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Abstract In this study, an efficient and robust algorithm is proposed for surface reconstruc-
tion from a noisy image. In the noisy image, degraded gradient field is obtained and used as
input. The proposed approach is based upon the image segmentation using some basic mor-
phological operations. Afterwards, sort out the position of the pixels of unit intensity from the
segmented image. Then take the intensity values of those particular pixels from the given image.
Thus sparse data of intensity values from the image is used rather than whole intensity values of
the image. This helps to guarantee good surface reconstruction in case of noisy images. The sur-
face fitting is done using the cubic spline method. The surface obtained in crude form, is further
refined using the error minimization of the gradients. The performance of the proposed method is
exhibited using synthetic and real data. Experimental results demonstrate that our methodology
produces accurate surface reconstruction that preserves remarkable and sharp features.

1 Introduction

Loads of shape attaining algorithms for instance shape from shading [10], shape from texture
[19] and photometric stereo [26] merely generate the surface normals of a real object. Some
integration process needs to be followed to infer the surface shape from these normals. Never-
theless, the reconstruction by the use of the integration process is sensitive to the noise as well as
to the selection of integration path across the surface. The authors in [23] has provided denoising
with edge preservation in noisy digital images. Integration is also considered as a mathematical
tool to redeem an image using incomplete Fourier parameters after finding the image gradients
by the use of Compressed Sensing techniques [17]. In [20], derivative compressed sensing tech-
nique (DCS) technique, a modification of compressed sensing is used to reconstruct the surface
from the gradient field. This shape recovery of the three-dimensional (3D) surface from the two-
dimensional (2D) images has an ample variety of applications viz. 3D reconstruction (surgery,
remote sensing, architecture), the distance calculation (vehicle control, robotics), reconstruction
of planet surfaces from their images captured by aircraft and satellites.

The most basic approach to reconstruct a surface from its corresponding gradients depends on
the minimization of the cost function using least square technique. This results in the generation
of Poisson’s equation which can be solved by various methods [21]. However this approach has
been plagued by some problems arising in case of noisy images. Alternatively, decomposition
of images into basis functions is widely popular among researchers. The researchers have ac-
complished this analysis by the correlation of the considered basis functions and image intensity
or pixel values to generate a vector of coefficients. Then the reconstruction has been performed
by combining these basis functions linearly. Frankot and Chellapa [7] proposed Fourier basis
functions, while Kovesi [12] performed the reconstruction of surfaces using shapelets as a non-
orthogonal set of basis functions. An algorithm has been proposed in [25] based upon Fourier
transform method to get the height from the gradients. Some modified algorithms have been
described in [24] for the process of image inpainting in Fourier transform domain. In [5], sur-
face reconstruction was performed by solving the Poisson’s equation using discrete Fourier sine
transform. The methods in [8] used spectral, Tikhonov and constrained regularization to get bet-
ter least squares fit. Some authors also used regularizations in reconstructing the surface using



76 Anu Bala

its corresponding gradients in the photometric stereo for the industrial applications [9]. This
approach can reconstruct the mega-pixel sized surface in a few seconds.

Agrawal et al. [2] proposed a generalized structure for the extension of the Poisson equation.
The authors in [1] proposed an another method to correct the gradient field with some algebraic
method. The outcomes of the proposed method are impressive when the corresponding gradient
field is disturbed with the outliers only, but unhappily, the results are less acceptable in the
occurrence of noise. In [11], a noise reduction technique is proposed for surface reconstruction
from noisy gradient fields. The methods discussed so far, perform well either in the presence
of noise only or the outliers only, but not in the case, when both outliers and noise are assorted.
But in general, most of the real world data usually contains the mixture of noise as well as
outliers. The literature reveals that the methods based on l1-minimization can handle the outliers
in a better way. The method proposed in [18] handled the problem as a residual gradient error
correction by taking into account the l1-norm. l1-based methods can handle three cases, outliers
only, noise only, both noise and outliers. Nevertheless, these methods are not able to reconstruct
a high quality surface in case of rigorously corrupted gradient field.

