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Abstract. In this paper, we study almost η-Ricci soliton (g, V, λ, µ) and gradient almost η-
Ricci soliton (g, grad (f) , λ, µ) on β-paraKenmotsu 3-manifold. The conditions for this class of
manifold to be η-Einstein are obtained. Some examples are also constructed.

1 Introduction

Paracontact geometry is an interesting area of research due to its applications in many branches
of Physics. Kaneyuki and Williams in [1] initiated the study of almost paracontact manifolds,
later on S. Zamkovoy in [2] systematically studied paracontact metric manifolds and their sub-
classes (paraSasakian manifolds, paraKenmotsu manifolds, paraCosymplectic manifolds etc.).
Since then, many authors are making an effort to find out the complete geometry of these type
of manifolds [3–6].

R. S. Hamilton in [7] introduced Ricci soliton as a natural generalization of an Einstein met-
ric. Because of the important applications in physics, interest of researchers increases towards
the geometry of almost Ricci solitons and gradient almost Ricci solitons [8–18, 20]. Ricci soli-
tons in paracontact geometry were firstly studied by D. Perrone and G. Calvaruso in [21]. M.
Kimura and J. T. Cho in [22] studied the more general notion known as η-Ricci soliton (briefly,
η-RS) and gradient η-Ricci soliton (briefly, gradient η-RS).
Recently, U. C. De and K. Mandal in [23] studied almost Ricci solitons and gradient almost Ricci
solitons in (k, µ)-paracontact geometry. D. M. Naik and V. Venkatesha [24], A. M. Blaga [25,26]
also studied an almost η-RS.

Sectional study of this paper is given as: In Sect.2, we give basic definition of almost paracon-
tact metric manifold M3 and its some subclasses: paraCosymplectic manifold C3, paraSasakian
manifold Q3 and paraKenmotsu manifold K3. We also give the definition of a η-Einstein man-
ifold. In Sect.3, we define and study almost η-RS in M3. In Sect.4-5, we prove the following
main results:

Theorem 1.1. Let a β-paraKenmotsu 3-manifold K3 admitting an almost η-RS having ξ as a
potential vector field, then K3 is a η-Einstein manifold. Also if µ = β then K3 is an Einstein
manifold.

Theorem 1.2. Let a β-paraKenmotsu 3-manifold K3 admitting an almost η-RS and having po-
tential vector field orthogonal to ξ, then the scalar curvature of K3 depends on the value of µ
and β.

Theorem 1.3. Let a β-para Kenmotsu 3-manifold K3 admitting a gradient almost η-RS corre-
sponding to the potential function Df , then it is a η-Einstein.

Finally in Sect.6 we construct some examples of almost η-RS (g, ξ, λ, µ) and gradient almost
η-RS (g, grad (f) , λ, µ) on K3.
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2 Priliminaries

Definition 2.1 (Almost paracontact manifold). Let M2m+1 be a differentiable manifold, then
M2m+1 is said to be an almost paracontact manifold if it is equipped with (φ, ξ, η)-structure and
satisfies:

η (ξ) =1, φ2 = I − η ⊗ ξ,
φξ =0, η ◦ φ = 0.

}
(2.1)

Also, an endomorphism φ induces an almost paracomplex structure on each fiber of D = kerη
(horizontal distribution) i.e. the eigendistribution corresponding to eigenvalues +1 and −1, the
eigensubbundles D+ and D− have equal dimension m.

Here, I is the identity transformation, φ is a (1, 1)-tensor field, ξ is a characteristic vector field
and η is a paracontact form on M2m+1.
Let g be a pseudo-Riemannian metric such that

g (φP1, φP2) = −g(P1, P2) + η(P1)η(P2), P1, P2 ∈ Γ
(
TM2m+1) (2.2)

then g is compatible with (φ, ξ, η)-structure. Here signature of g is (m + 1,m) and η(P1) =
g (P1, ξ), for any vector field P1 ∈ Γ

(
TM2m+1

)
.

Definition 2.2. The manifold M2m+1 is called (2m+ 1)-dimensional almost paracontact metric
(briefly, a.p.c.m.) manifold if it is furnished with (φ, ξ, η, g)-structure. Further, M2m+1 is known
as paracontact metric (briefly, PCM) manifold if it satisfies Ψ = dη, where Ψ is the fundamental
2-form given by Ψ(P1, P2) = g(P1, φP2), P1, P2 ∈ Γ

(
TM2m+1

)
.

Also, for manifold M2m+1 we can find φ-basis which is a local orthonormal basis {Xi, φXi, ξ}
such that g (Xi, Xi) = 1 and g (φXi, φXi) = −1, i = 1, · · · ,m.

2.1 Normality

On the product manifold M2m+1 ×R, J (almost paracomplex structure) is given as:

J

(
P1, ρ

d

dt

)
=

(
φP1 + ρ ξ; η (P1)

d

dt

)
, (2.3)

where
(
P1, ρ

d
dt

)
is a tangent vector field, t is the standard Cartesian coordinate on R and ρ is a

smooth function on M2m+1 ×R.
The almost paracontact structure is normal if paracomplex structure is integrable and for the
integrability of paracomplex structure Nijenhuis tensor has to be vanish. So, the condition for
normality of paracontact structure is given as:

Nφ (P1, P2)− 2dη (P1, P2) ξ = 0, (2.4)

where Nφ (P1, P2) is Nijenhuis tensor of φ which is given as follows:

Nφ (P1, P2) = [φP1, φP2]− φ[φP1, P2]− φ[P1, φP2] + φ2[P1, P2], (2.5)

for any vector fields P1, P2 ∈ Γ
(
TM2m+1

)
.

