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Abstract This study examines the unsteady and incompressible MHD Carreau nanofluid
flow induced by a stretching sheet considering Hall effect, nonlinear thermal radiation, velocity
slips, heat generation, chemical reaction, and activation energy. It is also assumed that a zero
mass flow condition exists at the surface. To approximate heat flux due to radiation, Rosseland’s
estimation has been used. The controlling PDEs are metamorphosed into a system of ODEs
using appropriate similarity transformations. The resultant nonlinear equations are numerically
solved in MATLAB using the bvp4c solver. The many physical variables that influence velocity,
temperature, and concentration distributions are illustrated through diagrams. For various key
parameters, the fluctuations in shear stresses, heat and mass transport rates at the sheet are dis-
cussed and displayed in the form of table. The results obtained for a specific case of the current
problem are then compared with the findings that have already been published, and the compar-
ison reveals a good agreement among the results. Graphical results show that Navier’s slip has
the tendency to diminish the fluid velocity. The temperature of the fluid is enhanced for thermal
radiation and heat generation.

1 Introduction

Theoretical/experimental study of non-Newtonian fluid flows has been a significant topic of re-
search in recent years due to its importance in a variety of industrial and engineering phenomena.
It’s worth noting that in the case of non-Newtonian fluids, the stress-strain relationship is nonlin-
ear. Due to the highly non-linearity of the model equations, researchers faced numerous hurdles
in analyzing such fluid flow problems. In heat transfer procedures using non-Newtonian fluids,
shear impacts are important. Paints, liquid detergents, multi-grade oil, blood delivered in a mi-
crocirculatory system, printer ink, muck, sauce and other non-Newtonian fluids are only a few
examples. Cortell [5] investigated the flow of an electrically conducting second-grade nanofluid
passed through a semi-infinite porous stretching sheet subjected to a uniform transverse magnetic
field. AbdEl-Gaied and Hamad [1] demonstrated the mixed convective alumina-water nanofluid
flow along with a moving permeable vertical flat plate under the influence of a magnetic field ap-
plied normal to the plate. MHD viscoelastic fluid flow through an extending vertical surface in a
porous media was studied by Turkyilmazoglu [36]. Eid and Mahny [8] explored the cumulative
influence of a magnetic field and heat source/sink on unsteady non-Newtonian nanofluid flow
over a permeable stretched wall. Tian et al. [35] looked into the mixed convection in unsteady
2D viscous and electrically conducting nanofluid flow past a stretching plate with convective
thermal boundary conditions.

Due to overwhelming applications of thermal radiation in aircraft, gas turbines, satellites,
missiles, and space vehicles ([18], [3]), many researchers have explored the effects of thermal
radiation on MHD flows. However, in most cases, a linear variation in thermal radiation has
been considered. But, it is worth mentioning that, in several heat transfer processes involving
high temperature, a linear model for thermal radiation doesn’t provide appropriate results. In
such a case, a nonlinear variation in thermal radiation may lead to a better result. So, in view
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of such facts, Hayat and Qasim [12] illustrated the role of thermal radiation on MHD Maxwell
fluid flow across a stretching sheet with mixed convection and thermophoresis. Rashidi et al.
[25] studied MHD convective water-based nanofluid flow past a vertically extended sheet while
taking heat radiation into account. Using Buongiorno’s model, Daniel et al. [6] conducted a
study to examine the effects of thermal radiation, viscous-Joule dissipations on MHD nanofluid
flow through a porous stretchable sheet. Shah et al. [28] conducted thermal radiation experiments
on the MHD CNTs nanofluid flow passing through a stretched sheet with rotation. Gireesha et al.
[10] surveyed the effects of nonlinear thermal radiation on the flow of MHD 3D Jeffrey nanofluid
across a nonlinearly permeable stretched sheet, considering various aspects of the problem.

Swiss scientist Svante Arrhenius first coined the phrase “activation energy” in the year 1889.
He clarified that activation energy is the energy recovered during a chemical reaction control.
It also shows how little energy is required to start a chemical reaction process. The activation
energy theory is useful in various fields, including oil reservoirs, chemical engineering, food
processing, and geothermal engineering. Based on the mentioned applications, in the presence
of a chemical reaction, the effect of mass transfer in the magnetohydrodynamic flow of a Casson
fluid past a porous stretching sheet is described by Shehzad et al. [31]. Mustafa et al. [21] ex-
plored the hydromagnetic nanofluid flow over a vertical surface, taking into account the impact
of activation energy and buoyancy force. Goqo et al. [11] discussed MHD viscous nanofluid
flow along with a porous wedge in the presence of chemical reactions. They accounted for both
heat radiation and mixed convection while doing so. The inspection on activation energy in
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3D unsteady Carreau nanofluid flow past a stretching sheet due to heat source/sink and mixed
convection was carried out by Irfan et al. [15]. On account of nonlinear mixed convection, Brow-
nian motion, and thermophoretic diffusion, Irfan [16] studied the effect of chemical reaction on
unsteady Carreau nanofluid flow near a stretching sheet.