While most methods to obtain the surface from the gradient field return discrete height val-
ues as an output, few methods are efficient to reconstruct a continuous surface. The method
proposed in [15], reconstructed a 3D continuous surface from a gradient field without imposing
the discrete integrability constraint. Their method incorporated Gaussian kernel basis functions
to reconstruct the continuous surface into high dimensional space. In [13], feed-forward neu-
ral network was employed to improve the depth values on the basis of scale invariant features
(SIFT) indexes. An algorithm for reconstructing a digital object based upon morphing approach
was given in [14], which helps in kidney animation and tumour tracking. In [28], an another
technique to reconstruct textured mesh surfaces was presented where point cloud is rendered by
patch-based multi view stereo approach. In [4], a new optimization approach was presented for
reconstruction of the surface based upon triple sparsity prior with an ability to handle both out-
liers and noise. In [22], a method for 3D shape measurement was proposed using a camera and
a periscope. In [6], an algorithm for 3D depth estimation was presented by the use of wavelet
transform. The authors concluded that their approach produced a very efficient depth perception
model with minimal hardware involvement. In [27], 3D objects are constructed from minimum
number of images, using Wide Baseline Matching and 3D registration algorithm.

This study presents a new approach to reconstruct the surface from sparse data of image
intensities. This operation of getting sparse data is performed by image segmentation using
morphological operations. Firstly intensities are evaluated only at few pixels in the segmented
image and then surface fitting is performed using the cubic spline method to get intermediate
surface in crude form. Afterwards, gradient field is estimated from this intermediate surface and
again the height in refined form is recovered from the error minimization of the gradient field.
Thus use of sparse intensity data initially, results in an accurate surface reconstruction from noisy
images. The proposed approach differs from recently depth acquisition sensors. For example, it
works in all scenario while kinect works only in indoor environment.

The organization of different sections in this paper is specified as following: a concise
overview of the proposed algorithm for surface reconstruction is given in the Section 2. Sec-
tion 3 explores the experimental results and finally paper is concluded in Section 4.

2 Surface Reconstruction

The process of 3D surface reconstruction from a noisy image is divided into following three
phases:

• Phase 1: Segmentation of the image using the mathematical morphological operations.

• Phase 2: Intermediate surface fitting using cubic spline interpolation.

• Phase 3: Recovering depth map by calculating the gradients from the intermediate surface
using minimization of error flanked by the evaluated gradients and the gradients of the
surface to be recovered.

Before going through these three phases, firstly the input noisy image is preprocessed by per-
forming the convolution process on it with a Gaussian filter of appropriate variance.
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2.1 Segmentation Using Mathematical Morphology

Mathematical morphology is a technique to extract geometric information from the intensity
values of the images. A shape probe identified as structuring element (SE) is used to extract this
type of information. The nature of the output information relies on the shape and size of SE.
Image segmentation is a grouping process that enables image pixels to be separated on the basis
of their intensity values. One of the segmentation schemes is hard thresholding or binarisation,
where a threshold is decided manually or experimentally. However, this type of segmentation
may lead to false grouping outcomes, if the image pixels are crowded. To avoid this type of
erroneous segmentation, we take the help of mathematical morphology operations using some
appropriate structuring elements. In practice, the shape and size of the SE must be fitted to the
image that has to be processed. The primary morphological operations are dilation and erosion,
since all other operations are based on their combinations. In our proposed algorithm, one of
the most important operations, is the blend of dilation and erosion, called opening has been
employed.

The process of erosion followed by dilation is called the opening. LetA be an intensity image
and B as a structuring element, the opening of A by B, denoted by A ◦B is defined as:

A ◦B = (AΘB)⊕B

Geometrically, opening is the union of all translations of B that adapt completely within
A. Morphological opening removes regions of an image entirely that cannot contain the SE,
generally smooths the boundaries of larger objects without changing their area, and eliminates
small and thin protrusions. Morphological openings are always anti-extensive transformations,
i.e. some pixels are removed. Once the opening process of the image is over, then this opened
image is subtracted from the original one called a top-hat transformation, denoted by THB(A).

THB(A) = A− (A ◦B)

Where, A is the original input image and B is the structuring element. The main advantage of
top-hat approach is to recover those image structures which have removed by the SE during the
opening process. After implementing top-hat transformation, the gray level image is converted
to binary image using binary thresholding transformation. Thresholds are categorized as global
or local, i.e. they remain constant throughout the image, or vary spatially. In our approach, we
choose global optimal threshold using a method proposed by Otsu [16].
2.2 Intermediate Surface Fitting

In the next step, only those pixels from the segmented binary image are considered, where
the intensity value is unity. The corresponding positioned pixels from the input noisy image
are further used for intermediate surface fitting. Thus we use sparse data of noisy image for
surface reconstruction rather than the whole image pixels. The intensity values on these pixels
are taken into account for further step of surface fitting. Surface fitting is done using the cubic
spline interpolation. A cubic polynomial is fitted between the sets of three data points of the
surfaces using cubic spline interpolation. The cubic spline has second order continuity at the
joints. The cubic spline is characterized over a rectangle R in the plane (x, y), whose sides are
parallel to x-axis as well as y-axis. This rectangle R is split into rectangular panels using the
lines, which are parallel to x-axis and y-axis. This cubic spline is a cubic polynomial over each
panel,. Mathematically, the expression for a single cubic spline segment over each spline is given
by:

3∑
i=0

3∑
j=0

aijx
iyj

Every cubic polynomial in each rectangular panel connects the spline in adjoining panels with
a continuity upto second order derivative. The set of interior knots for the variable x of a cubic
spline is formed by the constant x-values of the separating lines, parallel to the y-axis. Similarly,
for the variable y of the cubic spline, the set of interior knots is formed by the constant y-values
of separating lines, parallel to the x-axis.
2.3 Recovering depth map from gradients of intermediate surface

In this section, refined depth map is recovered from intermediate surface gradients, which, in
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turn, utilized for reconstruction of surface. Let ∇Zint = (p, q) denotes the given gradient field
evaluated on the intermediate surface Zint(x, y) points. These gradients are computed by utiliz-
ing central difference operator inside the grid of the discretized surface and by utilizing suitable
forward and backward difference operator over the edges of the grid. The surface gradients (p, q)
are computed by using the formulae as given below:

pı, =


Zint(ı+1,)−Zint(ı−1,)

2 ∀ (ı, ) ∈ grid interior
Zint(ı+ 1, )− Zint(ı, ) ∀ (ı, ) ∈ left edge
Zint(ı, )− Zint(ı− 1, ) ∀ (ı, ) ∈ right edge

qı, =


Zint(ı,+1)−Zint(ı,−1)

2 ∀ (ı, ) ∈ grid interior
Zint(ı, + 1)− Zint(ı, ) ∀ (ı, ) ∈ upper edge
Zint(ı, )− Zint(ı, − 1) ∀ (ı, ) ∈ lower edge

LetU(x, y) be the required discrete depth map to recover and∇U = (Ux, Uy) be the true gradient
of U . The objective is to calculate a depth map U(x, y) in the way, such as

Ux =
∂U

∂x
= p, Uy =

∂U

∂y
= q

The optimal value of depth map U(x, y) may be evaluated by minimizing the following error
function in the image domain Ω as:

J(U) =

∫∫
Ω

[
(Ux − p)2 + (Uy − q)2] dxdy (2.1)

Suppose that the required depth map U may be described as a linear sum of basis functions
ψ(x, y; Ω), here Ω = (u, v).

U(x, y) =
∑

Ω

C(Ω)ψ(x, y; Ω) (2.2)

Differentiate equation (2.2) w.r.t. x and y, and we get:

∂U

∂x
=
∑
w

C(Ω)ψx(x, y; Ω) (2.3)

∂U

∂y
=
∑

Ω

C(Ω)ψy(x, y; Ω) (2.4)

Now, p(x, y) and q(x, y) are defined as:

p =
∑

Ω

C1(Ω)ψx(x, y; Ω) (2.5)

q =
∑

Ω

C2(Ω)ψy(x, y; Ω) (2.6)

To assess the estimation of the coefficients C(Ω) defined in the equation (2.2), two new param-
eters K1 and K2 are presented as:

K1(Ω) =

∫∫
|ψx(x, y; Ω)|2dxdy (2.7)

K2(Ω) =

∫∫
|ψy(x, y; Ω)|2dxdy (2.8)

The optimal estimation of the coefficients C(Ω) defined in equation (2.2), which in turn, used to
minimize the error function provided in equation (2.1) is computed as;

C(Ω) =
K1(Ω)C1(Ω) +K2(Ω)C2(Ω)

K1(Ω) +K2(Ω)
(2.9)
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In the proposed approach, discrete Fourier basis has been employed in support of its computa-
tional efficiency. Here,

