ON A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY GEGENBAUER POLYNOMIALS

B. Venkateswarlu, P. Thirupathi Reddy, S. Sridevi and Sujatha
Communicated by R. K. Raina

MSC 2010 Classifications: Primary 30C45; Secondary 30C50.
Keywords and phrases: analytic function; coefficient estimates; distortion; partial sums.

Abstract

The aim of this article is to introduce and investigate a new subclass of analytic functions involving Gegenbauer polynomials. We obtain for the introduced class various geometric properties giving the coefficient inequalities, distortion theorem, radius of close-toconvexity, starlikeness, convex linear combination, partial sums and convolution properties. Further, we obtain a neighborhood result for the class defined in the present paper.

1 Introduction

Let A specify the category of analytical functions f represent on the unit disc $U=\{z:|z|<1\}$ with normalization $f(0)=0$ and $f^{\prime}(0)=1$, such a function has the extension of the Taylor series on the origin in the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

Indicated by S, the subclass of A be composed of functions that are univalent in U.
Then a $f(z)$ function of A is known as starlike and convex of order ϑ if it delights the pursing

$$
\begin{gather*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\vartheta, \quad(z \in U), \tag{1.2}\\
\text { and } \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\vartheta, \quad(z \in U), \tag{1.3}
\end{gather*}
$$

for specific $\vartheta(0 \leq \vartheta<1)$ respectively and we express by $S^{*}(\vartheta)$ and $K(\vartheta)$ the subclass of A be expressed by aforesaid functions respectively. Also, indicate by T the subclass of A made up of functions of this form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, z \in U\right) \tag{1.4}
\end{equation*}
$$

and let $T^{*}(\vartheta)=T \cap S^{*}(\vartheta), C(\vartheta)=T \cap K(\vartheta)$. There are interesting properties in the $T^{*}(\vartheta)$ and $C(\vartheta)$ classes and were thoroughly studied by Silverman [6] and others.

The class $\mathcal{T}(\wp), \wp \geq 0$ has been implemented and analyzed by the subclass Szynal [10] of A consisting of type functions

$$
\begin{equation*}
f(z)=\int_{-1}^{1} K(z, \ell) d \mu(\ell) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
K(z, \ell)=\frac{z}{\left(1-2 \ell z+z^{2}\right)^{\circledR}}, \quad(z \in U, \ell \in[-1,1]) \tag{1.6}
\end{equation*}
$$

and μ is a probability measure at the interval $[-1,1]$. The compilation of such $[a, b]$ calculation is denoted as $P[a, b]$.

The function expansion of the Taylor series in (1.6) gives

$$
\begin{equation*}
K(z, \ell)=z+c_{1}^{\wp}(\ell) z^{2}+c_{2}^{\wp}(\ell) z^{3}+\cdots \tag{1.7}
\end{equation*}
$$

The coefficients for (1.7) and those for (1.7) are given below:

$$
\begin{align*}
& c_{0}^{\wp}(\ell)=1 ; c_{1}^{\wp}(\ell)=2 \wp \ell ; c_{2}^{\wp}(\ell)=2 \wp(\wp+1) \ell^{2}-\wp ; \\
& c_{3}^{\wp}(\ell)=\frac{4}{3} \wp(\wp+1)(\wp+2) \ell^{3}-2 \wp(\wp+1) \ell \cdots \tag{1.8}
\end{align*}
$$

where $c_{n}^{\wp}(\ell)$ corresponds to the Gegenbauer degree polynomial n. Varying the \wp parameter in (1.7), we get a class of usually real functions studied by (1.7) (see [1, 3, 5, 8] and [9]).

Let $\mathscr{G}_{\wp}^{\ell}: A \rightarrow A$ is defined by convolution

$$
\mathscr{G}_{\wp}^{\ell} f(z)=K(z, \ell) * f(z),
$$

we have

$$
\begin{equation*}
\mathscr{G}_{\wp}^{\ell} f(z)=z+\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n} z^{n} \tag{1.9}
\end{equation*}
$$

In this paper, we are consider as $\left|a_{n}\right|=a_{n}$ and $\left|c_{n-1}^{\wp}(\ell)\right|=c_{n-1}^{\wp}(\ell)$.
Now, we propose a new subclass $\phi_{\wp}^{\ell}(\hbar, \vartheta)$ of A concerning polynomial of Geganbaur as below:

