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Abstract: In this paper, an upper bound for the perfect Italian domination number of the
cartesian product of any two graphs is obtained and the exact value of this parameter for carte-
sian product of some special graphs are obtained. We have also proved that for any two positive
integers a, b there exists a graph G and an induced subgraph H of G such that γpI (G) = a and
γpI (H) = b. Relationship of the perfect Italian domination number with the Roman domination
number and the perfect domination number of a graph G are obtained and the corresponding re-
alization problems are also solved. We have also obtained the perfect Italian domination number
of the Mycielskian of a graph in terms of the perfect domination number of the graph. Some
open problems related to this parameters are also included.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). If there is no ambiguity in
the choice of G, then we write V (G) and E(G) as V and E respectively. A subset S ⊆ V (G)
of vertices is called a dominating set if every v ∈ V (G) is either an element of S or is adjacent
to an element of S [12]. The domination number, γ(G) is the minimum cardinality of a dom-
inating set of G. A dominating set S is a perfect dominating set if |N(v)

⋂
S| = 1 for each

v ∈ V −S, where N(v) is the collection of all vertices that are adjacent to the vertex v. The per-
fect domination number, γp(G) is the minimum cardinality of a perfect dominating set ofG [12].

The weight of a function f defined on the vertex set V of a graph G, f(V ) is
∑

u∈V f(u).
A map f : V (G) → {0, 1, 2} is a Roman dominating function for a graph G if for every vertex
v with f(v) = 0, there exists at least one vertex u ∈ N(v) such that f(u) = 2. The minimum
weight of a Roman dominating function on G is called the Roman domination number of G,
γR(G) [4].

An Italian dominating function, of a graph G is a function f : V (G) → {0, 1, 2} satisfying
the condition that for every v ∈ V (G) with f(v) = 0,

∑
u∈N(v) f(u) ≥ 2, i.e., either v is adjacent

to a vertex u with f(u) = 2 or to at least two vertices x and y with f(x) = f(y) = 1. The Italian
domination number of G, γI(G) is the minimum weight of an Italian dominating function on G
[10].

A function f : V (G) → {0, 1, 2} is a perfect Italian dominating function (abbreviated as
PID-function) on G if for every vertex v ∈ V (G) with f(v) = 0,

∑
u∈N(v) f(u) = 2. The

perfect Italian domination number of G, γpI (G), is the minimum weight of a PID-function of G.
A PID-function of G with weight γpI (G) is called a γpI (G)-function of G [11].

We also denote a function f : V (G)→ {0, 1, 2} as f = (V f
0 , V

f
1 , V

f
2 ) or simply (V0, V1, V2),

where Vi is the set of all vertices which are assigned the value i for i = 0, 1, 2. For any
subgraph H of G, the sum of the weights of the vertices of H is denoted by f(H). i.e.,
f(H) =

∑
u∈V (H) f(u). In [9] the authors characterize the graphs G with γpI (G) equal to 2
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and 3 and determined the exact value of the parameter for several simple structured graphs. It
is also proved that it is NP-complete to decide whether a given bipartite graph admits a perfect
Italian dominating function of weight k. The perfect Italian domination number of Sieriński
graphs and generalized Sierpiński graphs are studied in [8] and [7] respectively.

For disjoint graphs G and H , the join G + H has vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)} [12]. The Cartesian product of two graphs
G and H , G�H has vertex V (G) × V (H) and two vertices (u1, v1) and (u2, v2) are adjacent if
either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G) [5]. It is a simple observation that
G�H can be partitioned as |V (H)| copies of G and |V (G)| copies of H .

The Mycielskian of a graph G, M(G) is the graph with vertex set V (G)∪V ′(G)∪{w} where
V ′(G) = {ui : vi ∈ V (G)} and edge set E(G) ∪ {viuj : vivj ∈ E(G)} ∪ {wui : ui ∈ V ′(G)}.
The double Roman domination number and the Italian domination number of the Mycielskian
of a graph have been studied in [2] and [6].

The following observations are simple.

Observation 1. For a graph with no edge and n vertices, γpI (G) = n.

Observation 2. For any complete bipartite graph Kp,q,

γpI (Kp,q) =

{
4, p, q ≥ 3,
2, otherwise.

Observation 3. For complete graph Km, γ
p
I (Km) = 2.

Observation 4. For every graph G, γ(G) ≤ γI(G) ≤ γpI (G).

Observation 5. Let G be a graph. γpI (G) = 2 if and only if G = H1 ∨ H2 where H1 =
K1,K2 or 2K1.

Proof. If γpI (G) = 2, in a PID-function of G, either a vertex v is assigned the value 2 and all
the remaining vertices are adjacent to v or two vertices v and w are assigned the value 1 and all
the remaining vertices are adjacent to both v and w. The adjacency between v and w is optional.
Therefore, G is K1 ∨H2, K2 ∨H2 or 2K1 ∨H2. The converse is a simple observation.

All notations and terminology not mentioned here are from [3].

2 Cartesian Product

In this section, we have obtained an upper bound for the Cartesian product of two graphs in terms
of the original graph. Exact values for some special classes are also obtained.

Theorem 2.1. For any graphs G and H

γpI (G�H) ≤ min{|V (H)|γpI (G), |V (G)|γ
p
I (H)}.

Proof. Let g be γpI -function of G. Let f : V (G) × V (H) → {0, 1, 2} be γpI -function of G�H
defined by f(u, v) = g(u), for every u ∈ V (G) and v ∈ V (H). Then a vertex (u, v) has weight
zero, then it has neighbors with weight exactly two and all other vertices which are adjacent to
(u, v) has weight zero. Therefore, f is a γpI -function, and γpI (G�H) ≤ |V (H)|γpI (G). Using the
same arguments we can prove that γpI (G�H) ≤ |V (G)|γpI (H). Therefore,

γpI (G�H) ≤ min{|V (H)|γpI (G), |V (G)|γ
p
I (H)}.
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There are examples of pairs of graphs for which equality and strict inequality of the above
theorem are attained. For instance, let G = P4 and H = P2. Then γpI (G�H) = 4 < 6 =
min{|V (H)|γpI (G), |V (G)|γ

p
I (H)} and let G = K1,3 and H = P3. Then γpI (G�H) = 6 =

min{|V (H)|γpI (G), |V (G)|γ
p
I (H)}.

The following theorem proved in [1] is used in the proof of Theorem 2.3

Theorem 2.2. ([1].) γI(P2�Pn) = n.

Theorem 2.3.

γpI (P2�Pn) =

{
n+ 1; if n = 1, 3, 5
n; otherwise.

Proof. Let f = (V0, V1, V2) be the γpI function of P2�Pn. Let u1, u2, u3, ..., un be the vertices of
the first copy of Pn and v1, v2, v3, ..., vn be the vertices of the second copy of Pn. We know that
γI(P2�Pn) = n and by observation 4, γI(G) ≤ γpI (G). Therefore, γpI (P2�Pn) ≥ n.

When n = 2, P2�Pn is C4 and γpI (C4) = 2.

When n = 3, define f as follows.

f(u) =


2; u = v3,

1; u = u1, v2,

0; otherwise.

Then γpI (P2�Pn) = 4.

When n = 4, define f as follows.

f(u) =

{
1; u = u2, u3, v1, v4,

0; otherwise.

Then γpI (P2�Pn) = 4.

When n = 5, define f as follows.

f(u) =


2; u = u5

1; u = u1, u4, v2, v3,

0; otherwise.

Then γpI (P2�Pn) = 6.

When n = 6, define f as follows.

f(u) =

{
1; u = u2, u3, u6, v1, v4, v5,

0; otherwise.

Then γpI (P2�Pn) = 6.

When n ≥ 7, and n is odd, define f as follows.

f(u) =


2; u = uj , j ≡ 4(mod6)
1; u = uj , j ≡ 1(mod6),

u = vj , j ≡ 0(mod2);
0; otherwise.
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When n is even, define f as follows

f(u) =


1; u = uj , j ≡ 0, 1(mod4),

u = vj , j ≡ 2, 3(mod4);
0; otherwise.

