).

[39] R. V. Rao and A. Saroj, Multi-objective design optimization of heat exchangers using
elitist-jaya algorithm, Energy Systems 9, 305–341 (2018).

[40] J.-T. Yu, C.-H. Kim, A. Wadood, T. Khurshaid, and S.-B. Rhee, Jaya algorithm with self-
adaptive multi-population and lévy flights for solving economic load dispatch problems,
IEEE Access 7, 21372–21384 (2019).

[41] K. Tang, X. Yao, P.N. Suganthan, C. MacNish, Y.P. Chen, C.M. Chen, Z. Yang
Z,Benchmark functions for the CEC’2008 Special Session and Competition on Large Scale
Global Optimization, Technical Report Nature Inspired Computation and Applications
Laboratory 37, 58–72 (2007).

Author information
Pravesh Kumar, Department of Mathematics, Rajkiya Engineering College Bijnor, India.
E-mail: praveshtomariitr@gmail.com,

Amit Sharma, Department of Mathematics, Amity University Haryana, India.
E-mail: dba.amitsharma@gmail.com

	1 Introduction
	2 Related Work
	2.1 MRLDE:
	2.2 Jaya Algorithm:

	3 Proposed MRL-Jaya:
	4 Result and Discussion
	4.1 Benchmark Problems:
	4.2 Performance Measures:
	4.3 Parameter Setting:
	4.4 Results and Comparison of MRL-Jaya with Jaya and MRLDE Algorithm:
	4.5 Results and Comparison of MRL-Jaya with DE, ODE jDE, LeDE:
	4.6 Convergence Graph:

	5 Conclusion:

