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Abstract We derive two double-series identities involving a bounded sequence employing
the Gessel-Stanton and Andrews summation theorems for terminating 3F2 hypergeometric series
with arguments 4/3 and 3/4, respectively. Using these double-series identities, we establish two
reduction formulas for the Srivastava-Daoust double hypergeometric function with arguments
z,−4z/3 and z,−3z/4 expressed in terms of a single generalised hypergeometric function of
argument proportional to z3.

1 Introduction and Preliminaries

We use the following standard notation: Z−0 := {0,−1,−2,−3, · · · } . and the symbols C, R
for the sets of complex and real numbers, respectively. The Pochhammer symbol (or the shifted
factorial) is given by (α)n = α(α + 1) . . . (α + n − 1)= Γ(α + n)/Γ(α), it being understood
conventionally that (0)0 = 1. In what follows we shall adopt the usual convention of writing the
sequence (α1, α2, . . . , αp) simply by (αp).

The generalized hypergeometric function pFq(z) is defined by

pFq

[
(αp)

(βq)
; z

]
= pFq

[
α1, α2, . . . , αp

β1, β2, . . . , βq
; z

]
=

∞∑
n=0

(α1)n(α2)n . . . (αp)n
(β1)n(β2)n . . . (βq)n

zn

n!
, (1.1)

where p and q are non-negative integers and the variable z ∈ C. The numerator parameters
α1, α2, . . . , αp and the denominator parameters β1, β2, . . . , βq can, in general, take on complex
values, provided that

βj 6= 0,−1,−2, . . . , (j = 1, 2, . . . , q).

Assuming that none of the numerator and denominator parameters is zero or a negative integer,
the pFq(z) function defined by equation (1.1) converges for |z| < ∞ (p ≤ q), |z| < 1 (p =
q + 1) and |z| = 1 (p = q + 1 and <(s) > 0), where s is the parametric excess defined by
s :=

∑q
j=1 βj −

∑p
j=1 αj .

In [9, p.199], Srivastava and Daoust defined a generalization of the Kampé de Fériet function
[2, p.150] by means of the double hypergeometric series (see also [5] and [6]):

FA: B; B′

C: D; D′

(
[(αA) : ϑ, ϕ] : [(βB) : ψ]; [(β′B′) : ψ′];
[(γC) : ξ, ε] : [(δD) : η]; [(δ′D′) : η′];

x, y

)

=
∞∑
m=0

∞∑
n=0

∏A
j=1(αj)mϑj+nϕj

∏B
j=1(βj)mψj

∏B′

j=1(β
′
j)nψ′

j∏C
j=1(γj)mξj+nεj

∏D
j=1(δj)mηj

∏D′

j=1(δ
′
j)nη′j

xm

m!
yn

n!
, (1.2)



182 M.I. Qureshi, R.B. Paris, S.H. Malik and T.R. Shah

where the quantities{
ϑ1, ..., ϑA; ϕ1, ..., ϕA; ψ1, ..., ψB; ψ′1, ..., ψ

′
B′ ; ξ1, ..., ξC ;

ε1, ..., εC ; η1, ..., ηD; η′1, ..., η
′
D′

are real and positive. The double power series in (1.2) converges for all complex values of x and
y when ∆1 > 0, ∆2 > 0; for suitably constrained values of |x| and |y| when ∆1 = ∆2 = 0; and
diverges (except in the trivial case x = y = 0) when ∆1 < 0, ∆2 < 0, where

∆1 = 1 +
C∑
j=1

ξj +
D∑
j=1

ηj −
A∑
j=1

ϑj −
B∑
j=1

ψj , ∆2 = 1 +
C∑
j=1

εj +
D′∑
j=1

η′j −
A∑
j=1

ϕj −
B′∑
j=1

ψ′j .