Clearly, in each case, f is a γpI -function and f(V ) = n. Hence the theorem.

Theorem 2.4. If m and n are positive integers then

γpI (Km�Kn) =

{
n; if m = n

min{2m, 2n}; otherwise.

Proof. Let f = (V0, V1, V2) be the γpI -function of Km�Kn. As we have already mentioned in
the introduction Km�Kn can be viewed as m rows of Kn and n columns of Km. Let ui,j ,
i = 1, 2, ..m and j = 1, 2, ...n be the vertices of Km�Kn.

Case 1: m = n.

Define f as follows.

f(uij) =

{
1; i = j,

0; otherwise.

Then γpI (Kn�Kn) ≤ n.

Claim: Exactly one vertex in each copy of Kn has weight 1.

If possible assume that there exists a copy of Kn in which all vertices have weight 0. Then
these vertices are dominated by vertices from corresponding columns. Then each column should
have weight 2, i.e., f(V ) = 2n > n.

If possible assume that there exist a copy ofKn which has weight at least 2. Then either there
is a vertex with weight 2 or two vertices with weight 1 each in that row.

Case (a): Let uij and uik be the two vertices with weight 1.

Then in the ith row either all other vertices have weight 1 or all other vertices have weight 0.
If all other vertices are assigned zero then vertices in the corresponding column is zero. In order
to dominate these vertices we have to assign weight 2 in each row. Then f(V ) = 2n > n. If all
other vertices are assigned weight 1, then to dominate any vertex with weight 0 in any other row
we have to assign a vertex with weight 1 in each row. Then f(V ) = 2n− 1 > n.

Case(b): Let uij be a vertex in ith row that has weight 2.

Similar to case(a), we can prove that, in this case also f(V ) = 2n > n.
Therefore, weight of each row is one and hence, γpI (Kn�Kn) = n.

Case 2: m 6= n.

Without loss of generality, let m < n. Define f as follows.

f(uij) =

{
2; i = 1, 2, ...m and j = 1,
0; otherwise.

Then γpI (Km�Kn) ≤ 2m = min{2m, 2n}.
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If for every γpI -function f ,
∑n

j=1 f(uij) = 2, for each i, then γpI (Km�Kn) = 2m. Therefore,
assume that there exists a γpI -function f such that

∑n
j=1 f(uij) < 2 for some i = k. Therefore,∑n

j=1 f(ukj) = 0 or 1.

If
∑n

j=1 f(ukj) = 0 then to dominate ukj for j = 1, 2, ...n,
∑⋃

i=1 f(uij) = 2 which implies
f(V ) = 2n > 2m, which is a contradiction to the fact that f is a γpI -function.

If
∑n

j=1 f(ukj) = 1 then there exists l such that f(ukj) = 0, if j 6= l and f(ukl) = 1. But then
to dominate ukj , j 6= l,

∑m
i=1 f(uij) = 1. i.e., exactly one vertex in each column has weight

1 and all other vertices have weight 0. But number of rows is less than number of columns.
Therefore, there are more than one vertex with weight 1 in at least one row, say i = k

′
. But, then∑n

j=1 f(uk′ j) = 2 or n. If
∑n

j=1 f(uk′ j) = 2 then exactly two vertices in the (k
′
)
th

row have
weight 1 and all others have weight 0. Also, the column containing this 0’s must be full of 0’s.
But this contradicts the fact that

∑m
i=1 f(uij) = 1, for all j 6= l. Therefore,

∑n
j=1 f(uk′ j) = n.

But then f(V ) = n+m− 1 ≥ m+ 1 +m− 1 (since, n ≥ m+ 1) = 2m.

Therefore, if m 6= n then γpI (Km�Kn) = 2m, where m < n.

3 Realization problems

Theorem 3.1. Given any two positive integers a, b ≥ 3, there exist a graph G and induced
subgraph H of G such that γpI (G) = a and γpI (H) = b.

Proof. We consider the following three cases.
Case 1: b ≤ a.

Let G = P2a−1 and H = P2b−1. Then γpI (G) = d
2(a−1)+1

2 e = a, and γpI (H) = d 2(b−1)+1
2 e =

b.

Case 2: b > a.

Let v1, v2, ...v2b−1 be a path on 2b − 1 vertices. Construct G as follows. Let u and v be
two vertices adjacent to v2a−3, v2a−2, ...v2b−1 and let v2a−4 be adjacent to v alone. Clearly,
γpI (G) = d

2a−5+1
2 e+ 2 = a. Also H = P2b−1 is an induced subgraph and γpI (H) = b.

Lemma 3.2. For any graph G, γR(G) ≤ 2γpI (G)− 1.

Proof. Let f = (V f
0 , V

f
1 , V

f
2 ) be a γpI -function of G. Let u ∈ V f

1 . Define g = (V f
0 , u, V

f
1 ∪V

f
2 −

u). Since every vertex in V f
0 is adjacent to exactly one vertex in V f

2 or two vertices in V f
1 , in

g every vertex in V g
0 will have at least one neighbor with weight 2. Therefore, this assignment

gives a Roman dominating function. Now g(V ) = 2(|V f
1 ∪ V

f
2 |)− 1 ≤ 2γpI (G)− 1. Therefore,

γR(G) ≤ 2γpI (G)− 1.

If γR(G) = 1, G is K1, and γpI (G) = 1 and vice versa. Similarly, if γR(G) = 2 then G has a
universal vertex and γpI (G) = 2, but the converse is not true. If γR(G) = 3 and γpI (G) = 2, then
let G = K2,n.

Theorem 3.3. Given a, b ≥ 3 such that a ≤ 2b − 1, then there exists a graph G such that
γR(G) = a and γpI (G) = b.

Proof. We consider the following cases.

Case a: a ≥ 3, b ≥ a+ 1 and a is odd.

ConsiderKc
p∨Pb−3,where p is arbitrarily large. Attach a vertex u to every vertex ofKc

p∨Pb−3
and a pendent vertex v to an end vertex of Pb−3. Then γR(G) = 3 where γR-function f can be
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defined as f(u) = 2, f(v) = 1 and f(vi) = 0 for all other vertices. Also, γpI (G) = b where γpI -
function g can be defined as g(u) = 2, g(v) = 1 and all the vertices of Pb−3 has weight 1. If we
attach a P3 to the vertex u by an edge then γR(G) = 3+ 2 = 5 and γpI (G) = b+ 2. Similarly, by
attaching P3k to the already attached P3, we can get γR(G) = 3+2k and γpI (G) = b+2k, b > a.

Case b: a ≥ 4, b ≥ a+ 1 and a is even.

ConsiderKc
p∨Pb−4,where p is arbitrarily large. Attach a vertex u to every vertex ofKc

p∨Pb−4
and attach both the vertices p and q of K2 to an end vertex of Pb−4. Then γR(G) = 4, where
γR-function f can be defined as f(u) = 2 and f(p) = f(q) = 1. Also, γpI (G) = b, where
γpI -function g can be defined as g(u) = 2, g(p) = g(q) = 1 and all the vertices of Pb−4 has
weight 1. Attach a P3 with u by an edge then γR(G) = 4 + 2 and γpI (G) = b+ 2 . Similarly, by
attaching P3k as in the previous case we can get γR(G) = 4 + 2k and γpI (G) = b+ 2k, b > a.

Case c: a = b and a is odd.

Consider P2a−1. Let v1, v2, v3, ..., v2a−1 be the vertices of P2a−1. Let u be a vertex which is
attached to v2, v4, v6, ...v2a−2 and also v1 and v2a−1. Then γR(G) = a, where γR-function f can
be defined as f(u) = 2, f(v3) = f(v5) = f(v7) = ... = f(v2a−3) = 1, f(v) = 0, for all other
vertices and γpI (G) = a, where γpI -function g can be defined as g(v1) = g(v3) = g(v5) = ... =
g(v2a−1) = 1, g(v) = 0, for all other vertices. In particular, when a = 5 the graph is given in
Figure 1.

Figure 1. A graph with a = b = 5

Similarly, we can construct all graphs with γR(G) = γpI (G) when γR(G) is odd. So we have
constructed all graphs with a ≤ b.

