MULTIPLE SOLUTIONS FOR A BI-NONLOCAL ELLIPTIC PROBLEM INVOLVING p(x)-BIHARMONIC OPERATOR

F. Jaafri, A. Ayoujil and M. Berrajaa
Communicated by Amjad Tufaha

MSC 2010 Classifications: 05C50; 05C82; 05C90.
Keywords and phrases: Bi-nonlocal elliptic problem, p(x)-Biharmonic operator, Variational method, Mountain theorem, Krasnoselskii's genus,(PS) condition.

Abstract

In this work, we study bi-nonlocal elliptic problem involving $\mathrm{p}(\mathrm{x})$-Biharmonic operator. By applying variational method and under the adequate conditions, we prove the existence of nontrivial weak solutions of our problem.

1 Introduction and main result

In this paper, we are interested in the existence of weak solutions for the following fourth order elliptic equations of Kirchhoff type,

$$
\left\{\begin{array}{cc}
M\left(\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)}\right) \Delta_{p(x)}^{2} u=\lambda f(x, u)\left[\int_{\Omega} F(x, u)\right]^{r} & \text { in } \Omega, \tag{1.1}\\
\Delta u=u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N>1)$ is bounded smooth domain, $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ and $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are continuous functions satisfying conditions which will be stated later. $F(x, u)=\int_{0}^{u} f(x, s) d s$, $\lambda \in \mathbb{R}, r>0$ is real parameter.

The study of differential equations and variational problems involving non-local operators have received more and more interest in the last few years, which arises from optimization, finance, continuum mechanics, phase transition phenomena, population dynamics, and game theory, see [2],[3],[4],[11],[14],[15],[16],[17].

Moreover, problem (1.1) involving $\mathrm{p}(\mathrm{x})$-Laplacian operator was initially motivated by Corréa and Augusto Cézar [2],[3]. In [2], when $q^{+}(r+1)<p^{-}$and by Genus theory, the authors proved that the energy functional associated to problem (1.1) has infinitly many solutions. In the [3], when $f(x, u)=|u|^{q(x)-2} u$ in problem (1.1) by using variational methods, they showed the existence of positive solutions for any positive λ.

Recently, F.jaafri , A. Ayoujil and M. Berrajaa in [1], proved the existence of multiple solutions for the following fourth order elliptic equations of Kirchhoff type, with an additional nonlocal term,

$$
\left\{\begin{array}{c}
M\left(\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)}\right) \Delta_{p(x)}^{2} u=\lambda|u|^{q(x)-2} u\left[\int_{\Omega}|u|^{q(x)}\right]^{r} \quad \text { in } \Omega, \tag{1.2}\\
\Delta u=u=0
\end{array} \quad \text { on } \partial \Omega,\right.
$$

In the sequel, this paper is a generalization of the above mentioned paper [1]. More precisely, we treat our problem (1.1) when $q^{+}(r+1)>\alpha^{-}(r+1)>p^{+}>p^{-}$, using the mountain pass theorem, and when the nonlinear term $f(x, u)$ verifies the type of Ambrosetti-Rabinowitz condition which ensures the boundness of the Palais-Smale. In addition to other suitable conditions,
we will show the existence of a weak nontrivial solution. Note that, this case is different from the one in [2].

We assume the following hypotheses M and f there are positive constants $m_{0}, m_{1}, A_{1}, A_{2}$ and functions $\alpha(x), q(x) \in C_{+}(\bar{\Omega})=\{h: h \in C(\bar{\Omega}) ; h(x)>1, \forall x \in \bar{\Omega}\}$, such that

$$
\begin{equation*}
m_{0} \leq M(t) \leq m_{1} \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
A_{1} t^{\alpha(x)-1} \leq f(x, t) \leq A_{2} t^{q(x)-1}, \quad \forall x \in \bar{\Omega}, \quad \alpha(x) \leq q(x) \tag{1}
\end{equation*}
$$