Motivated by the work of Srivastava et al. [7, 8, 10], we derive two double series identities
involving a bounded sequence of arbitrary complex numbers in Section 2 by making use of
two known summation theorems for the terminating 3F2 series of arguments 4

3 and 3
4 . For non-

negative integer n, these are given by the Gessel-Stanton summation theorem [3, Eq. (5.21)]

3F2

[
−n, 3a+ 1

2 , 3a+ 1
6a+ 1, 2a+ 1− 1

3n
;

4
3

]
=


0 n 6= 3m

( 1
3)m(

2
3)m

(2a+ 1)m(−2a)m
n = 3m

(1.3)

and the Andrews theorem [1, Eq. (1.12)] (see also [3, Eq. (1.1)])

3F2

[
−n, a, 3a+ n

3
2a,

3
2a+

1
2

;
3
4

]
=

 0 n 6= 3m
(3m)!(a+ 1)m
m! (3a+ 1)3m

n = 3m,
(1.4)

where m = 0, 1, 2, . . . .
We now present some preliminary results necessary for our investigation. First, we state

Cauchy’s double series identity [4, p. 56]
∞∑
m=0

∞∑
n=0

Θ(m,n) =
∞∑
m=0

m∑
n=0

Θ(m− n, n) , (1.5)

provided that the associated double series are absolutely convergent. We also have the following
identities involving the Pochhammer symbol:

(−n)r =
(−1)rn!
(n− r)!

(0 ≤ r ≤ n), (1.6)

and
(a)3n = 33n

(a
3

)
n

(
a+ 1

3

)
n

(
a+ 2

3

)
n

. (1.7)

It should be observed that throughout we tacitly exclude any values of the parameters and
arguments in Sections 2 and 3 leading to results that do not make sense.

2 Two double-series identities

In this section, we derive two double-series identities involving a bounded sequence The first
identity takes the following form:

Theorem 2.1.. Let {Ψ(µ)}∞µ=1 be a bounded sequence of complex (or real) numbers such that
Ψ(0) 6= 0. Then, the following double-series identity holds true:

∞∑
n=0

∞∑
r=0

Ψ(n+ r)
(2a+ 1)−n

3 −
r
3
(3a+ 1

2)r(3a+ 1)r
(2a+ 1) 2r

3 −
n
3
(6a+ 1)r

(−4/3)rzn+r

n!r!
=
∞∑
n=0

Ψ(3n)(z/3)3n

(−2a)n(2a+ 1)nn!
(2.1)

provided −2a, 2a + 1, 6a + 1 ∈ C\Z−0 and the infinite series on both sides of (2.1) are
absolutely convergent.
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Proof. Let

G(z) :=
∞∑
n=0

∞∑
r=0

Ψ(n+ r)
(2a+ 1)−n

3 −
r
3
(3a+ 1

2)r(3a+ 1)r
(2a+ 1) 2r

3 −
n
3
(6a+ 1)r

(−4/3)rzn+r

n!r!

=
∞∑
n=0

∞∑
r=0

Ψ(n+ r)
(3a+ 1

2)r(3a+ 1)r
(2a+1− 1

3(n+r))r(6a+ 1)r

(−4/3)rzn+r

n!r!
. (2.2)

Replacing n by n− r in (2.2) and using Cauchy’s double series identity (1.5), we have

G(z) =
∞∑
n=0

n∑
r=0

Ψ(n)
(3a+ 1

2)r(3a+ 1)r
(2a+ 1− 1

3n)r(6a+ 1)r

(−4/3)rzn

(n− r)!r!