Case d: a > b.

Let G be the graph constructed as follows. Let v1, v2, , ..., vb be a set of independent vertices.
Corresponding to every pair (vi, vj), i 6= j let uij be a vertex adjacent to vi and vj alone. Then
γpI (G) = b, where f(vi) = 1, for all i = 1, 2, 3, ..., b and f(uij) = 0, for all i, j ∈ {1, 2, 3, ..b}
and i 6= j is a γpI -function of G. But γR(G) = 2b− 1, where g(vi) = 2, for i = 1, 2, 3, ..., b− 1
and g(vb) = 1 is a γR-function. In particular, when a = 7 and b = 4, the graph is given in Figure
2.

Figure 2. A graph with a = 7 and b = 4
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Now, if we delete one vertex from the bC2 vertices, γpI (G) will not change, whereas γR(G)
reduces by 1. (Note that h(vk) = 2 for all k ∈ {1, 2, 3, ..., b} \ {i} and h(vi) = 1 is a γR(G)-
function of G). Proceeding like this we can reduce γR(G) up to γpI + 1. Hence the theorem.

4 Relation with perfect domination number

In this section, we study the relationship between perfect Italian domination number and perfect
domination number of a graph. The following are simple observations.

Observation 6: γpI (G) ≤ 2γp(G).

Proof. Let P be a γp-set of G. Then

f(v) =

{
2; if v ∈ P,
0; otherwise.

is a PID-function. Therefore, γpI (G) ≤ 2γp(G).

Observation 7: If there exists a γpI -function of G such that V1 = φ then γpI (G) = 2γp(G).

Proof. If there exists a γpI -function of G such that V1 = φ, then the vertices which are assigned
the value 2 forms a γp-set. Therefore, γp(G) ≤ 1

2γ
p
I (G). Hence, γpI (G) ≥ 2γp(G) and by

observation 6, γpI (G) = 2γp(G).

We know that the Italian domination number of a graph G lies between γ(G) and 2γ(G).
Here we have proved that γpI (G) ≤ 2γp(G). It is most expected that γp(G) serves as a lower
bound for γpI (G). But this is not true and γpI (G) can be arbitrarily smaller than γp(G). The
following theorem settles the corresponding realization problem.

Theorem 4.1. Given any two positive integers a, and b such that b ≤ 2a there exists a graph G
such that γp(G) = a and γpI (G) = b.

Proof. Let a and b be any two positive integers such that b ≤ 2a.

Case 1: a ≤ b ≤ 2a− 1.

Consider k copies of P5, say vi1vi2vi3vi4vi5 for i = 1, 2, ...k, where vi1 = vj1, for all
i, j ∈ {1, 2, ..., k}. Then γpI (G) = 2k + 1, where γpI -function f can be defined as f(vi1) =
f(vi3) = f(vi5) = 1, for all i = 1, 2, ..., k and 0, otherwise. Also γp(G) = k + 1, where the
perfect dominating set consist of the vertices vi1 and vi4, i = 1, 2, ..., k. If we extend the path
v11v12v13v14v15 to a path of length 2l+ 5, then γpI (G) = 2k + 1 + l and γp(G) = k + 1 + l. Let
k = b− a and l = 2a− b− 1, so that γp(G) = a and γpI = b.

Case 2: b = 2a.

Let G be the graph Pa : v1v2, ..., va, with atleast two pendent vertices attached to every
vi, i = 1, 2, ..., a. Then γpI (G) = 2a and γp(G) = a.

Case 3: a > b.

Subcase (a): b− a is even.

Let G = Kc
2 + kK2. Then γpI (G) = 2, where vertices of Kc

2 is assigned the value 1 and
others 0, is the γpI -function of G. But the γp-set contains all the vertices of the graph and hence
γp(G) = 2k + 2. By attaching a path of length 2l to one of the vertices of Kc

2 , as in case 1, we
get γpI (G) = 2 + l and γp(G) = 2k + 2 + l. Let k = a−b

2 and l = b − 2 so that γp(G) = a and
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γpI = b.