If the applied magnetic field intensity is very strong or the fluid density is very low, Hall
current becomes considerable (like ionized fluid). In such instances, the electric current is usu-
ally carried by electrons that collide with other neutral or charged particles on a regular basis.
When an electric field is sufficiently strong, the conductivity parallel to it drops, causing a cur-
rent to flow in the direction perpendicular to both magnetic and electric fields. Hall effect is the
name given to this occurrence, while Hall current is the name given to the current. The Hall
effect finds noteworthy applications in nuclear power reactors, Hall current accelerators, mag-
netometers, energy storage systems, etc. ([33], [34]). Depending on the applications, Shit and
Haldar [32] looked at the cumulative influence of Hall current and thermal radiation on hydro-
magnetic free-convective flow along an inclined stretchable surface with varying viscosity and
heat generation/absorption. Prasad et al. [24] studied the influence of the Hall effect on MHD
electrically conducting fluid flow over a stretching surface of varied thickness. Khan et al. [17]
investigated the Hall effect in MHD thin-film second-grade nanofluid flow with Brownian mo-
tion, thermophoresis, and heat transfer through a stretched sheet. Nandi and Kumbhakar [23]
investigated the Hall effect on MHD natural convection flow of an optically thick radiating fluid
along with an oscillating vertical plate with chemical reactions and heat generation/absorption.

For a boundary layer flow, the no-slip condition at the surface is a commonly used boundary
condition. In 1823, Navier discovered that the velocity slip at the solid wall varied linearly with
the shear stress. It has a various of applications in lubricants, artificial heart valves, biological
fluids, internal cavities, and medical sciences, etc ([26], [20], [27],[30], [7]). Keeping in mind
the concept of no-slip condition, Hayat et al. [13] examined the effects of nonlinear thermal
radiation and velocity slip effects on MHD 3D nanoliquid flow past a stretching sheet. In order
to understand how MHD Casson nanofluid flow is affected by velocity slip, chemical reaction,
and convective boundary conditions, Ibrahim et al. [14] analyzed these different aspects for
MHD Casson nanofluid flow along with a nonlinearly stretching sheet. Aziz and Jamshed [2]
illustrated unsteady MHD boundary layer slip flow of a power-law fluid near a porous nonlinearly
stretching sheet. Nandi and Kumbhakar [22] investigated unsteady MHD fluid flow along with
a permeable infinite flat plate with surface slippage while accounting for Hall current, thermal
radiation, and internal heat generation/absorption.

Motivated by the literature mentioned above, the primary goal of this study is to analyze
3-dimensional, unsteady and incompressible MHD Carreau nanofluid flow over a stretching sur-
face with Hall effect, velocity slips and nonlinear thermal radiation. Internal heat generation,
chemical reaction, activation energy, convecting heating, and zero mass flux are also taken into
account. Well-matched conversions produce nonlinear ODEs, and bvp4c in-built MATLAB rou-
tine is utilized to solve those equations. Parameters that show significant impacts on the flow,
thermal and concentration fields are discussed with the help of graphs. For a limiting case, the
obtained results are compared with the results reported in existing studies, and good agreement
is observed.

2 Mathematical model equations

Consider a 3-dimensional, unsteady and incompressible MHD Carreau nanofluid flow along a
stretching surface with velocity slip, Hall effects. Nonlinear thermal radiation, heat generation,
and chemical reaction with activation energy are all included in the analysis. The sheet is posi-
tioned in the rectangular coordinate frame (x, y, z) where the x-axis is directed along the sheet
surface towards the flow direction. The y-axis is directed along the width, and the z-axis is per-
pendicular to the surface. A time-dependent magnetic field of magnitude B(t) is applied along
the z-direction. The surface is stretched along x and y-directions with velocities uw = ax

1−βt and
vw = by

1−βt (a, b being positive constants) respectively. The nanofluid temperature and species
concentration at the surface are kept at constant values of Tw and Cw respectively, whereas the
ambient fluid temperature and species concentration are maintained at constant values of T∞ and
C∞ respectively.