Definition 1.1. For $0 \leq \hbar<1,0 \leq \vartheta<1, \wp>0, \ell>0$, we say $f(z) \in A$ is in $\phi_{\wp}^{\ell}(\hbar, \vartheta)$ if it fulfils the requirement

$$
\begin{equation*}
\Re\left(\frac{z\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime}+\hbar z^{2}\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime \prime}}{\mathscr{G}_{\wp}^{\ell} f(z)}\right)>\vartheta,(z \in U) . \tag{1.10}
\end{equation*}
$$

Also we indicate by $T \phi_{\wp}^{\ell}(\hbar, \vartheta)=\phi_{\wp}^{\ell}(\hbar, \vartheta) \cap T$.

2 Coefficient Inequalities

This section gives us an adequate requirement for a function f given by (1.1) to be in $\phi_{\wp}^{\ell}(\hbar, \vartheta)$.
Theorem 2.1. A function $f \in A$ is assigned to the class $\phi_{\wp}^{\ell}(\hbar, \vartheta)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} \leq 1-\vartheta \tag{2.1}
\end{equation*}
$$

Proof. Since $0 \leq \vartheta<1$ and $\hbar \geq 0$, now if we put

$$
\varrho(z)=\frac{z\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime}+\hbar z^{2}\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime \prime}}{\mathscr{G}_{\S}^{\ell} f(z)}, \quad(z \in U) .
$$

Then it's just a matter of proving it $|\varrho(z)-1|<1-\vartheta,(z \in U)$.
Indeed if $f(z)=z,(z \in U)$, then we have $\varrho(z)=z,(z \in U)$.
Implies (2.1) holds.
If $f(z) \neq z,(|z|=r<1)$, then there exist a coefficient $\Omega_{n}(\wp, \ell) a_{n} \neq 0$ for some $n \geq 2$. The consequence is that $\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}>0$. Now

$$
\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n}>(1-\vartheta) \sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}
$$

$$
\Rightarrow \quad \sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}<1 .
$$

By (2.1), we obtain

$$
\begin{aligned}
|\varrho(z)-1| & =\left|\frac{\sum_{n=2}^{\infty}[n+\hbar n(n-1)-1] c_{n-1}^{\wp}(\ell) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n} z^{n-1}}\right| \\
& <\frac{\sum_{n=2}^{\infty}[n+\hbar n(n-1)-1] c_{n-1}^{\wp}(\ell) a_{n}}{1+\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}} \\
& \leq \frac{\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n}+(1-\vartheta) c_{n-1}^{\wp}(\ell) a_{n}}{1+\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}} \\
& \leq \frac{(1-\vartheta)+(1-\vartheta) \sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}}{1+\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n}} \\
& =1-\vartheta, \quad(z \in U) .
\end{aligned}
$$

Hence we obtain

$$
\Re\left(\frac{z\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime}+\hbar z^{2}\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime \prime}}{\mathscr{G}_{\wp}^{\ell} f(z)}\right)=\Re(\varrho(z))>1-(1-\vartheta)=\vartheta .
$$

Then $f \in \phi_{\wp}^{\ell}(\hbar, \vartheta)$. .
Theorem 2.2. Let f be given by (1.4). Then the function $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} \leq 1-\vartheta \tag{2.2}
\end{equation*}
$$

Proof. In view of Theorem 2.1, to examine it $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ fulfils the coefficient inequality (2.1). If $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ then the function

$$
\varrho(z)=\frac{z\left(\mathscr{G}_{\wp}^{\ell} f(z)\right)^{\prime}+\hbar z^{2}\left(\mathscr{G}_{反}^{\ell} f(z)\right)^{\prime \prime}}{\mathscr{G}_{\wp}^{\ell} f(z)}, \quad(z \in U)
$$

satisfies $\Re(\varrho(z))>\vartheta$. This implies that

$$
\mathscr{G}_{\S}^{\ell} f(z)=z-\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n} z^{n} \neq 0,(z \in U \backslash\{0\})
$$