$\left(f_{2}\right) \quad$ there exists $\theta>\frac{m_{1}}{m_{0}}$ such that $0<\theta F(x, s)<(r+1) f(x, s) s$, for all $s>0, x \in \Omega$.
$\left(f_{3}\right) \quad f(x, t)=-f(x,-t), \quad \forall(x, t) \in(\Omega, \mathbb{R})$.
Hereafter, let

$$
p^{*}(x)= \begin{cases}\frac{N p(x)}{N-2 p(x)} & \text { if } p(x)<\frac{N}{2} \\ +\infty & \text { if } p(x) \geqslant \frac{N}{2}\end{cases}
$$

Now we can present our main results.
Theorem 1.1. Suppose $p(x)<q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$ and $\alpha^{-}(r+1)>p^{+}$.
Then for any $\lambda>0$, with $(M 1),(f 1)$ and ($f 2$) satisfied, problem (1.1) has nontrivial solution.
Theorem 1.2. Suppose $p(x)<q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$ and $p^{-}>q^{+}(r+1)$.
Then for any $\lambda>0$, with $(M 1),(f 1)$ and $(f 3)$ satisfied, problem (1.1) has infinitely many solutions.

Remark 1.3. Hypothesis ($f 2$) is type of Ambrosetti-Rabinowitz condition (see [12]). Moreover, condition $(f 2)$ ensures that the Euler-Lagrange functional associated with problem (1.1) possesses the geometry of Mountain Pass theorem and it also guarantees the boundedness of the Palais-Smale sequence corresponding to the Euler-Lagrange's functional.

Problem in the form (1.1), are associated with the energy functional.

$$
J_{\lambda}(u)=\tilde{M}\left(\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)} d x\right)-\frac{\lambda}{r+1}\left[\int_{\Omega} F(x, u) d x\right]^{r+1}
$$

for all $u \in X=\left\{u \in W^{2, p(x)}(\Omega): u=0\right.$ and $\Delta u=0$ in $\left.\partial \Omega\right\}$, more precise estimates concerning this space will be established in Section 2 and $\tilde{M}(t)=\int_{0}^{t} M(s) d s$.
The functional J_{λ} is differentiable and its Fréchet-derivative is given by
$J_{\lambda}^{\prime}(u)(v)=M\left(\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)} d x\right) \int_{\Omega}|\Delta u|^{p(x)-2} \Delta u \Delta v d x-\lambda\left[\int_{\Omega} F(x, u) d x\right]^{r} \int_{\Omega} f(x, u) u v d x$
for all $u, v \in X$.
Thus, the weak solution of problem (1.1), coincides with the critical point of J_{λ}.
This paper is organized as follows: In section 2, we present some preliminaries on the variable exponent spaces. In section 3, we give the proof of our main results.

2 Preliminaries

We start with some preliminary basic results for the variable exponent Lebesgue-Sobolev spaces. For details, see [7],[8]. Define

$$
\forall h \in C_{+}(\bar{\Omega}), h^{-}=\min _{x \in \bar{\Omega}} h(x) \leq h^{+}=\max _{x \in \bar{\Omega}} h(x) .
$$

For $p \in C_{+}(\bar{\Omega})$, we define the variable exponent Lebesgue space

$$
L^{p(x)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { mesurable } ; \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\}
$$

with the norm

$$
|u|_{p(x)}=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{u}{\mu}\right|^{p(x)} d x \leq 1\right\}
$$

and it is a separable and reflexive Banach space.
Proposition 2.1. ([7]) For $u \in L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, we have

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(x)}|v|_{q(x)}
$$

where $\frac{1}{p(x)}+\frac{1}{q(x)}=1$.
Proposition 2.2. ([7]) Let $\rho(u)=\int_{\Omega}|u|^{p(x)} d x$. For $u, u_{n} \in L^{p(x)}(\Omega)$, we have

1. $|u|_{p(x)}<1($ resp $=1,>1) \Leftrightarrow \rho(u)<1($ resp $=1,>1)$.
2. $\min \left(|u|_{p(x)}^{p^{-}},|u|_{p(x)}^{p^{+}}\right) \leqslant \rho(u) \leqslant \max \left(|u|_{p(x)}^{p^{-}},|u|_{p(x)}^{p^{+}}\right)$.
3. $\left|u_{n}(x)\right|_{p(x)} \rightarrow 0(\operatorname{resp} \rightarrow \infty) \Leftrightarrow \rho\left(u_{n}\right) \rightarrow 0(\operatorname{resp} \rightarrow \infty)$.