Following [5], we present some results related to this case. For a.p.c.m. 3-manifold M3, we find
that

(∇P1φ)P2 = g(φ∇P1ξ, P2) ξ − η(P2)φ∇P1ξ, P1, P2 ∈ Γ(TM3). (2.6)

Proposition 2.3. For 3-dimensional a.p.c.m. manifold M3, following conditions are equivalent:

(i) M3 is normal,

(ii) ∃ smooth functions α and β on M3 such that

(∇P1φ)P2 = β (g (φP1, P2) ξ − η (P2)φP1) + α (g (P1, P2) ξ − η (P2)P1) , (2.7)



Some results on almost η-Ricci solitons 135

(iii) ∃ smooth functions α and β on M3 such that

∇P1ξ = β (P1 − η (P1) ξ) + αφP1, (2.8)

for any vector fields P1, P2 ∈ Γ(TM3). Also on M3, α and β are defined as:

α =
1
2

trace {P1 → φ∇P1ξ} , β =
1
2

trace {P1 → ∇P1ξ} . (2.9)

Next, we give subclasses of normal a.p.c.m. 3-manifold M3:

Definition 2.4 (β-paraKenmotsu Manifold). The normal a.p.c.m. 3-manifold M3 is called β-
paraKenmotsu metric 3-manifold (denoted by K3) if we take α = 0 and β = (non−zero) constant
in Proposition 2.3. Also, if β = 1 then M3 is called paraKenmotsu metric 3-manifold.

Example 2.5. Let K3 := R3
1 with the structure (φ, ξ, η), where ξ = U3, 1-form η = dz, and φ is

given by: φU1 = U2, φU2 = U1, φU3 = 0 ( (x, y, z), being the standard Cartesian coordinates
and U1 =

∂
∂x , U2 =

∂
∂y , U3 =

∂
∂z ) and g = −ezdx2 + ezdy2 + η⊗ η. Then K3 with the structure

(φ, ξ, η, g) becomes a normal a.p.c.m. 3-manifold M3.
Next, we find the coefficients of Levi-Civita connection as:

∇U1U1 =
1
2
ezU3, ∇U2U2 = −

1
2
ezU3, ∇U3U3 = ∇U1U2 = ∇U2U1 = 0,

∇U1U3 = ∇U3U1 =
1
2
U1, ∇U2U3 = ∇U3U2 =

1
2
U2. (2.10)

Using Eqs. (2.7) and (2.10), we have α = 0 and β = 1
2 .

Similarly, we can also define paracosymplectic metric 3-manifold C3 and paraSasakian metric
3-manifold Q3 using Proposition 2.3.

2.2 Curvature Properties

The curvature tensor R on a manifold M2m+1 with pseudo-Riemannian metric g is defined as:

R (P1, P2)P3 = ∇P1∇P2P3 −∇P2∇P1P3 −∇[P1,P2]P3, (2.11)

where P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Next, we recall some results from [3] for later use.

Lemma 2.6. For normal a.p.c.m. 3-manifold M3, we have

R (P1, P2) ξ =
{
(P1 β) +

(
α2 + β2

)
η (P1)

}
φ2P2 −

{
(P2 β) +

(
α2 + β2

)
η (P2)

}
φ2P1

+ {(P1α) + 2αβ η (P1)}φP2 − {(P2 α) + 2αβ η (P2)}φP1, (2.12)

S (P2, ξ) =− (P2 β) + (φP2)α−
{
(ξ β) + 2

(
β2 + β2

)}
η (P2) , (2.13)

S (P1, P2) =
{τ

2
+ (ξβ) +

(
α2 + β2

)}
g (P1, P2)− {η (P2) (P1β) + η (P1) (P2β)}

−
{τ

2
+ (ξβ) + 3

(
α2 + β2

)}
η (P1) η (P2) + {η (P2) (φP1)α+ η (P1) (φP2)α} (2.14)

for any vector fields P1, P2 ∈ Γ
(
TM3

)
, τ = trace(S) (scalar curvature of M3) and the functions

α and β are as given in (2.9).

Lemma 2.7. For K3, we have

R (P1, P2)P3 =
(τ

2
+ 2β2

)
{g (P2, P3)P1 − g (P1, P3)P2}

−
(τ

2
+ 3β2

)
{g (P2, P3) η (P1)− g (P1, P3) η (P2)} ξ

+
(τ

2
+ 3β2

)
{η (P1)P2 − η (P2)P1} η (P3) . (2.15)

for any vector fields P1, P2, P3 ∈ Γ
(
T K3

)
.
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Definition 2.8. A manifold M2m+1 with pseudo-Riemannian metric g is called η-Einstein mani-
fold if

S (P1, P2) = a1 g (P1, P2) + a2 η (P1) η (P2) , (2.16)

where a1 and a2 are non-zero functions and η is a 1-form. If a2 = 0, M2m+1 is an Einstein
manifold.

3 Almost η-RS

Consider a pseudo-Riemannian manifold (M2m+1, g), then (g, V, λ, µ) is called an almost η-RS
on M2m+1 if it satisfies:

(£V g + 2S − 2λ g + 2µ η ⊗ η) (P1, P2) = 0, (3.1)

where P1, P2 ∈ Γ
(
TM2m+1

)
, £V -Lie derivative in the direction V and S-Ricci curvature tensor

field of g, η is a 1-form and λ, µ- smooth functions on M2m+1. An almost η-RS on
(
M2m+1, g

)
is expanding if λ is negative, steady if λ is zero or shrinking if λ is positive.
In particular, (g, V, λ, µ) becomes an almost Ricci soliton if µ = 0.