Noting that $\frac{\mathscr{G}_{\wp}^{\ell} f(r)}{r}$ in the open interval $(0,1)$, this is the real continuous function with $\eta(0)=1$, we have

$$
\begin{equation*}
\frac{\mathscr{G}_{\wp}^{\ell} f(r)}{r}=1-\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n} r^{n-1}>0, \quad(0<r<1) . \tag{2.3}
\end{equation*}
$$

Now $\vartheta<\varrho(r)=\frac{1-\sum_{n=2}^{\infty}[n+\hbar n(n-1)] c_{n-1}^{\wp}(\ell) a_{n} r^{n-1}}{1-\sum_{n=2}^{\infty} c_{n-1}^{\wp}(\ell) a_{n} r^{n-1}}$ and consequently by (2.3),
we get $\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} r^{n-1} \leq 1-\vartheta$.

Letting $r \rightarrow 1$, we get $\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} \leq 1-\vartheta$.
This proves the converse part.
Remark 2.3. If a function f of the form (1.4) belongs to the class $T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ then

$$
a_{n} \leq \frac{1-\vartheta}{[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell)}, \quad(n \geq 2)
$$

3 Distortion Theorem

In the section, the distortion limits of the functions owned by the class $T \phi_{\wp}^{\ell}(\hbar, \vartheta)$.
Theorem 3.1. Let $\eta \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ and $|z|=r<1$. Then

$$
\begin{equation*}
r-\frac{1-\vartheta}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)} r^{2} \leq|f(z)| \leq r+\frac{1-\vartheta}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)} r^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{2(1-\vartheta)}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\vartheta)}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)} r \tag{3.2}
\end{equation*}
$$

Proof. Since $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$, we apply Theorem 2.2 to attain

$$
\begin{aligned}
{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell) \sum_{n=2}^{\infty} a_{n} } & \leq \sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} \\
& \leq 1-\vartheta
\end{aligned}
$$

$$
\text { Thus }|f(z)| \leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq r+\frac{1-\vartheta}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)} r^{2}
$$

$$
\text { Also we have, }|f(z)| \leq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq r-\frac{1-\vartheta}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)} r^{2}
$$

and (3.1) follows. In similar way for f^{\prime}, the inequalities

$$
\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \leq 1+|z| \sum_{n=2}^{\infty} n a_{n}
$$

and

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2(1-\vartheta)}{[2 \hbar-\vartheta+2] c_{n-1}^{\wp}(\ell)}
$$

are satisfied, which leads to (3.2).

4 Radii of close-to-convexity and starlikeness

A close-to-convex and star-like radius of this class $T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ is obtained in this section.
Theorem 4.1. Let f be specified by (1.4) is in $T \phi_{\wp}^{\ell}(\hbar, \vartheta)$. Then f is a close-to-convex of order $\ell, \quad(0 \leq \ell<1)$ in the disc $|z|<t_{1}$, where

$$
\begin{equation*}
t_{1}=\inf _{n \geq 2}\left[\frac{(1-\ell)[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{n(1-\vartheta)}\right]^{\frac{1}{n-1}} \tag{4.1}
\end{equation*}
$$

Proof. If $f \in T$ and f is a close-to-convex of order ℓ then we get

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right| \leq 1-\ell \tag{4.2}
\end{equation*}
$$

For the left hand side of (4.2), we obtain

$$
\begin{aligned}
& \left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1}<1-\ell \\
\Rightarrow & \sum_{n=2}^{\infty} \frac{n}{1-\ell} a_{n}|z|^{n-1} \leq 1
\end{aligned}
$$

We know that $f(z) \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{(1-\vartheta)} a_{n} \leq 1
$$

Thus (4.2) holds true if

$$
\begin{gathered}
\frac{n}{1-\ell}|z|^{n-1} \leq \frac{[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{(1-\vartheta)} \\
\text { then }|z| \leq\left[\frac{(1-\ell)[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{n(1-\vartheta)}\right]^{\frac{1}{n-1}}
\end{gathered}
$$

hence the proof.
Theorem 4.2. Let $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$. Then f is a starlike of order $\ell, \quad(0 \leq \ell<1)$ in the disc $|z|<t_{2}$, where

$$
\begin{equation*}
t_{2}=\inf _{n \geq 2}\left[\frac{(1-\ell)[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{(n-\ell)(1-\vartheta)}\right]^{\frac{1}{n-1}} . \tag{4.3}
\end{equation*}
$$