ψ(x, y; Ω) = exp
(

2πi
(xu
M

+
yv

N

))
(2.10)

After differentiating the Fourier basis w.r.t. x and y, we obtain:

ψx =
(

2πi
u

M

)
ψ(x, y; Ω)

ψy =
(

2πi
v

N

)
ψ(x, y; Ω) (2.11)

The coefficients K1 and K2 may be evaluated by utilizing equation (2.7) as follows:

K1(Ω) =

(
2πu
M

)2

; K2 (Ω) =

(
2πv
N

)2

(2.12)

From the (2.5) and (2.6), by taking the Discrete Fourier Transform (DFT) of p and q, composed
as F(p) and F(q), the expansion coefficients C1(Ω) and C2(Ω) are determined as:

C1(Ω) =
−iMN

2πu
F(p)
N

; C2(Ω) =
−iMN

2πv
F(q)
M

(2.13)

Now, to get C(Ω), substitute the values of C1, C2,K1 and K2 from equation (2.12) and (2.13) in
equation (2.9). On substituting this value of C(Ω) in equation (2.2) and afterwards by taking the
DFT of equation (2.2), we obtain:

F(U) = −i

(
2πu
M F(p) +

2πv
N F(q)

( 2πu
M )2 + ( 2πv

N )2

)

=
−i
2π

( u
MF(p) +

v
NF(q)

( uM )2 + ( vN )2

)
(2.14)

Now, the final output U w.r.t. input p and q may be composed as:

U = F−1
(
−i
2π

( u
MF(p) +

v
NF(q)

( uM )2 + ( vN )2

))
(2.15)

Here F(·) and F−1(·) denote Discrete Fourier Transform (DFT) and inverse Discrete Fourier
Transform (IDFT) operations respectively. Using equation (2.15), the depth map (height data)
U(x, y) has been determined at discrete points, which in turn, employed in reconstructing 3D
surface. The whole performed task has been illustrated in a block diagram shown in Fig. 1.
3 Results and Discussions

Our proposed algorithm has been implemented on various real as well as synthetic noisy images
to recover depth information from these images and then reconstruct 3D surface in a very effi-
cient manner. The results have been compared with the existing algorithms viz. Poisson solver
[21], Frankot-Chellappa algorithm[7] and diffusion using affine transformation of gradients [2].
The error behaviour in recovered depth maps and their ground truths has been reported in terms
of normalized mean square error (MSE) and normalized mean absolute error (MAE) explained
as follows:

• Mean Square Error: The ground truth height values and the evaluated height values by
our proposed approach have been normalized in [0,1]. The average of the square of the
difference between the normalized ground truth and evaluated normalized height values
has been computed using the formula:

MSE =
1

MN

N−1∑
y=0

M−1∑
x=0

(z1(x, y)− z2(x, y))
2
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Figure 1. Block diagram for overall processs

• Mean Absolute Error: The ground truth height values and the evaluated height values
by our proposed algorithm have been normalized in [0,1]. The mean of the absolute dif-
ferences between the normalized ground truth and evaluated normalized depth values has
been calculated using the formula:

MAE =
1

MN

N−1∑
y=0

M−1∑
x=0

|(z1(x, y)− z2(x, y))|

where MN is the size of the image whose height is to be recovered, z1(x, y) is the ground truth
height values, z2(x, y) is the evaluated height values.

The validation of our proposed algorithm has been carried out by taking standard benchmark
surface of Ramp Peaks [2], ground truth surfaces of vase and Mozart. Our results have been
compared with Poisson algorithm, Frankot-Chellappa algorithm and diffusion algorithm. The
error analysis has been reported in Table 1.

Vase: The synthetic vase has been created by utilizing the equation given by Ascher and
Carter [3] as following:

z(α, β) =
√
(f(β)2 − α2);

where f(β) = 0.15− 0.1× β × (6β + 1)2 × (β − 1)2 × (3β − 2)

−0.5 ≤ α ≤ 0.5 0 ≤ β ≤ 1
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Figure 2. Reconstruction using various algorithms:(a) Ground-truth surface; (b) synthetic im-
age; (c) noisy image; (d) reconstructed surface by Poisson solver algorithm [21]; (e) recon-
structed surface by Frankot-Chellappa algorithm [7]; (f) reconstructed surface by diffusion algo-
rithm [2]; (g) segmented image; and (h) reconstructed surface by proposed algorithm.