Next, we define potential vector field V of an almost η-RS as V := ξ.

Proposition 3.1. Let M3 be a normal a.p.c.m. 3-manifold and admits an almost η-RS having ξ
as a potential vector field, then its scalar curvature is given as:

scal = 2β + 3λ− µ. (3.2)

Proof. Equation (3.1) can be rewritten as:

S (P1, P2) =−
1
2
£ξg (P1, P2) + λg (P1, P2)− µη (P1) η (P2) (3.3)

=− 1
2
{g (P1,∇P2ξ) + g (∇P1ξ, P2)}+ λg (P1, P2)− µη (P1) η (P2) (3.4)

=− 1
2
{g (αφP1 + β (P1 − η (P1) ξ) , P2) + g (P1, αφP2 + β (P2 − η (P2) ξ))}

+ λg (P1, P2)− µη (P1) η (P2)

=− 1
2
{αg (φP1, P2) + βg (P1, P2) + αg (P1, φP2) + βg (P1, P2)}

+ βη (P1) η (P2) + λg (P1, P2)− µη (P1) η (P2)

S (P1, P2) =βg (φP1, φP2) + λg (P1, P2)− µη (P1) η (P2) . (3.5)

Now, by using equation (3.5) and the definition of scalar curvature we get the required result.

Corollary 3.2. An almost η-RS on normal a.p.c.m. 3-manifold M3 is steady if and only if µ =
2
(
α2 + β2

)
.

Proof. By using equation (3.5) and (2.13), we get

λ = µ− 2
(
α2 + β2) . (3.6)

Thus, (g, ξ, λ, µ) is steady if µ = 2
(
α2 + β2

)
.

Corollary 3.3. An almost Ricci soliton on normal a.p.c.m. 3-manifold M3 is expanding.

Proof. Since µ = 0 for an almost Ricci soliton on M3, then equation (3.6) becomes λ =
−2
(
α2 + β2

)
, which implies λ will always be negative and hence an almost Ricci soliton is

expanding.

Corollary 3.4. If an almost η-RS on normal a.p.c.m. 3-manifold M3 is steady, then the scalar
curvature of M3 is

scal = 2β − 2
(
α2 + β2) . (3.7)
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Proof. Since λ = 0, for a steady almost η-RS. From equation (3.6), we have µ = 2
(
α2 + β2

)
and use these values of λ and µ in equation (3.2) to get the required result.

Consider an almost η-RS on M2m+1 (φ, ξ, η, g) then for any vector fields P1, P2, P3 ∈ Γ
(
TM2m+1

)
,

we have

(∇P1S) (P2, P3) = P1 (S (P2, P3))− S (∇P1P2, P3)− S (P2,∇P1P3) . (3.8)

By substituting the value of S (P1, P2) from equation (3.5), we have

(∇P1S) (P2, P3) =P1 (β g (φP2, φP3) + λ g (P2, P3)− µ η (P2) η (P3))− β g (φ∇P1P2, φP3)

− µ η (∇P1P2) η (P3)− β g (φP2, φ∇P1P3)− µ η (P2) η (∇P1P3) . (3.9)

Definition 3.5 (Ricci symmetric). A manifold M2m+1 with pseudo-Riemannian metric g is called
Ricci symmetric if

(∇P1S) (P2, P3) = 0, (3.10)

for any vector field P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Proposition 3.6. If a normal a.p.c.m. 3-manifold M3 be Ricci symmetric, then

ξ (µ) = ξ (λ) .

Proof. Since the manifold M3 is Ricci symmetric, then by taking P1 = P2 = P3 = ξ in equation
(3.10), we have

(∇ξS) (ξ, ξ) = 0.

Now, by using equations (2.1), (2.8) and (3.9) in above equation we get the required result.

Definition 3.7 (η-recurrent Ricci tensor). A manifold M2m+1 with pseudo-Riemannian metric g
is said to have η-recurrent Ricci tensor if

(∇P1S) (P2, P3) = η (P1)S (P2, P3) , (3.11)

for any vector field P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Proposition 3.8. Let the normal a.p.c.m. 3-manifold M3 having η-recurrent Ricci tensor then

ξ (λ− µ) = −2
(
α2 + β2) . (3.12)

Proof. Since the Ricci tensor is η-recurrent, then by taking P1 = P2 = P3 = ξ in equation
(3.11), we have

(∇ξS) (ξ, ξ) = S (ξ, ξ) .

Now, by using equations (2.1), (2.8), (2.13) and (3.9) in above equation, we get the required
result.

Corollary 3.9. For a β-paraKenmotsu manifold K3 having η-recurrent Ricci tensor, we have
ξ (λ− µ) = −2β2.

Definition 3.10 (Codazzi type Ricci tensor). A manifold M2m+1 with pseudo-Riemannian metric
g is said to have Ricci tensor of Codazzi type if

(∇P2S) (P1, P3) = (∇P1S) (P2, P3) , (3.13)

for any vector field P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Proposition 3.11. Let the normal a.p.c.m. 3-manifold M3 having Codazzi type Ricci tensor, then

P1 (λ− µ) = ξ (λ− µ) η (P1) , (3.14)

for any vector field P1 ∈ Γ
(
TM3

)
.
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Proof. Taking P2 = P3 = ξ in equation (3.13), we have

(∇ξS) (P1, ξ) = (∇P1S) (ξ, ξ) ,

for any vector field P1 ∈ Γ
(
TM3

)
.