Proof. We have $f \in T$ and f is a starlike of order ℓ, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\ell \tag{4.4}
\end{equation*}
$$

For the left hand side of (4.4), we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

$(1-\ell)$ is greater than the right hand side of the left relation if

$$
\sum_{n=2}^{\infty} \frac{n-\ell}{1-\ell} a_{n}|z|^{n-1}<1
$$

We know that $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{(1-\vartheta)} a_{n} \leq 1
$$

Thus (4.4) is true if

$$
\begin{gathered}
\frac{n-\ell}{1-\ell}|z|^{n-1} \leq \frac{[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{(1-\vartheta)} \\
\text { then }|z| \leq\left[\frac{(1-\ell)[n+n \hbar(n-1)-\vartheta] \Omega_{n}(\wp, \ell)}{(n-\ell)(1-\vartheta)}\right]^{\frac{1}{n-1}}
\end{gathered}
$$

hence the proof.

5 Convex Linear combinations

Theorem 5.1. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{n}(z)=z-\frac{1-\vartheta}{[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell)} z^{n}, \quad(z \in U, n \geq 2) \tag{5.1}
\end{equation*}
$$

Then $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ if and only if f is the form of

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z), \quad\left(\mu_{n} \geq 0\right) \tag{5.2}
\end{equation*}
$$

and $\sum_{n=1}^{\infty} \mu_{n}=1$.
Proof. If a function f is of the form $f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z), \mu_{n} \geq 0$ and $\sum_{n=1}^{\infty} \mu_{n}=1$ then

$$
\begin{aligned}
& \sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} \\
\leq & \sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) \frac{(1-\vartheta) \mu_{n}}{[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell)} \\
= & \sum_{n=2}^{\infty}(1-\vartheta) \mu_{n}=\left(1-\mu_{1}\right)(1-\vartheta) \\
= & 1-\vartheta
\end{aligned}
$$

which provides (2.2), hence $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$, by Theorem 2.2.
On the other hand, if f is in the class $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$, then we may set

$$
\mu_{n}=\frac{[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell)}{1-\vartheta} a_{n}, \quad(n \geq 2)
$$

and $\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n}$.
Then the function f is of the form (5.2) .

6 Partial Sums

Silverman [7] examined partial sums f for the function $f \in A$ given by (1.1) established through

$$
\begin{equation*}
f_{1}(z)=z \text { and } f_{m}(z)=z+\sum_{n=2}^{m} a_{n} z^{n}, m=2,3,4, \cdots \tag{6.1}
\end{equation*}
$$

In this paragraph, in the class $\phi_{\wp}^{\ell}(\hbar, \vartheta)$, partial function sums can be considered and sharp lower limits can be reached for the function. True component ratios of f to f_{m} and f^{\prime} to f_{m}^{\prime}.

Theorem 6.1. Let $f \in \phi_{\wp}^{\ell}(\hbar, \vartheta)$ and fulfils (2.1). Then

$$
\begin{equation*}
\Re\left(\frac{f(z)}{f_{m}(z)}\right) \geq 1-\frac{1}{d_{m+1}},(z \in U, m \in N) \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n}=\frac{[n+\hbar n(n-1)-\vartheta]}{1-\vartheta} \tag{6.3}
\end{equation*}
$$

Proof. Clearly, $d_{n+1}>d_{n}>1, n=2,3,4, \cdots$.
Thus by Theorem 2.1 we get,

$$
\begin{gather*}
\sum_{n=2}^{\infty} a_{n}+d_{m+1} \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} d_{n} a_{n} \leq 1 \tag{6.4}\\
\text { Setting } g(z)=d_{m+1}\left\{\frac{f(z)}{f_{m}(z)}-\left(1-\frac{1}{d_{m+1}}\right)\right\} \\
g(z)=1+\frac{d_{m+1} \sum_{n=m+1}^{\infty} a_{n} z^{n-1}}{1+\sum_{n=2}^{m} a_{n} z^{n-1}} \tag{6.5}
\end{gather*}
$$