Define the variable exponent Sobolev space, for any positive integer k, set

$$
W^{k, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega): \quad D^{\alpha} u \in L^{p(x)}(\Omega),|\alpha| \leq k\right\}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{N}\right)$ is a multi-index, $|\alpha|=\sum_{i=1}^{N} \alpha_{i}$ and $D^{\alpha} u=\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \ldots \ldots \partial x_{N}^{\alpha_{N}}}$, with the norm

$$
\|u\|_{k, p(x)}=\sum_{|\alpha| \leq k}\left|D^{\alpha} u\right|_{p(x)}
$$

Then, $W^{k, p(x)}(\Omega)$ also becomes a seperable, reflexive and Banach space. We denote by $W_{0}^{k, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{k, p(x)}(\Omega)$.

Define $\|u\|_{X}=|u|_{p(x)}+|\nabla u|_{p(x)}+\sum_{|\alpha|=2}\left|D^{\alpha} u\right|_{p(x)} \forall u \in X$, the norm associad with the space X, which is equivalent to the norm $|\Delta u(x)|_{p(x)}$ (see [18]).

Let us choose on X the norm defined by

$$
\|u\|=|\Delta u(x)|_{p(x)} .
$$

Note that $(X,\|\cdot\|)$ is also a separable and reflexive Banach space. Similar to Proposition 2.1, we have the following proposition:
Proposition 2.3. [13] Let $I(u)=\int_{\Omega}|\Delta u|^{p(x)} d x$. For $u, u_{n} \in L^{p(x)}(\Omega)$, we have

1. $\|u\|<1($ resp $=1,>1) \Leftrightarrow I(u)<1($ resp $=1,>1)$.
2. $\min \left(\|u\|^{p^{-}},\|u\|^{p^{+}}\right) \leqslant I(u) \leqslant \max \left(\|u\|^{p^{-}},\|u\|^{p^{+}}\right)$.
3. $\left\|u_{n}-u\right\| \rightarrow 0 \Leftrightarrow I\left(u_{n}-u\right) \rightarrow 0$.

Remark 2.4. Let $h \in C_{+}(\overline{\boldsymbol{\Omega}})$ and $h(x)<p^{*}(x)$ for any $x \in \overline{\boldsymbol{\Omega}}$. Then, by ([13], Theorem 3.2), we deduce that X, is continuously and compactly embedded in $L^{h(x)}(\Omega)$.

3 Proofs

3.1 Proof of Theorem 1.1

We apply the Mountain Pass Theorem,

$$
\begin{aligned}
J_{\lambda}(u) & =\tilde{M}\left(\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)} d x\right)-\frac{\lambda}{r+1}\left[\int_{\Omega} F(x, u) d x\right]^{r+1} \\
& \geq \frac{m_{0}}{p^{+}} \int_{\Omega}|\Delta u|^{p(x)} d x-\frac{\lambda}{r+1}\left(\frac{A_{2}}{q^{-}}\right)^{r+1}\left[\int_{\Omega}|u|^{q(x)} d x\right]^{r+1}
\end{aligned}
$$

$\|u\|$ is small enough, such that $\|u\|=\rho \in(0,1)$,

$$
\begin{aligned}
J_{\lambda}(u) & \geq \frac{m_{0}}{p^{+}} \rho^{p^{+}}-\frac{\lambda}{r+1}\left(\frac{A_{2}}{q^{-}}\right)^{r+1} C \rho^{q^{-}(r+1)} \\
& =\rho^{p^{+}}\left[\frac{m_{0}}{p^{+}}-\frac{\lambda}{r+1}\left(\frac{A_{2}}{q^{-}}\right)^{r+1} C \rho^{q^{-}(r+1)-p^{+}}\right] .
\end{aligned}
$$