Now, by using equations (2.1), (2.8) and (3.9) in above equation we get the required result.

Definition 3.12 (η-parallel Ricci tensor). A manifold M2m+1 with pseudo-Riemannian metric g
is said to have η-parallel Ricci tensor if

(∇P1S) (φP2, φP3) = 0, (3.15)

for any vector field P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Proposition 3.13. Let the normal a.p.c.m. 3-manifold M3 having η-parallel Ricci tensor, then

P1 (λ) = P1 (β) , (3.16)

for any vector field P1 ∈ Γ
(
TM3

)
.

Proof. By using equations (2.1), (2.2) and (3.9) in equation (3.15) we get P1 (λ) = P1 (β), for
any vector field P1 ∈ Γ

(
TM3

)
which gives the required result.

Corollary 3.14. For β-paraKenmotsu manifold K3, if the Ricci tensor is η-parallel then the
scalar function λ is locally constant.

Definition 3.15 (Cyclic Ricci tensor). A manifold M2m+1 with pseudo-Riemannian metric g is
said to have cyclic Ricci tensor if

(∇P3S) (P1, P2) + (∇P1S) (P2, P3) + (∇P2S) (P3, P1) = 0, (3.17)

for any vector fields P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Proposition 3.16. Let the normal a.p.c.m. 3-manifold M3 having cyclic Ricci tensor, then

P1 (λ− µ) ξ = 2ξ (µ− λ)P1, (3.18)

for any vector field P1 ∈ Γ
(
TM3

)
.

Proof. Since the Ricci tensor is cyclic, then by taking P2 = P3 = ξ in equation (3.17), we have

(∇ξS) (P1, ξ) + (∇P1S) (ξ, ξ) + (∇ξS) (ξ, P1) = 0.

By using equations (2.1), (2.2) and (3.9) in above equation, we get the required result.

Definition 3.17 (Cyclic η-recurrent Ricci tensor). A manifold M2m+1 with pseudo-Riemannian
metric g is said to have cyclic η-recurrent Ricci tensor if

(∇P1S) (P2, P3) + (∇P2S) (P3, P1) + (∇P3S) (P1, P2) =η (P1)S (P2, P3) + η (P2)S (P3, P1)

+ η (P3)S (P1, P2) , (3.19)

for any vector fields P1, P2, P3 ∈ Γ
(
TM2m+1

)
.

Proposition 3.18. Let the normal a.p.c.m. 3-manifold M3 having cyclic η-recurrent Ricci tensor,
then

P1 (λ− µ) ξ + 2ξ (λ− µ)P1 = −6
(
α2 + β2)P1, (3.20)

for any vector field P1 ∈ Γ
(
TM3

)
.

Proof. Taking P2 = P3 = ξ in equation (3.19), we have

(∇ξS) (P1, ξ) + (∇P1S) (ξ, ξ) + (∇ξS) (ξ, P1) = η (P1)S (ξ, ξ) + 2S (X, ξ) .

By using equations (2.1), (2.8), (2.13) and (3.9), we get the required result.
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Corollary 3.19. For a β-paraKenmotsu manifold K3 having cyclic η-recurrent Ricci tensor, we
have P1 (λ− µ) ξ + 2ξ (λ− µ)P1 = −6β2P1.

Theorem 3.20. Let M3 be a normal a.p.c.m. 3-manifold and consider an almost η-RS on M3. If
V is conformal Killing, then

S (P1, P2) = (−f + λ) g (P1, P2)−
[
2
(
α2 + β2)+ (−f + λ)

]
η (P1) η (P2) , (3.21)

and the manifold M3 is Einstein if and only if λ = f − 2
(
α2 + β2

)
. In this case, we have an

almost Ricci soliton.

Proof. Since V is conformal Killing, then
1
2
£ξ g = fg. Now, using equation (2.13) and (3.3),

we get the required result.

Corollary 3.21. If V is torse forming i.e. ∇P1ξ = fφ2 (P1), then we also get the same result as
previous result.

4 β-paraKenmotsu manifold and almost η-RS

Proposition 4.1. For a β-paraKenmotsu 3-manifold K3, we have

(i) (∇P1φ)P2 = β {g (φP1, P2) ξ − η (P2)φP1},

(ii) ∇P1ξ = β {P1 − η (P1) ξ},

(iii) R (P1, P2) ξ = β2
{
η (P1)φ2P2 − η (P2)φ2P1

}
,

(iv) S (P2, ξ) = −2β2η (P2),

(v) QX2 = −2β2η (P2) ξ,

where P1, P2 ∈ Γ
(
T K3

)
.

Proof. For (i) and (ii) take β (6= 0) a constant and α = 0 in Proposition 2.3.
For (iii) and (iv) take β (6= 0) a constant and α = 0 in Lemma 2.6.
For (v) rewrite (iv) as: g (QX2, ξ) = −2β2η (P2).

Next, we study an almost η-RS on K3 in two cases:

Case 1: When potential vector field V = ξ.