98 Manik Das, Susmay Nandi and Bidyasagar Kumbhakar

Figure 1. Geometry describing the flow problem

The following fluid flow equations for the current problem may be modelled with the as-
sumptions stated above: ([15], [16]):

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

σB2(t)

ρf (1 +m2)
(mv − u)

+ g
[
βT (T − T∞) + β∗T (T − T∞)2 + βC(C − C∞) + β∗C(C − C∞)2]

+ ν

(
∂2u

∂z2

){1 +

(
Γ
∂u

∂z

)2
}n−1

2

+ (n− 1)
(

Γ
∂u

∂z

)2
{

1 +

(
Γ
∂u

∂z

)2
}n−3

2
 ,

(2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − σB2(t)

ρf (1 +m2)
(mu+ v)

+ ν

(
∂2v

∂z2

){1 +

(
Γ
∂v

∂z

)2
}n−1

2

+ (n− 1)
(

Γ
∂v

∂z

)2
{

1 +

(
Γ
∂v

∂z

)2
}n−3

2
 , (2.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=α

∂2T

∂z2 + τ

{
DB

∂T

∂z

∂C

∂z
+
DT

T∞

(
∂T

∂z

)2
}

− 1
(ρcp)f

∂qr
∂z

+
Q1

(ρcp)f
(T − T∞) ,

(2.4)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
=DB

∂2C

∂z2 +
DT

T∞

∂2T

∂z2 − k
2
r (C − C∞)

(
T

T∞

)n∗

e(
−Ea
κT ). (2.5)

The physical boundary conditions for the current problem are given as follows:

u = uw +N1νf
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(2.6)
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While simulating the present radiative heat transfer problem, the following Rosseland’s approx-
imation is assumed ([9]):

qr = −
16σ∗T 3

3k∗
∂T

∂z
. (2.7)

The energy equation takes the form after applying expression (2.7) to equation (2.4)
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The variable aspects of wall temperature, wall concentration and time-dependent magnetic field
are considered as ([16]):
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2
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.

To obtain similar solutions of equations (2.2), (2.3), (2.8) and (2.5) subject to the boundary
conditions (2.6), the following similarity transformations are introduced:
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Substitution of the above transformations in equations (2.2), (2.3), (2.8) and (2.5) yields the
following ordinary differential equations:
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Boundary conditions, in dimensionless form, are stated as

f(0) = 0, f ′(0) = 1 + α1f
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 (2.14)
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where
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3 Physical quantities of engineering interest

When addressing the problem from an engineering perspective, the only physical quantities of
importance are the coefficients local skin-friction, Nusselt and Sherwood numbers which are
expressed as
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The aforementioned physical quantities can be expressed, in non-dimensional form, using the
dimensionless variables specified in (2.9)
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4 Implementation of numerical technique

4.1 Solution procedure

Numerical solutions are obtained for the highly nonlinear ODEs (2.10)-(2.13) subject to the
constraints defined in (2.14) by employing bvp4c in-built solver in MATLAB. The basic method
of solution using bvp4c is based on four points Lobatto collocation formula. It uses polynomial
type collocation, and its order is four. The higher-order equations (2.10)-(2.13) are converted
into a set of first-order equations. Furthermore, while implementing the solution technique, the
boundary value problem is metamorphosed into an initial value problem by assuming suitable
guess values to those missing initial conditions. To achieve the far-field conditions, a finite fixed
value of η, say η = 10, has been considered. With this assumption, all the conditions specified
outside the boundary layer are satisfied.

Table 1. Comparative results of −f ′′(0) for altered values of S
−f ′′(0)

S Ref. [29] Ref. [4] Ref. [16] Present result
0.8 1.261042 1.261512 1.261044 1.261043
1.2 1.377722 1.378052 1.377728 1.377725
2.0 1.587362 − 1.587381 1.587370

Table 2. Comparative results of −f ′′(0) and −g′′(0) for altered values of β1

−f ′′(0) −g′′(0)
β1 Ref. [37] Ref. [19] Present results Ref. [37] Ref. [19] Present results
0 1 1 1.000008 0 0 0

0.25 1.048813 1.048813 1.048813 0.194564 0.194565 0.194565
0.50 1.093097 1.093096 1.093096 0.465205 0.465206 0.465206
0.75 1.134485 1.134486 1.134486 0.794622 0.794619 0.794619