Since $q^{-}(r+1)>\alpha^{-}(r+1)>p^{+}$, we find positive a, ρ such that

$$
J_{\lambda}(u) \geq a>0
$$

for any $u \in X$ with $\|u\|=\rho$.
Now we choose $\phi \in X, \phi>0$. For $t>1$, we have

$$
J_{\lambda}(t \phi) \leq \frac{m_{1}}{p^{-}} t^{p^{+}} \int_{\Omega}|\Delta \phi|^{p(x)} d x-\frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1} t^{\alpha^{-}(r+1)}\left[\int_{\Omega}|\phi|^{\alpha(x)} d x\right]^{r+1}
$$

Using the fact that $\alpha^{-}(r+1)>p^{+}$, we obtain $J_{\lambda}(t \phi) \rightarrow-\infty$ as $t \rightarrow+\infty$. It follows J_{λ} satisfies the geometry of The Mountain Pass Theorem.

Now to complete the proof, we show that J_{λ} satisfies the (PS) condition. For all sequence $\left(u_{n}\right) \subset X$ such that

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right) \rightarrow c \text { and } J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

From (3.1), (M1) and (f_{2}), we have

$$
\begin{aligned}
c+1+\left\|u_{n}\right\| & \geq J_{\lambda}\left(u_{n}\right)-\frac{1}{\theta} J_{\lambda}^{\prime}\left(u_{n}\right) u_{n} \\
& \geq\left(\frac{m_{0}}{p^{+}}-\frac{m_{1}}{\theta}\right) \int_{\Omega}\left|\Delta u_{n}\right|^{p(x)} d x \\
& +\lambda\left[\int_{\Omega} F\left(x, u_{n}\right) d x\right]^{r}\left(\int_{\Omega} \frac{1}{\theta} f\left(x, u_{n}\right) u_{n} d x-\frac{1}{r+1} \int_{\Omega} F\left(x, u_{n}\right) d x\right) \\
& \geq\left(\frac{m_{0}}{p^{+}}-\frac{m_{1}}{\theta}\right)\left\|u_{n}\right\|^{p^{-}}
\end{aligned}
$$

which is contradiction because $p^{-}>1$. Hence $\left\{u_{n}\right\}$ is bounded in X. By the reflexity of X, for a subsequence still denoted $\left(u_{n}\right)$, such that $u_{n} \rightharpoonup u$ in X.

From

$$
J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

we have

$$
\begin{aligned}
J_{\lambda}^{\prime}\left(u_{n}\right)\left(u_{n}-u\right) & =M\left(\int_{\Omega} \frac{1}{p(x)}\left|\Delta u_{n}\right|^{p(x)} d x\right) \int_{\Omega}\left|\Delta u_{n}\right|^{p(x)-2} \Delta u_{n} \Delta\left(u_{n}-u\right) d x \\
& -\lambda\left[\int_{\Omega} F\left(x, u_{n}\right) d x\right]^{r} \int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) v d x \rightarrow 0
\end{aligned}
$$

By the Hölder inequality, we obtain

$$
\begin{aligned}
\left|\int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) d x\right| & \leq A_{2} \int_{\Omega}\left|u_{n}\right|^{q(x)-1}\left|u_{n}-u\right| d x \\
& \leq\left.\left. C^{\prime}| | u_{n}\right|^{q(x)-1}\right|_{\frac{q(x)}{q(x)-1}}\left|u_{n}-u\right|_{q(x)}
\end{aligned}
$$

Since $q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$, we deduce that X is compactly embedded in $L^{q(x)}$, hence $\left(u_{n}\right)$ converges strongly to u in $L^{q(x)}$, then

$$
\int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0
$$

From the definition of f and when $\left(u_{n}\right)$ is bounded, there exist nonnegative constants $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ such that

$$
C^{\prime \prime} \leq\left[A_{1} \int_{\Omega} \frac{1}{\alpha(x)}\left|u_{n}\right|^{\alpha(x)} d x\right]^{r} \leq\left[\int_{\Omega} F\left(x, u_{n}\right) d x\right]^{r} \leq\left[A_{2} \int_{\Omega} \frac{1}{q(x)}\left|u_{n}\right|^{q(x)} d x\right]^{r} \leq C^{\prime \prime \prime}
$$

we obtain

$$
\left[\int_{\Omega} F\left(x, u_{n}\right) d x\right]^{r} \int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0
$$

From $M 1$, we have also

$$
L_{p(x)}\left(u_{n}\right)\left(u_{n}-u\right)=\int_{\Omega}\left|\Delta u_{n}\right|^{p(x)-2} \Delta u_{n} \Delta\left(u_{n}-u\right) d x \rightarrow 0
$$

By the Proposition 2.5(ii) in [5], $L_{p(x)}$ satisfies condition S_{+}, we have $u_{n} \rightarrow u$ in X. Hence J_{λ} satisfies the $(P S)$ condition.