Proof of Theorem 1.1

For K3 with V = ξ, equation (3.1) reduces to

(£ξg + 2S − 2λ g + 2µ η ⊗ η) (P1, P2) = 0. (4.1)

Now, using Proposition 4.1 we have

S (P1, P2) = (λ− β) g (P1, P2) + (β − µ) η (P1) η (P2) . (4.2)

Thus, K3 is a η-Einstein manifold. Take P1 = P2 = ξ and together with Proposition 4.1, we get
λ = µ − 2β2. Also from equation (4.2), we see that if µ = β, then K3 is an Einstein manifold.
Which is the complete proof of Theorem 1.1.

Corollary 4.2. On a β-paraKenmotsu 3-manifold K3 there does not exist Ricci soliton (g, V, λ, µ)
with V = ξ.

Proposition 4.3. Let us consider a β-paraKenmotsu 3-manifold K3. If K3 be a η-Einstein mani-
fold with functions a1 and a2, then K3 admits an almost η-RS having ξ as a potential vector field,
λ = β + a1 and µ = β − a2.
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Proof. Let K3 be a η-Einstein β-paraKenmotsu 3-manifold and V = ξ. Then

S (P1, P2) = a1g (P1, P2) + a2η (P1) η (P2) , (4.3)

where P1, P2 ∈ Γ
(
T K3

)
and a1, a2 are functions on K3.

By using equation (2.6), we get

£ξ g (P1, P2) + 2S (P1, P2)− 2λ g (P1, P2) + 2µ η (P1) η (P2)

= 2 (β + a1 − λ) g (P1, P2) + 2 (a2 + µ− β) η (P1) η (P2) . (4.4)

From equation (4.4) it is obvious that K3 admits an almost η-RS with V = ξ, if

β + a1 − λ = 0 and µ+ a2 − β = 0, (4.5)

which implies

λ = β + a1 and µ = β − a2. (4.6)

This completes the proof.

Proposition 4.4. An almost η-RS on a paraKenmotsu 3-manifold K3 is steady if µ = 2, shrinking
if µ > 2 and expanding if µ < 2.

Proof. From equations (4.3), (4.7) and taking P1 = P2 = ξ, we get

a1 + a2 = −2β2.

Also from equation (4.6), we get

λ = µ− 2β2.

Now for paraKenmotsu 3-manifold, we get

λ = µ− 2,

which gives the required result.

Proposition 4.5. Let us consider a β-paraKenmotsu 3-manifold K3 admitting a steady almost
η-RS, then its scalar curvature is constant.

Proof. By using equation (3.2) we get the required result.

Proposition 4.6. If a paraKenmotsu 3-manifold K3 admitting a steady almost η-RS then K3 has
no metric with positive scalar curvature.

Proof. By using equation (3.2) we get the required result.

Case 2: When potential vector field V ⊥ ξ.

Proof of Theorem 1.2

Consider a β-paraKenmotsu 3-manifold K3 admitting an almost η-RS. Then equation (3.1) can
be rewritten as:

S (P1, P2) = −
1
2
{g (∇P1V, P2) + g (P1,∇P2V )}+ λ g (P1, P2)− µ η (P1) η (P2) . (4.7)

Put P1 = P2 = ξ in the above equation, we get

S (ξ, ξ) = λ− µ.
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Then Proposition 4.1 gives λ = µ− 2β2.
Put P1 = P2 = V in equation (4.7), we get

S (V, V ) = λ = µ− 2β2. (4.8)

Put P1 = P2 = φV in equation (4.7), we get

S (φV, φV ) + g (∇φV V, φV ) = −λ = −µ+ 2β2. (4.9)

As we know in a 3-dimensional pseudo-Riemannian manifold, Weyl curvature tensor vanishes
then

R (P1, P2)P3 =S (P2, P3)P1 − S (P1, P3)P2 + g (P2, P3)SX1

− g (P1, P3)SX2 −
τ

2
{g (P2, P3)P1 − g (P1, P3)P2} ,

for any vector fields P1, P2, P3 ∈ Γ
(
TM3

)
. Which implies

R (P1, ξ) ξ = QP1 −
(

2β2 +
τ

2

)
P1 +

(
4β2 +

τ

2

)
η (P1) ξ, (4.10)

for any vector fields P1, P2, P3 ∈ Γ
(
T K3

)
. Using previous relation and Proposition 4.1, we have

QP1 =
(
β2 +

τ

2

)
P1 +

(
3β2 +

τ

2

)
η (P1) ξ (4.11)

for any vector fields P1, P2, P3 ∈ Γ
(
T K3

)
. This gives the relation Q ◦ φ = φ ◦ Q and then from

equation (4.8) and (4.9), we obtain g (∇φV V, φV ) = 0.
From equation(4.7), we get

div(V ) + τ = 3λ− µ.

By using calculated value of λ, we get the scalar curvature as:

τ = 2µ− 6β2.

Which is the complete proof of Theorem 1.2.

Corollary 4.7. Let a β-paraKenmotsu 3-manifold K3 admits an almost η-RS having potential
vector field orthogonal to ξ and µ = β2, then the scalar curvature of K3 is −3.

Corollary 4.8. Let a paraKenmotsu 3-manifold K3 admits an almost η-RS having potential vec-
tor field orthogonal to ξ, then the scalar curvature of K3 is τ = 2µ− 6.

Corollary 4.9. Let a paraKenmotsu 3-manifold K3 admits an almost Ricci soliton having poten-
tial vector field orthogonal to ξ, then τ = −6, is the scalar curvature of K3.