it be good enough to show $\Re(g(z))>0,(z \in U)$. Applying (6.4) we think that

$$
\begin{aligned}
\left|\frac{g(z)-1}{g(z)+1}\right| & \leq \frac{d_{m+1} \sum_{n=2}^{\infty} a_{n}}{2-2 \sum_{n=2}^{m} a_{n}-d_{m+1} \sum_{n=m+1}^{\infty} a_{n}} \\
& \leq 1
\end{aligned}
$$

which gives,

$$
\Re\left(\frac{f(z)}{f_{m}(z)}\right) \geq 1-\frac{1}{d_{m+1}}
$$

hence the proof.
Theorem 6.2. Let f in $T \phi_{\ell}^{\ell}(\hbar, \vartheta)$ and fulfils (2.1). Then

$$
\begin{equation*}
\Re\left(\frac{f_{m}(z)}{f(z)}\right) \geq \frac{d_{m+1}}{1+d_{m+1}}, \quad(z \in U, m \in N) \tag{6.6}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n}=\frac{[n+\hbar n(n-1)-\vartheta]}{1-\vartheta} \tag{6.7}
\end{equation*}
$$

Proof. Clearly, $d_{n+1}>d_{n}>1, n=2,3,4, \cdots$.
Thus by Theorem 2.1 we get,

$$
\begin{gather*}
\sum_{n=2}^{\infty} a_{n}+d_{m+1} \sum_{n=m+1}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} d_{n} a_{n} \leq 1 \tag{6.8}\\
\text { Setting } h(z)=\left(1+d_{m+1}\right)\left\{\frac{f_{m}(z)}{f(z)}-\left(\frac{d_{m+1}}{1+d_{m+1}}\right)\right\} \\
h(z)=1-\frac{\left(1+d_{m+1}\right) \sum_{n=m+1}^{\infty} a_{n} z^{n-1}}{1+\sum_{n=2}^{m} a_{n} z^{n-1}}
\end{gather*}
$$

to show $\Re(h(z))>0, \quad(z \in U)$. Implementing (6.8), we attain

$$
\begin{aligned}
\left|\frac{h(z)-1}{h(z)+1}\right| & \leq \frac{\left(1+d_{m+1}\right) \sum_{n=2}^{\infty} a_{n}}{2-2 \sum_{n=2}^{m} a_{n}-\left(1+d_{m+1}\right) \sum_{n=m+1}^{\infty} a_{n}} \\
& \leq 1
\end{aligned}
$$

which gives,

$$
\Re\left(\frac{f_{m}(z)}{f(z)}\right) \geq \frac{d_{m+1}}{1+d_{m+1}}
$$

and hence the proof.

Theorem 6.3. Let f in $T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ and fulfils (2.1). Then

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}\right) \geq 1-\frac{m+1}{d_{m+1}}, \quad(z \in U, m \in N) \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{d_{m+1}}{m+1+d_{m+1}}, \quad(z \in U, m \in N) \tag{6.11}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n}=\frac{[n+\hbar n(n-1)-\vartheta]}{1-\vartheta} \tag{6.12}
\end{equation*}
$$

Proof. By Setting

$$
\begin{aligned}
g(z) & =d_{m+1}\left\{\frac{f\left({ }^{\prime} z\right)}{f_{m}^{\prime}(z)}-\left(1-\frac{m+1}{d_{m+1}}\right)\right\}, \quad(z \in U) \\
\text { and } h(z) & =\left(m+1+d_{m+1}\right)\left\{\frac{f_{m}^{\prime}(z)}{f\left(^{\prime} z\right)}-\left(\frac{d_{m+1}}{m+1+d_{m+1}}\right)\right\}, \quad(z \in U)
\end{aligned}
$$

The evidence is close to that of the 6.1 and 6.2 theorems, so the specifics are omitted.

7 Convolution properties

We will prove in this section that the $T \phi_{\ell}^{\ell}(\hbar, \vartheta)$ class is closed by convolution.
Theorem 7.1. Let $g(z)$ of the form

$$
g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}
$$

be regular in U. If $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ then the function $f * g$ is in the class $T \phi_{\wp}^{\ell}(\hbar, \vartheta)$. Here the symbol $*$ denoted to the Hadmard product .