1 1.173720 1.173721 1.173721 1.173720 1.173721 1.173721

4.2 Results validation

The numerical values of−f ′′(0) displayed in Table 1 have been computed for different values of
unsteadiness parameter S for a specific case of the current problem, i.e., when We1 = We2 =
λ = ζT = ζC = M = α1 = α2 = β1 = N = 0 and n = 1. In order to check the correctness
of the results and the reliability of the employed numerical approach, these values are compared
with the results reported by Sharidan et al. [29], Chamkha et al. [4] and Irfan [16]. Further,
another comparison of values of −f ′′(0) and −g′′(0) w.r.t. β1 when We1 = We2 = λ = ζT =
ζC = M = α1 = α2 = N = S = 0 and n = 1 is presented in Table 2. These results are
compared with those of Wang [37] and Liu and Anderson [19]. Both the tables clearly reveal
that there exists a nice agreement among the results.

5 Results and Discussion

In this part, the effects of several relevant flow factors such as M , S, m, α1, α2, Rd, δ, Bi, Nb,
Nt, Γ1 and E on the flow-field, temperature, and concentration scatterings are examined and
demonstrated using Figures 2-19. The behavior of suface shear stresses, heat and mass transfer
rates at the wall is demonstrated by computing their numerical values, which are shown in Tables
3 and 4. To carry out numerical implementation, the default values of relevant parameters are
assumed as We1 = We2 = 1.6, λ1 = N = n = m = L = E = 0.5, Pr = 1.4, Nt =
Nb = ζT = ζC = 0.4, Rd = δ = α1 = α2 = 0.3, S = Le = 1.5, M = 2, β1 = 0.6,



102 Manik Das, Susmay Nandi and Bidyasagar Kumbhakar

Bi = n∗ = 0.2, Γ1 = 0.6 and θw = 1.1 by consulting some good research articles relevant to
the present work. These values are maintained unaltered throughout the investigation except the
changing parameter as specified in the corresponding tables and figures .
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Figure 2. Depiction of f ′(η) vs M
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Figure 3. Depiction of g′(η) vs M
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Figure 4. Depiction of f ′(η) vs S
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Figure 5. Depiction of g′(η) vs S
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Figure 6. Depiction of f ′(η) vs m

0 1 2 3 4 5 6 7 8
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

g
(

)

m = 0.5, 0.7, 0.9

Figure 7. Depiction of g′(η) vs m

The effects of M , S, m, α1 and α2 on the velocity field are depicted in Figures 2-9. In both
the directions, the flow is decelerated for increasing values ofM which is shown in Figures 2 and
3. This is due to the reason that higher magnetic parameter creates strong Lorentz force. This
force acts like an retarding force against the flow. So, velocity profiles are diminished along with
both directions. The Figures 4 and 5 depict that, for growing values of S, the velocity profile
f ′(η) is declined while g′(η) is uplifted. Figures 6 and 7 express that due to growing values of
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Figure 8. Depiction of f ′(η) vs α1
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Figure 9. Depiction of g′(η) vs α2

m, f ′(η) is boosted and a fall in g′(η) is noted. For higher values of α1 and α2, a diminishing
behavior in velocity profiles is seen from Figures 8 and 9. The slip between the fluid and the
sheet surface increases as the values of velocity slip parameters increase. As a result, a partial
slip velocity is shifted to a flow regime with a tendency to diminish the flow.
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Figure 10. Depiction of θ(η) vs M
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Figure 11. Depiction of θ(η) vs Rd
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Figure 12. Depiction of θ(η) vs δ

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(
)

Bi = 0.2, 0.5, 0.8

Figure 13. Depiction of θ(η) vs Bi

Figures 10-13 are delineated to examine the behavior of M , Rd, δ and Bi on thermal distri-
bution. Figure 10 shows that the fluid temperature θ(η) enhances on rising M . When magnetic
parameter increases, a stronger Lorentz force is generated, and this retards the motion. This
force is behind the growth of fluid temperature. Figure 11 elucidates raise in θ(η) on enhanced
values of Rd. Improved radiation parameter reduces mean absorption coefficient. As a result,
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temperature gets boosted. Figure 12 describes that θ(η) is hiked for δ. From Figure 13, an in-
crease in θ(η) is noticed for enlarged values of Bi. Heat transfer by convection to the fluid flow
is observed for higher values of Biot number and consequently, the temperature gets augmented.
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Figure 14. Depiction of θ(η) vs Nb
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Figure 15. Depiction of φ(η) vs Nb
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Figure 16. Depiction of θ(η) vs Nt
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Figure 17. Depiction of φ(η) vs Nt