5 Gradient almost η-RS

In this section, firstly we define gradient and Hessian operators on M2m+1. So, consider a mani-
fold M2m+1 with pseudo-Riemannian metric g and f : M2m+1 −→ R is a smooth function over
M2m+1. Then, the gradient (first order differential operator) ∇ : C1

(
M2m+1

)
−→ Γ

(
TM2m+1

)
of a function f is given as:

g (∇f (x) , P1) = P1f (x) ,

for any vector field P1 ∈ TxM2m+1 and Hessian (covariant derivative of the gradient operator)
of a function f is given as:

∇2f (P1, P2) = P1X2f − (∇P1P2) f,

for any vector fields P1, P2 ∈ Γ
(
TM2m+1

)
.
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Definition 5.1. An almost η-RS is a gradient almost η-RS if V of equation (3.1) is of gradient
type, i.e.. V = grad (f) and satisfies:

(Hess (f) + S − λ g + µ η ⊗ η) (P1, P2) = 0, (5.1)

where P1, P2, P3 ∈ Γ
(
TM2m+1

)
and the Hessian of f is given as: Hess (f) (P1, P2) := g (∇P1ξ, P2).

Theorem 5.2. Let M3 be a normal a.p.c.m. 3-manifold. If a gradient almost η-RS on M3 is
defined by equation (5.1) with ξ := grad (f) and η = df is the g-dual of ξ, then

(∇P1Q)P2 − (∇P2Q)P1 =
{(
d (λ− β) +

(
β µ−

(
α2 + β2

))
df
)
⊗ I − I ⊗ (d (λ− β)

+
(
β µ−

(
α2 + β2

))
df
)
+ (αµ− 2αβ) (df ⊗ φ− φ⊗ df)

+ (df ⊗ dµ− dµ⊗ df)⊗ ξ − (dα⊗ φ− φ⊗ dα)
+ (dβ ⊗ df − df ⊗ dβ)⊗ ξ} (P1, P2) + 2αµ g (P1, φP2) ξ,


(5.2)

for any vector fields P1, P2 ∈ Γ
(
TM3

)
and Q is the Ricci operator given as: g (QX1, P2) =

S (P1, P2).

Proof. Notice that from equation (5.1), we have

∇P1ξ +QP1 − λP1 + µdf (P1)⊗ ξ = 0.

Then

(∇P1Q)P2 =−∇P1∇P2ξ −Q∇P1P2 + P1 (λ)P2 + λ∇P1P2 − P1 (µ) η (P2) ξ − µ g (∇P1P2, ξ) ξ

− µ g (P2,∇P1ξ) ξ − µ η (P2)∇P1ξ.

By further computation and using equation (2.8) in the above relation, we get the required result.

Proposition 5.3. Let us consider a β-paraKenmotsu 3-manifold K3. If a gradient almost η-RS
on K3 is defined by equation (5.1) with ξ := grad (f) and η = df is the g-dual of ξ, then{

(∇P1Q)P2 − (∇P2Q)P1 =
{(
d (λ) +

(
β µ− β2) df)⊗ I − I ⊗ (d (λ) + (β µ− β2) df)

+(df ⊗ dµ− dµ⊗ df)⊗ ξ} (P1, P2) ,

for any vector fields P1, P2 ∈ Γ
(
T K3

)
and Q is the Ricci operator given as: g (QX1, P2) =

S (P1, P2).

Proof. For a β-paraKenmotsu 3-manifold K3, we have α = 0. Then by using this value of α in
equation (5.2), we get the required result.

Proposition 5.4. For a β-paraKenmotsu 3-manifold K3, we have

(∇P1η)P2 =β {g (P1, P2)− η (P1) η (P2)} , (5.3)

R (P1, ξ)P2 =β2 {g (P1, P2) ξ − η (P2)P1} , (5.4)

(£ξg) (P2, P3) = 2β {g (P2, P3)− η (P2) η (P3)} , (5.5)

for any vector fields P1, P2, P3 ∈ Γ
(
T K3

)
.

Proof. Take Y = ξ and Z = Y in equation (2.7), we get (5.3). By using (i) of Proposition 4.1,
we get (5.4). Also we know that

(£ξg) (P2, P3) = g (P2,∇P3ξ) + g (∇P2ξ, P3) . (5.6)

By using (ii) of Proposition 4.1, we get (5.5).

Proposition 5.5. For a β-paraKenmotsu 3-manifold K3, we have

(£ξQ)P2 = −2β
{
QX2 + 2β2P2

}
= (∇ξQ)P2, (5.7)

for any vector field P2 ∈ Γ
(
T K3

)
.
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Proof. Taking covariant derivative of equation (5.5) along P1 and using equation (5.3), we get

(∇P1£ξg) (P2, P3) =− 2β2g (P1, P2) η (P3)− 2β2g (P1, P3) η (P2)

+ 4β2η (P1) η (P2) η (P3) .

}
(5.8)

Also from [27], we see that(
£V∇P3g −∇P3£V g −∇[V,P3 ]g

)
(P1, P2) = −{g ((£V∇) (P3, P1) , P2) + g ((£V∇) (P3, P2) , P1)} .

Now by parallelism of metric g and using equation (5.8), we get

g ((£ξ∇) (P1, P2) , P3) + g ((£ξ∇) (P1, P3) , P2) =− 2β2g (P1, P2) η (P3)− 2β2g (P1, P3) η (P2)

+ 4β2η (P1) η (P2) η (P3) .

After further computation, we have

(£ξ∇) (P2, P3) = −2β2g (P2, P3) ξ + 2β2η (P2) η (P3) ξ.