Subcase (b): b− a is odd.

Let G = Kc
2 + (K3 ∪ kK2). Then as in the previous case, γpI (G) = 2 and γp(G) = 2k + 5.

By attaching a path of length 2l to one of the vertices of Kc
2 , we get γpI (G) = 2+ l and γp(G) =

2k + 5 + l. Let k = a−b−3
2 and l = b− 2 so that γp(G) = a and γpI = b.

5 Mycielskian of a graph

In this section, we study the relationship between the perfect Italian domination number of My-
cielskian of a graph and the perfect domination number of the graph.

Theorem 5.1. For a connected graph G, γpI (M(G)) ≤ 2γp(G) + 1.

Proof. Let P be a γp-set of G. Let P ′ = {ui, vi : vi ∈ P} ∪ {w}. Define a PID-function as
follows.

f(v) =

{
1; if v ∈ P ′,

0; otherwise.

Then f(M(G)) = 2γp(G) + 1. Therefore, γpI (M(G)) ≤ 2γp(G) + 1.

Although, many graph classes satisfy equality, it may be noted that there are infinite number
of families of graph which satisfy strict inequality. If we consider the graph G = Kc

2
∨
kK2,

then γpI (M(G)) = 6 and γp(G) = 2k + 2, so that the difference can be arbitrarily large. An
illustration where k = 2 is given in Figure 3, in which f(v3) = f(v4) = f(u1) = f(u2) = 1 and
f(w) = 2 gives a γpI -function of M(G).

Figure 3. M(Kc
2 ∨ 2K2).

Theorem 5.2. IfG has a γpI -function such that V1 = φ, then γpI (M(G)) = γpI (G)+1 = 2γp(G)+
1.

Proof. Assume that G has a γpI -function f such that V f
1 = φ. We can define a perfect Italian

dominating function g : V (M(G))→ {0, 1, 2} as follows.

g(v) =

{
1; for v = vi and ui such that f(vi) = 2 and v = w,

0; otherwise.

Therefore, γpI (M(G)) ≤ γpI (G) + 1.
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To prove the reverse inequality, let f be a PID-function of M(G).

Case 1:
∑n

i=1 f(ui) 6= 2.

Define g : V (G)→ {0, 1, 2} as follows.

g(vi) =


2; if f(vi) + f(ui) = 2,
1; if f(vi) + f(ui) = 1,
0; otherwise.

Note that f(vi) + f(ui) ≤ 2, for every i = 1, 2, ..., n. Then g is a PID-function of G, since
NG(vi) = NM(G)(ui)

⋂
V (G).

Case 2:
∑n

i=1 f(ui) = 2.

In this case, either there exists one vertex ui with f(ui) = 2 or there exist two vertices ui and
uj with f(ui) = f(uj) = 1.

Subcase(a): There exists one vertex ui with f(ui) = 2.

Without loss of generality let f(u1) = 2 and f(ui) = 0, for all i = 2, 3, ..., n. If possible as-
sume that there exists a vi ∈ N(u1) such that f(vi) = 0. But, we have f(ui) = 0 which implies
that

∑
f(N(ui)) = 2 and hence,

∑
f(N(vi)) =

∑
f(N(ui))+f(u1)−f(w) = 2. This implies,

f(w) = 2. Therefore,
∑

x∈N(ui)−{w} f(x) = 0, for all i = 2, 3, ..., n. This implies f(x) = 0
for x ∈ N(vi), for all i = 2, 3, ..., n. But, then v′is are perfect Italian dominated by ui. This
means v1 is a universal vertex of G and also f(M(G)) ≥ 4. But, g(v1) = g(u1) = g(w) = 1
is a PID-function of M(G) with weight 3, which is a contradiction to the fact that f is a γpI -
function of M(G). Therefore, none of the vertices in V (G) is perfect Italian dominated by u1.
Therefore, f restricted to G is a PID-function of G and f(G) ≤ f(M(G)) − 2. Therefore,
γpI (G) ≤ γpI (M(G)) − 2 so that, γpI (M(G)) ≥ γpI (G) + 2, which is a contradiction to the fact
that γpI (M(G)) ≤ γpI (G) + 1. Therefore, such a case dose not exist.