We denote that Proof of Theorem 1.2 is similar of [2].

3.2 Proof of Theorem 1.2

By $\left(f_{3}\right)$ we know that J_{λ} is even, next we will prove the two important lemmas for our proof.
Lemma 3.1. J_{λ} is bounded from below.
Proof. From (M1) and $\left(f_{1}\right)$, we have

$$
\begin{aligned}
J_{\lambda}(u) & =\tilde{M}\left(\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)} d x\right)-\frac{\lambda}{r+1}\left[\int_{\Omega} F(x, u) d x\right]^{r+1} \\
& \geq \frac{m_{0}}{p^{+}} \int_{\Omega}|\Delta u|^{p(x)} d x-\frac{\lambda}{r+1}\left(\frac{A_{2}}{q^{-}}\right)^{r+1}\left[\int_{\Omega}|u|^{q(x)} d x\right]^{r+1}
\end{aligned}
$$

Taking $\|u\| \geq 1$, we have

$$
J_{\lambda}(u) \geq \frac{m_{0}}{p^{+}}\|u\|^{p^{-}}-\frac{\lambda}{r+1}\left(\frac{A_{2}}{q^{-}}\right)^{r+1} c^{\prime}\|u\|^{q^{+}(r+1)}
$$

So J_{λ} is bounded from below, because $p^{-}>q^{+}(r+1)$ and the lemma is proved.
Lemma 3.2. J_{λ} satisfies the $(P S)$ condition.
Proof. Let $\left(u_{n}\right)$ has a convergent subsequence in X, such that

$$
J_{\lambda}\left(u_{n}\right) \rightarrow d \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

Then, by the ceorcivity of J_{λ}, the sequence $\left(u_{n}\right)$ is bounded in X. By the reflexity of X, for a subsequence still denoted $\left(u_{n}\right)$, such that $u_{n} \rightharpoonup u$ in X. Similar to proof of theorem 1.1 we deduce that $u_{n} \rightarrow u$ in X.

In the sequel, for each $k \in \mathbb{N}$ consider $X_{k}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, \ldots ., e_{k}\right\}$, the subspace of X (see Theorem 4.1 in [2]). Note that $X_{k} \hookrightarrow L^{\alpha(x)}(\Omega), 1<\alpha(x)<p^{*}(x)$ with continuous immersions. Thus, the norm $X, L^{\alpha(x)}(\Omega)$ are equivalent on X_{k}.

Note that using (M1) and $\left(f_{1}\right)$, we obtain

$$
\begin{aligned}
J_{\lambda}(u) & \leq \frac{m_{1}}{p^{-}}\left(\int_{\Omega}|\Delta u|^{p(x)}\right)-\frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1}\left(\int_{\Omega}|u|^{\alpha(x)}\right)^{r+1} \\
& \leq \frac{m_{1}}{p^{-}}\|u\|^{p^{-}}-\frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1} C(k)\|u\|^{\alpha^{+}(r+1)}
\end{aligned}
$$

where $C(k)$ is a positive constant and $\|u\|$ is small enough. Hence,

$$
J_{\lambda}(u) \leq\|u\|^{\alpha^{+}(r+1)}\left[\frac{m_{1}}{p^{-}}\|u\|^{p^{-}-\alpha^{+}(r+1)}-\frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1} C(k)\right]
$$

Let R be a positive constant such that

$$
\frac{m_{1}}{p^{-}} R^{p^{-}-\alpha^{+}} \leq \frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1} C(k)
$$