Taking covariant derivative of above equation and using (ii) of Proposition 4.1, we have

(∇P1£ξ∇) (P2, P3) =− 2β3g (P2, P3)P1 + 2β3g (P2, P3) η (P1) ξ

+ 2β3g (P1, P2) η (P3) ξ + 2β3g (P1, P3) η (P2) ξ

− 6β3η (P1) η (P2) η (P3) ξ + 2β3η (P2) η (P3)P1.

 (5.9)

From [27], we also have the following formula

(£VR) (P1, P2)P3 = (∇P1£V∇) (P2, P3)− (∇P2£V∇) (P1, P3) . (5.10)

Using equation (5.9) in the above formula, we have

(£ξR) (P1, P2)P3 =− 2β3g (P2, P3)P1 + 2β3g (P1, P3)P2

− 2β3η (P1) η (P3)P2 + 2β3η (P2) η (P3)P1.

Now contracting above equation over P1

(£ξS) (P2, P3) = −4β3g (P2, P3) + 4β3η (P2) η (P3) . (5.11)

Now, Lie derivative of S (P2, P3) = g (QP2, P3) gives

(£ξS) (P2, P3) = (£ξg) (QP2, P3) + g ((£ξQ)P2, P3) . (5.12)

Replacing P2 by QP2 in equation (5.5) and using (v) of Propositon 4.1, we get

(£ξg) (QP2, P3) = 2β
{
g (QP2, P3) + 2β2η (P2) η (P3)

}
. (5.13)

By using equation (5.12) and (5.13), equation (5.11) becomes

(£ξQ)P2 = −2β
{
QX2 + 2β2P2

}
. (5.14)

Also, it is well known that

(£ξQ)P2 =£ξQX2 −Q (£ξP2)

=∇ξQP2 −∇QX2ξ −Q (∇ξP2) +Q (∇P2ξ)

= (∇ξQ)P2 −∇QX2ξ +Q (∇P2ξ) .

From (ii) and (v) of Proposition 4.1, we get

(£ξQ)P2 = (∇ξQ)P2. (5.15)

Thus after combining equation (5.14) and (5.15), we get the required result.
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Proposition 5.6. Let us consider a β-paraKenmotsu 3-manifold K3 admitting a gradient almost
η-RS, then

R (P1, P2)Df = (∇P1Q)P2− (∇P2Q)P1 + P2 (λ)P1 − P1 (λ)P2 + P1 (µ) η (P2) ξ

− P2 (µ) η (P1) ξ + βµ (η (P2)P1 − η (P1)P2) , (5.16)

for any P1, P2 ∈ Γ
(
T K3

)
.

Proof. From definition 5.1, we have

∇P1Df = QX1 − λP1 + µη (P1) ξ.

Now using the above equation and equation (2.11) we get the required result.

Proof of Theorem 1.3

Replacing P2 by ξ in equation (5.16) and using Proposition 5.5, we get

R (P1, ξ)Df = 2β3P1 + βQP1 + ξ (λ)P1 − P1 (λ) ξ + P1 (µ) ξ

− ξ (µ) η (P1) ξ + βµ (P1 − η (P1) ξ) .

By using equation (5.4), the above equation becomes

g
(
P1, β

2Df + dλ−Dµ+ ξ (µ) ξ
)
ξ =β

(
QP1 + 2β2P1

)
+
{
β2ξf + ξ (λ)

}
P1

+ βµ (P1 − η (P1) ξ) . (5.17)

Taking the inner product of above equation with ξ and using (v) of Proposition 4.1, we get

β2Df +Dλ−Dµ+ ξ (µ) ξ =
{
β2ξf + ξ (λ)

}
ξ.

Using this in equation (5.17), we get

S (P1, P2) = −
{

2β2 + β2ξf + ξ (λ) + βµ
}
g (P1, P2) +

{
β2ξf + ξ (λ) + βµ

}
η (P1) η (P2) . (5.18)

Now, consider a local orthonormal basis {ei : i = 1, ..., 3} of tangent space at each point of K3.
Taking the inner product of equation (5.16) with P3 and then setting P1 = P3 = ei and summing
over i : 1 ≤ i ≤ 3, we get

S (P2, Df) =
3∑
i=1

{g ((∇eiQ)P2, ei)− g ((∇P2Q) ei, ei)}+ 2X2λ+ 3βµη (P2) . (5.19)

Also, we have from contraction of Bianchi’s second identity divQ = 1
2Dτ and the above equa-

tion becomes

S (P2, Df) = −
1
2
P2τ + 2X2λ+ 3βµη (P2) . (5.20)

Replacing P2 −→ ξ, and using (v) of Proposition 4.1, we have

ξτ = 4β2ξf + 4ξλ+ 6βµ. (5.21)

Again, tracing (v) of Proposition 4.1, we have

ξτ = −2β
(
τ + 6β2) . (5.22)

After comparing equation (5.21) and (5.22), we get

β2ξf + ξλ = −β
2
(
τ + 6β2)− 3

2
βµ, (5.23)

using this in equation (5.18), we get

S (P1, P2) =

{
−2β2 +

1
2
βτ + 3β3 +

1
2
βµ

}
g (P1, P2)−

{
1
2
βτ + 3β3 +

1
2
βµ

}
η (P1) η (P2) . (5.24)

Thus, K3 is a η-Einstein manifold. Which is the complete proof of Theorem 1.3.
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Corollary 5.7. Consider a β-paraKenmotsu 3-manifold K3 admitting a gradient almost Ricci
soliton. If ξ leaves the scalar curvature invariant, then it is an Einstein manifold.