=
∞∑
n=0

Ψ(n)zn

n!

n∑
r=0

(−n)r(3a+ 1
2)r(3a+ 1)r(4/3)r

(2a+ 1− 1
3n)r(6a+ 1)rr!

by (1.6). Identification of the inner sum as a 3F2(
4
3) hypergeometric series then leads to

G(z) =
∞∑
n=0

Ψ(n)zn

n! 3F2

[
−n, 3a+ 1

2 , 3a+ 1
2a+ 1− 1

3n, 6a+ 1
;

4
3

]
. (2.3)

We now apply the decomposition identity

∞∑
n=0

Φ(n) =
∞∑
n=0

Φ(3n) +
∞∑
n=0

Φ(3n+ 1) +
∞∑
n=0

Φ(3n+ 2), (2.4)

provided that each of the sums is absolutely convergent, to the right-hand side of (2.3). This
produces

G(z) =
∞∑
n=0

Ψ(3n)z3n

(3n)! 3F2

[
−3n, 3a+ 1

2 , 3a+1
2a+1−n, 6a+1

;
4
3

]
+
∞∑
n=0

Ψ(3n+1)z3n+1

(3n+1)!
×

×3F2

[
−3n−1, 3a+ 1

2 , 3a+1
2a+ 2

3−n, 6a+1
;

4
3

]
+
∞∑
n=0

Ψ(3n+2)z3n+2

(3n+2)! 3F2

[
−3n−2, 3a+ 1

2 , 3a+1
2a+ 1

3−n, 6a+1
;

4
3

]
.

Finally, use of the Gessel-Stanton summation theorem (1.3) leads to

G(z) =
∞∑
n=0

Ψ(3n)z3n

(3n)!
( 1

3)n(
2
3)n

(−2a)n(2a+ 1)n
,

which, after suitable simplification, yields the required result (2.1).

The second identity is given by the following theorem:

Theorem 2.2.. Let {Ψ(µ)}∞µ=1 be a bounded sequence of complex (or real) numbers such that
Ψ(0) 6= 0. Then, the following double-series identity holds true:

∞∑
n=0

∞∑
r=0

Ψ(n+ r)
(3b)n+2r(b)r
(3b)n+r(3b)2r

(−3)rzn+r

n!r!
=
∞∑
n=0

Ψ(3n)(z/3)3n

(b+ 1
3)n(b+

2
3)nn!

(2.5)

provided 3b, 3b+ 1 ∈ C\Z−0 and the infinite series on both sides of (2.5) are absolutely conver-
gent.
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Proof. Let

H(z) =
∞∑
n=0

∞∑
r=0

Ψ(n+ r)
(3b)n+2r(b)r
(3b)n+r(3b)2r

(−3)rzn+r

n!r!

=
∞∑
n=0

∞∑
r=0

Ψ(n+ r)
(3b+ n+ r)r(b)r

( 3
2b)r

( 3
2b+

1
2

)
r

(−3/4)rzn+r

n!r!
. (2.6)

Replacing n by n − r in (2.6) and using Cauchy’s double series identity (1.5) and (1.6), we
have

H(z) =
∞∑
n=0

Ψ(n)zn

n!

n∑
r=0

(−n)r(b)r(3b+ n)r(3/4)r

( 3
2b)r(

3
2b+

1
2)rr!

=
∞∑
n=0

Ψ(n)zn

n! 3F2

[
−n, b, 3b+ n

3
2b,

3
2b+

1
2

;
3
4

]
.

Application of (2.4) as in Theorem 1 then produces

H(z) =
∞∑
n=0

Ψ(3n)z3n

(3n)! 3F2

[
−3n, b, 3b+3n

3
2b,

3
2b+

1
2

;
3
4

]
+
∞∑
n=0

Ψ(3n+1)z3n+1

(3n+1)!
×

× 3F2

[
−3n−1, b, 3b+3n+1

3
2b,

3
2b+

1
2

;
3
4

]
+
∞∑
n=0

Ψ(3n+2)z3n+2

(3n+2)! 3F2

[
−3n−2, b, 3b+3n+2

3
2b,

3
2b+

1
2

;
3
4

]
.

Finally, use of the Andrews summation theorem (1.4) leads to

H(z) =
∞∑
n=0

Ψ(3n)z3n

(3n)!
(3n)!(b+ 1)n
(3b+ 1)3n n!