Thus, for all $0<r_{0}<R$, and considering $K=\left\{u \in X:\|u\|=r_{0}\right\}$, we obtain

$$
\begin{aligned}
J_{\lambda}(u) & \leq r_{0}^{\alpha^{+}(r+1)}\left[\frac{m_{1}}{p^{-}} r_{0}^{p^{-}-\alpha^{+}(r+1)}-\frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1} C(k)\right] \\
& <R^{\alpha^{+}(r+1)}\left[\frac{m_{1}}{p^{-}} R^{p^{-}-\alpha^{+}(r+1)}-\frac{\lambda}{r+1}\left(\frac{A_{1}}{\alpha^{+}}\right)^{r+1} C(k)\right]<0=J_{\lambda}(0)
\end{aligned}
$$

Which implies

$$
\sup _{K} J_{\lambda}(u)<0=J_{\lambda}(0)
$$

Because X_{k} and \mathbb{R}^{k} are isomorphic and K and S^{k-1} are homeomorphic, we conclude that $\gamma(K)=k$. By the Clark theorem, J_{λ} has at least k different critical points. Because k is arbitrary, we obtain infinitely many critical points of J_{λ}.

References

[1] F.jaafri, A. Ayoujil and M. Berrajaa, On a bi-nonlocal fourth order elliptic problem, Proyecciones Journal of Mathematics .Vol. 40, No 1, 235-249(2021).
[2] F.J.S. A. Corréa and A.C.R. Costa, On a bi-nonlocal p(x)-Kirchhoff equation via Krasnoselskii's genus, Math. Meth. Appl. Sci. doi: $10.1002 / \mathrm{mma}$.3051, 38, 87-93(2014).
[3] F.J.S. A. Corréa and A.C.R. Costa, A variational approach for a bi-nonlocal elliptic problem involving the $p(x)$-Laplacian and non-linearity with non-standard growth, Glasgow Mathematical Journal,56.2, 317333(2014).
[4] Avci, Mustafa, Bilal Cekic, and Rabil A. Mashiyev. Existence and multiplicity of the solutions of the $p(x)$ Kirchhoff type equation via genus theory, Mathematical methods in the applied sciences 34.14: 17511759(2011).
[5] A. Ayoujil and A.R. El Amrouss, Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent.Electron. J. Differ. Equ.24, 1-12.(2011).
[6] F.J.S. A. Corréa and A.C.R. Costa, On a p(x)-Kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term, Funkcialaj Ekvacioj 58.3: 321-345(2015).
[7] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl,263, 424-446 (2001).
[8] X. L. Fan, J.S. Shen and D.Zhao, Sobolev embedding theorems for spaces $W^{m, p(x)}(\Omega)$, J. Math.Anal. Appl,262, 749-760(2001).
[9] R. Kajikiam, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal,225, 352-370(2005).
[10] T. Ma,Existence results for a model of nonlinear beam on elastic bearings,Appl. Math. Lett,13, 1115(2000).
[11] Hamdani, Mohamed Karim, et al. Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Analysis 190, 111-598(2020).
[12] F. Colasuonno, P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal.74(17), 5962-5974(2011).
[13] A. Ayoujil and A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal.71, 4916-4926(2009).
[14] A. Mao and W. Wang, Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in \mathbb{R}^{3}, J. Math. Anal. Appl. 459, 556-563(2018).
[15] A. Mao and W. Wang, Signed and sign-changing solutions of bi-nonlocal fourth order elliptic problem, J. Math. Phys. 60, https://doi.org/10.1063/1.5093461, 051513 (2019).
[16] F. Wang, T. An and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type on \mathbb{R}^{N}, Electron. J. Qual. Theory Differ. Equations,39, 1-11(2014).
[17] J. Yaghoub, Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions,Bulletin of the Iranian Mathematical Society 42, 3, 611-626(2016).
[18] A. Zanga and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lobegue Sobolev spaces, Non Analysis TMA,69, 3626-3636(2008).
[19] O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton (1958).

Author information

F. Jaafri, A. Ayoujil and M. Berrajaa, University Mohamed I, Faculty of sciences, laboratory LaMAO, Oujda, Morocco..
E-mail: jaafri.fatna.sma@gmail.com
Received: August 27, 2021.
Accepted: December 23, 2021.