Proof. Since $f \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$, we have

$$
\sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\varsigma}(\ell) a_{n} \leq 1-\vartheta
$$

Employing the last inequality and the fact that

$$
f(z) * g(z)=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

We obtain

$$
\begin{aligned}
& \sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n}\left|b_{n}\right| \\
\leq & \sum_{n=2}^{\infty}[n+\hbar n(n-1)-\vartheta] c_{n-1}^{\wp}(\ell) a_{n} \\
= & 1-\vartheta
\end{aligned}
$$

and hence, in view of Theorem 2.1, the result follows.

8 Neighbourhood results

Following [2, 4], we defined the α-neighbourhood of the function $f(z) \in T$ by

$$
\begin{equation*}
N_{\alpha}(f)=\left\{g \in T: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \text { and } \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \alpha\right\}, \text { where } \alpha \geq 0 \tag{8.1}
\end{equation*}
$$

Definition 8.1. A function $f \in T$ is said to be in the class $T \phi_{\wp^{\ell, \gamma}}(\hbar, \vartheta)$ if there exists a function $h \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{h(z)}-1\right|<1-\gamma, \quad(z \in U, 0 \leq \gamma<1) \tag{8.2}
\end{equation*}
$$

Theorem 8.2. If $h \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$ and

$$
\gamma=1-\frac{\alpha(2 \hbar-\vartheta+2) \Omega_{2}(\wp, \hbar)}{2(2 \hbar-\vartheta+2) \Omega_{2}(\wp, \hbar)-(1+\vartheta)}
$$

then $N_{\alpha}(h) \subseteq T \phi_{\wp^{\ell, \gamma}}(\hbar, \vartheta)$.
Proof. Let $f \in N_{\alpha}(h)$. We then find from that

$$
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \alpha
$$

which is easily implies the coefficient inequality

$$
\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\alpha}{n}
$$

Since $h \in T \phi_{\wp}^{\ell}(\hbar, \vartheta)$, we have from equation (2.1) that

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{1-\vartheta}{(2 \hbar-\vartheta+2) \Omega_{2}(\wp, \hbar)}
$$

and

$$
\begin{aligned}
\left|\frac{f(z)}{h(z)}-1\right| & <\frac{\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \\
& \leq \frac{\alpha}{2} \frac{(2 \hbar-\vartheta+2) \Omega_{2}(\wp, \hbar)}{(2 \hbar-\vartheta+2) \Omega_{2}(\wp, \hbar)-(1+\vartheta)} \\
& =1-\gamma
\end{aligned}
$$

hence the proof.

Acknowledgement

The authors are thankful to the editor and referee(s) for their valuable comments and suggestions which helped very much in improving the paper.

References

[1] P.L. Duren, Univalent Functions, A series of Comprehensive Studies in Mathematics, 259, Springer, New York, (1983).
[2] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598-601 (1957).
[3] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
[4] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (4), 521-527 (1981).
[5] G. Schober, Univalent Functions, Selected topics Lecture Notes in Math., 478, Springer, New York, (1975).
[6] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, 109-116 (1975).
[7] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209, 221-227 (1997).
[8] M. Sobczak-Knec and P. Zaprawa, Covering domains for classes of functions with real coefficients, Complex Var. Elliptic Equ., 52(6), 519 - 535 (2007).
[9] G. Swapna, P. Thirupathi Reddy and B. Venkateswarlu, Subclass of analytic functions defined by generalized differential operator , Acta Univ. Apul., 62, 57-70 (2020).
[10] J. Szynal, An extension of typically real functions, Ann. Univ. Mariae Curie-Sklodowska, sect. A., 48, 193-201 (1994).

Author information

B. Venkateswarlu, Department of Mathematics, GSS, GITAM University, Bengaluru Rural- 562 163, Karnataka, INDIA.
E-mail: bvlmaths@gmail.com
P. Thirupathi Reddy, Department of Mathematics, School of Engineering, NNRESGI, Medichal Dist- 500 088, Telangana, INDIA.
E-mail: reddypt2@gmail.com
S. Sridevi, Department of Mathematics, GSS, GITAM University, Bengaluru Rural- 562 163, Karnataka, INDIA.
E-mail: siri_settipalli@yahoo.co.in
Sujatha, Department of Mathematics, GSS, GITAM University, Bengaluru Rural- 562 163, Karnataka, INDIA. E-mail: sujathavaishnavy@gmail.com

Received: July 30, 2021.
Accepted: December 28, 2021.