The ground-truth surface for this synthetic vase has been shown in Fig. 2(a). The synthetic
image generated from the surface of vase is shown in Fig. 2(b). Gaussian noise has been added to
the synthetic image to get a noisy image of the vase (see Fig.2(c)). Now, our aim is to reconstruct
the surface of vase from this noisy 2D image. We compare our results with the algorithms viz.
Poisson solver (Fig. 2(d)), Frankot-Chellapa (Fig. 2(e)) and diffusion using affine transformation
of gradients (Fig. 2(f)). The obtained 3D reconstructed surface by our proposed algorithm has
been shown in (Fig. 2(h)). The intermediate surface has been obtained from the segmented
image figure 2(g) using cubic spline interpolation method.

Mozart: The test image has been generated from the surface data of Mozart. The ground
truth depth map for Mozart has been bestowed by Professor Kuo of USC. Ground truth surface
of Mozart, image generated from this surface and its corresponding noisy image have been shown
in Fig. 3 (a), (b) and (c), respectively. Our algorithm has been performed very well in case of
Mozart. The outcomes have been contrasted with the outcomes obtained from three different
algorithms. The reconstruction of surfaces using several algorithms have been shown in Fig. 3

Ramp Peaks: The reconstructions obtained on the Ramp Peaks test surface have been shown
in Fig. 4. The comparisons with other existing methods in terms of MSE and MAE have been
listed in Table 1.

Real Image: Surface reconstruction has also been performed on noisy images of real data.
Results have been presented in Fig. 5. It can be seen from the obtained results that the methods
Poisson solver, FC algorithm and diffusion algorithm using affine transformation of gradients
provide deformed and non-smooth surfaces as compared to the surface obtained with proposed
method.
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Figure 3. Reconstruction using various algorithms:(a) Ground truth surface; (b) synthetic image;
(c) noisy image; (d) reconstructed surface by Poisson solver algorithm [21]; (e) reconstructed
surface by Frankot-Chellappa algorithm [7]; (f) reconstructed surface by diffusion algorithm
[2]; (g) segmented image; and (h) reconstructed surface by proposed algorithm.

Table 1. Normalized MSE and MAE
image Method MSE MAE

Mozart

Poisson 0.1823 0.3235
FC Algorithm 0.1856 0.3254

Diffusion 0.1706 0.3259
Proposed 0.0231 0.0032

Vase

Poisson 0.0956 0.2014
FC algorithm 0.0947 0.1994

Diffusion 0.0955 0.2048
Proposed 0.0093 0.0649

Ramp Peaks

Poisson 0.5574 0.6580
FC algorithm 0.6183 0.4810

Diffusion 0.5452 0.6037
Proposed 0.0288 0.0843

4 Conclusions

We have proposed an efficient approach to the 3D surface reconstruction from 2D image us-
ing image segmentation by mathematical morphological operations. In our approach, obtained
sparse intensity data from the segmented image has been used for the generation of intermediate
3D surface using cubic spline interpolation method. The surface gradients have been calculated
from the intermediate surface using central difference formulae and then final depth map has
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Figure 4. Reconstruction using various algorithms:(a) Ground truth surface; (b) synthetic image;
(c) noisy image; (d) reconstructed surface by Poisson solver algorithm; (e) reconstructed surface
by Frankot-Chellappa algorithm; (f) reconstructed surface by diffusion algorithm; (g) segmented
image; and (h) reconstructed surface by proposed algorithm.

Figure 5. Reconstruction using various algorithms:(a) Real image; (b) noisy image; (c) recon-
structed surface by Poisson solver algorithm; (d) reconstructed surface by Frankot-Chellappa
algorithm; (e) reconstructed surface by diffusion algorithm; (f) segmented image; and (g) recon-
structed surface by proposed algorithm.

been evaluated using error minimization between these gradients and the gradients of the surface
to be estimated in the Fourier domain. The technique has been tested with the different set of
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images. Our results have been compared with the reconstructed surfaces obtained by Poisson
solver, Frankot-Chellappa and diffusion algorithm using affine transformation of gradients. The
results show that the proposed approach is able to acquire progressively precise depth-map as
contrasted with the other algorithms. Moreover, the proposed methodology is simple to employ
and gives good results in case of noisy images.
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