=
∞∑
n=0

Ψ(3n)(b+ 1)nz3n

(3b+ 1)3n n!
,

which, after suitable simplification, yields the required result (2.5).

3 Application of Theorems 1 and 2 to the Srivastava-Daoust function

In this section we establish two results concerning the reducibility of the Srivastava-Daoust dou-
ble hypergeometric function defined in (1.2). We have

Theorem 3.1.. The following results hold true:

FA+1: 0; 2
B+1: 0; 1

(
[(dA) : 1, 1], [2a+ 1 : − 1

3 ,−
1
3 ] : −−; [3a+ 1

2 : 1], [3a+ 1 : 1];
[(eB) : 1, 1], [2a+ 1 : − 1

3 ,
2
3 ] : −−; [6a+ 1 : 1];

z,−4
3
z

)

= 3AF3B+2

[
d1
3 ,

d1+1
3 , d1+2

3 , . . . dA3 ,
dA+1

3 , dA+2
3

e1
3 ,

e1+1
3 , e1+2

3 . . . eB3 ,
eB+1

3 , eB+2
3 ,−2a, 2a+ 1

;
z3

27B−A+1

]
(3.1)

and

FA+1: 0; 1
B+1: 0; 2

(
[(dA) : 1, 1], [3b : 1, 2] : −−; [b : 1];

[(eB) : 1, 1], [3b : 1, 1] : −−; [ 3
2b : 1], [ 3

2b+
1
2 : 1];

z,−3
4
z

)

= 3AF3B+2

[
d1
3 ,

d1+1
3 , d1+2

3 , . . . dA3 ,
dA+1

3 , dA+2
3

e1
3 ,

e1+1
3 , e1+2

3 . . . eB3 ,
eB+1

3 , eB+2
3 , b+ 1

3 , b+
2
3

;
z3

27B−A+1

]
, (3.2)

where e1, e2, . . . , eB ,−2a, 2a+1, b+ 1
3 , b+

2
3 ∈ C\Z−0 . When A ≤ B both sides of (3.1) and

(3.2) are convergent for |z| < ∞, but when A = B + 1 the above hypergeometric functions are
convergent for suitably constrained values of |z|.
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Proof. Put

Ψ(µ) =
(d1)µ(d2)µ . . . (dA)µ
(e1)µ(e2)µ . . . (eB)µ

=

∏A
j=1(dj)µ∏B
j=1(ej)µ

(µ = 0, 1, 2, . . .)

on both sides of the double-series identity (2.1) to obtain

∞∑
n=0

∞∑
r=0

∏A
j=1(dj)n+r∏B
j=1(ej)n+r

(2a+ 1)−n
3 −

r
3
(3a+ 1

2)r(3a+ 1)r
(2a+ 1) 2r

3 −
n
3
(6a+ 1)r

(−4/3)rzn+r

n!r!

=
∞∑
n=0

∏A
j=1(dj)3n∏B
j=1(ej)3n

(z/3)3n

(−2a)n(2a+ 1)nn!
. (3.3)

Applying the definition of the Srivastava-Daoust function in (1.2) to the left-hand side of (3.3)
and the definition of the generalised hypergeometric function in (1.1), together with the Pochham-
mer identity (1.7), to the right-hand side of (3.3), we obtain the desired result (3.1).

The proof of (3.2) follows exactly the same procedure and will be omitted. This completes
the proof of Theorem 3.

4 Concluding remarks

We have obtained two general double-series identities by employing the summation theorems
of Gessel-Stanton and Andrews for the terminating hypergeometric series 3F2 with arguments
4/3 and 3/4, respectively. These results have been used to derive two reduction formulas for the
Srivastava-Daoust double hypergeometric function with arguments (z,−4z/3) and (z,−3z/4)
in terms of a single generalized hypergeometric function 3AF3B+2 with argument z3/27B−A+1.
It is hoped that the results derived in this paper will find useful application.
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