Proof. Since µ = 0, for a gradient almost Ricci soliton. If ξ leaves the scalar curvature invariant
i.e. ξτ = 0 then τ = −6β2. Now, by using this value of τ in equation (5.24), we get the required
result.

6 Examples

For a β-paraKenmotsu manifold K3 defined in Example 2.5 we find Riemann curvature tensor
field and the Ricci curvature tensor field by using equation (2.10) and (2.11) and are given as:

R (U1, U2)U3 =R (U1, U3)U2 = R (U2, U3)U1 = 0, R (U1, U3)U3 = −
1
4
U1,

−R (U1, U2)U2 =R (U2, U1)U2 =
1
4
ezU1, −R (U1, U2)U1 = R (U2, U1)U1 =

1
4
ezU2,

−R (U1, U3)U1 =R (U2, U3)U2 =
1
4
ezU3, R (U2, U3)U3 = −

1
4
U2,


S (U1, U1) =

1
2
ez, S (U2, U2) = −

1
2
ez, S (U3, U3) = −

1
2
.

Therefore,

(i) For λ = 1
2 (1 + ez) and µ = 1

2 (2 + ez), (g, ξ, λ, µ) defines an almost η-RS on K3.

(ii) For λ = 1
2 (1 + ez) and µ = 1

2 (2 + ez), (g, grad (f) , λ, µ) defines a gradient almost η-RS
on K3.
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Enstitüsü Dergisi 11(2) (2018), 237-242.

[11] J. T. Cho: Almost contact 3-manifolds and Ricci solitons, International Journal of Geometric Methods in
Modern Physics 10(1) (2013), 1220022.

[12] B. Y. Chen: Some results on concircular vector fields and their applications to Ricci solitons Bull. Korean
Math. Soc 52(5) (2015), 1535-1547.

[13] G. Perelman: The entropy formula for the Ricci flow and its geometric applications, arXiv preprint
math/0211159 (2002).



146 Sachin Kumar Srivastava, Kanika Sood and Khushbu Srivastava

[14] R. Sharma and A. Ghosh: Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Inter-
national Journal of Geometric Methods in Modern Physics 8(1) (2011), 149-154.

[15] M. Turan, U. C. De and A. Yildiz: Ricci solitons and gradient Ricci solitons in three-dimensional trans-
Sasakian manifolds, Filomat 26(2) (2012), 363-370.

[16] M. Crasmareanu: A new approach to gradient Ricci solitons and generalizations, Filomat 32(9) (2018),
3337-3346.

[17] A. Ghosh: Kenmotsu 3-metric as a Ricci soliton, Chaos, Solitons and Fractals 44(8) (2011), 647-650.

[18] B. Chow and D. Knopf: The Ricci Flow: An Introduction: An Introduction, Vol. 1. American Mathemati-
cal Soc., (2004).

[19] D. M. Naik and V. Venkatesha: η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds,
International Journal of Geometric Methods in Modern Physics 16(9) (2019): 1950134.

[20] Y. Wang and L. Ximin: Ricci solitons on three-dimensional η-Einstein almost Kenmotsu manifolds, Tai-
wanese Journal of Mathematics 19(1) (2015), 91-100.

[21] G. Calvaruso and A. Perrone: Ricci solitons in three-dimensional paracontact geometry, Journal of Ge-
ometry and Physics 98 (2015), 1-12.

[22] J. T. Cho and M. Kimura: Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathe-
matical Journal, Second Series 61(2) (2009), 205-212.

[23] U. C. De and K. Mandal: Ricci almost solitons and gradient Ricci almost solitons in (k, µ)-paracontact
geometry, Boletim da Sociedade Paranaense de Matemática 37(3) (2019), 119-130.

[24] D. M. Naik and V. Venkatesha: η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds,
International Journal of Geometric Methods in Modern Physics 16(9) (2019), 1950134.

[25] A. M. Blaga: Almost η-Ricci solitons in (LCS)n-manifolds, Bulletin of the Belgian Mathematical
Society-Simon Stevin 25(5) (2018), 641-653.

[26] A. M. Blaga: Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Appli-
cations 20(1) (2015), 1-13.

[27] K. Yano: Integral formulas in Riemannian geometry, Pure and Applied Mathematics,Vol.1 Marcel Dekker,
(1970).

Author information
Sachin Kumar Srivastava, Srinivasa Ramanujan Department of Mathematics, Central University of Himachal
Pradesh, Dharamshala-176215, Himachal Pradesh, INDIA.
E-mail: sachin@cuhimachal.ac.in

Kanika Sood, Srinivasa Ramanujan Department of Mathematics, Central University of Himachal Pradesh,
Dharamshala-176215, Himachal Pradesh, INDIA.
E-mail: soodkanika1212@gmail.com

Khushbu Srivastava, Srinivasa Ramanujan Department of Mathematics, Central University of Himachal
Pradesh, Dharamshala-176215, Himachal Pradesh, INDIA.
E-mail: ksriddu22@gmail.com

Received: October 2, 2021.

Accepted: December 23, 2021.


	1 Introduction
	2 Priliminaries
	2.1 Normality
	2.2 Curvature Properties

	3 Almost -RS
	4 -paraKenmotsu manifold and almost -RS
	5 Gradient almost -RS
	6 Examples