Subcase(b): There exist two vertices ui and uj with f(ui) = f(uj) = 1.

Without loss of generality, let f(u1) = f(u2) = 1 and f(ui) = 0, for all i = 3, 4, ..., n. As in
the above case, there dose not exist vi ∈ N(u1)

⋃
N(u2), i 6= 1, 2 such that f(vi) = 0. If v1, v2 /∈

N(u1)
⋃
N(u2), then again f/G is a PID-function of G and hence γpI (G) ≤ γpI (M(G)) − 2,

which is not possible. Therefore, assume that v1, v2 ∈ N(u1)
⋃
N(u2). i.e., v1 ∈ N(u2) and

v2 ∈ N(u1). If f(v1) = f(v2) = 0 then define g : V (G)→ {0, 1, 2} as follows.

g(vi) =


f(vi); i 6= 1, 2,
1; i = 1,
0; i = 2.

If f(v1) = 0 and f(v2) 6= 0 then define g : V (G)→ {0, 1, 2} as follows.

g(vi) =

{
f(vi); i 6= 2,
f(v2) + 1; i = 2.

The case f(v1) 6= 0 and f(v2) = 0 can be delt similarly. If both f(v1) and f(v2) are non-zero
then f/G is a PID-function, which again leads to a contradiction. In all the cases γpI (G) ≤
γpI (M(G))− 1. Therefore, γpI (M(G)) = γpI (G) + 1.
By Observation 7, we know that γpI (G) = 2γp(G). Therefore, γpI (M(G)) = 2γp(G) + 1.

Corollary 5.3. For any graph G with a universal vertex, γpI (M(G))) = 3.
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6 Conclusion and Open Problems

In this paper, we have already given some examples of graphs which satisfy γpI (G) = 2γp(G).
Let G be a graph with n vertices and let = = {Hi : i = 1, 2, ..., n} be a family of n graphs
(not necessarily non-isomorphic). We define the corona of G with =, G � = as the graph with
vertex set V (G) ∪ V (Hi), i = 1, 2, ..., n and edge set E(G) ∪E(Hi) ∪ {viu : u ∈ V (Hi), for all
i = 1, 2, ..., n}. When Hi = H , for all i, G�= reduces to the usual corona of G and H , G�H .
G�= satisfies, γpI (G�=) = 2γp(G�=), if |V (Hi)| > 1 for all i = 1, 2, ...n. Any supergraph of
the above graph obtained by adding edges between H ′is, to some extend, also satisfy the above
equality.

Figure 4. Structure of G�=.

Though we have infinitely many graphs which satisfy this equality, the charecterization prob-
lem is still open.

Problem 1: Characterize graphs for which γpI (G) = 2γp(G).

In Theorem 5.2 we have proved that, ifG has a γpI -function such that V1 = φ, then γpI (M(G)) =
γpI (G) + 1 = 2γp(G) + 1. Let G be the graph P3 � K1. Here, γp(G) = 3, γpI (G) = 4 and
γpI (M(G)) = 7 = 2γp(G) + 1. But there dose not exist a γpI -function of G in which V1 = φ.
Therefore, the converse of the theorem is not true for the equality γpI (M(G)) = 2γp(G)+1. But
we strongly belive that the converse of the Theorem 5.2 is true for γpI (M(G)) = γpI (G) + 1. So
we have the following open problems.

Problem 2: Characterize graphs for which γpI (M(G)) = 2γp(G) + 1.

Problem 3: Prove the converse of Theorem 5.2 for the equality γpI (M(G)) = γpI (G) + 1. ie; if
γpI (M(G)) = γpI (G) + 1, then there exists a γpI -function of G for which V1 = φ.

We know that, if there exists a γpI -function of G such that V1 = φ then γpI (G) = 2γp(G).
Therefore, if we can prove Problem 3 and if Class A and Class B are the classes of graphs which
satisfies Problem 1 and 2 respectively, then the intersection of Class A and Class B is precisely
the collection of graphs for which there exists a γpI -function such that V1 = φ.
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