Figures 14-17 are sketched to analyze the impacts of Nb and Nt on temperature and concen-
tration fields. Figure 14 shows that when Nb increases, θ(η) decreases near the sheet and takes
on an inverse nature far away from it. In reality, a larger Nb causes more Brownian diffusion
with lesser viscous forces, which raises the fluid temperature. φ(η) is enhanced near the sheet
for enhancing Nb values, while the reverse influence is perceived away from the sheet, as shown
in Figure 15. According to Figure 16, with upsurging values of Nt, θ(η) is increased. Usually,
an increase in Nt causes a stronger thermophoretic force, which enriches the temperature of the
fluid. Figure 17 shows that φ(η) decreases towards the sheet, while the opposite trend is seen
further away from the sheet with respect to Nt. With the help of Figures 18-19, the influences
of Γ1 and E on concentration profiles are explored. Figure 18 shows that when the value of
Γ1 rises, φ(η) falls. A devastating chemical reaction corresponds to a positive Γ1. As a result,
an improvement in Γ1 causes a decrease in species concentration. Figure 19 shows that with
increasing E values, there is an upward trend in φ(η). Boosted E values aid in the speeding up
of chemical reactions. So, φ(η) is increased.

The numerical values of local skin-friction coefficients for various values of the flow param-
eters S, M , m, α1 and α2 are set forth in Table 3. For higher values of M and S,

√
RexCfx is

increased whereas reverse trend is detected w.r.t. m and α1.
√
ReyCfy is enhanced for enlarged

values of S, M and m while inverse nature is seen w.r.t. α2. Local Nusselt and Sherwood num-
bers calculated for flow parameters M , Rd, δ, Bi, Nb, Nt, Γ1 and E are described in Table 4.
Increasing trend of Nux√

Rex
is found for Rd, Bi and Nb but opposite nature is for M , δ and Nt.

Growing values of Nt and E imply increasing tendency of Shx√
Rex

whereas converse behavior is
noticed w.r.t. Nb and Γ1.
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Figure 18. Depiction of φ(η) vs Γ1
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Figure 19. Depiction of φ(η) vs E

Table 3. Numerical values of the local skin friction coefficients
S M m α1 α2 −

√
RexCfx −

√
ReyCfy

1.5 2 0.5 0.3 0.3 1.798259 3.133334
0.7 1.718947 3.124399
1.1 1.761278 3.125611
1.5 5 1.977171 3.613123

10 2.139699 3.925025
2 0.7 1.768468 3.209514

0.9 1.740017 3.246091
0.5 0.5 1.500465 −

0.7 1.298884 −
0.3 0.5 − 2.603057

0.7 − 2.239737

6 Conclusions

The combined impacts of heat radiation, Hall current, Navier’s slip, and activation energy on
unsteady MHD Carreau nanofluid flow over a bidirectional stretching sheet are discussed in this
study. The following are the notable key points of the current investigation:

• Primary velocity is accelerated for boosting values of m while the reverse trend is seen for
M , α1 and S.

• For improving values of S, secondary velocity is highlighted while decreasing trend is
observed for α2, m and M .

• For boosting values of M , Rd, δ, Bi and Nt temperature profile is escalated.

• Concentration profile is enlarged with rising values of Nt and E whereas the reverse trend
is noticed w.r.t. Kr.

• Primary skin-friction coefficient is enhanced w.r.t. S and M whilst opposite tendency is
observed for m and α1. The secondary skin-friction coefficient is hiked for escalating
values of M , m and S.

• Local Nusselt number is decelerated for growing values of δ, Nt and M while inverse
behavior is found w.r.t. Rd, Nb, and Bi.

• For improving values of Nb and Γ1, local Sherwood number is reduced while the opposite
result is noticed for E and Nt.
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Table 4. Numerical values of the local Nusselt and Sherwood numbers
M Rd δ Bi Nb Nt Γ1 E Nux√

Rex
− Shx√

Rex

2 0.3 0.3 0.2 0.4 0.4 0.6 0.5 0.233404 0.178181
5 0.232117 −
10 0.230938 −
2 0.9 0.336333 −

1.5 0.436746 −
0.3 0.5 0.232307 −

0.7 0.231047 −
0.3 0.5 0.505082 −

0.8 0.711581 −
0.2 0.8 0.233405 0.089091

1.2 0.233406 0.059394
0.4 2 0.233014 0.889316

4 0.232514 1.774564
0.4 0.3 − 0.178183

0.9 − 0.178179
0.5 1.5 − 0.178183

5 − 0.178184
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