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Abstract We express the Riemann zeta function ζ(z) in power series form, which we
then use to calculate an approximate Riemann zeta function ζa(z). We then calculate
the zeros of ζa(z) and obtain some findings about these zeros.

1 Introduction

In the eighteenth century Leonhard Euler studied and introduced the following series,

ζ(s) =
∞

∑
n=1

1
ns , (1.1)

for s ≥ 1. He used only real numbers because complex analysis was not yet available
at the time. In 1737 Euler proposed the Euler product formula [1],

∞

∑
n=1

1
ns = ∏

p prime

(
1 − p−s)−1, (1.2)

which was rigorously proved by Leopold Kronecker in 1876. The Euler product for-
mula forms a connection between prime numbers and the Euler zeta function (1.1) and
therefore links number theory and analysis. In 1849 Carl Gauss revealed that he had
been working on a related problem on the density of prime numbers. His observation
is known as the prime number theorem and states that [2],

π(x) ≈ x
log x

, (1.3)

as x → ∞ and where π(x) is the number of primes at most x. Where 1 is not considered
to be a prime and log x ≡ ln x. Gauss later refined the prime number theorem to,

π(x) ≈ Li(x) =
∫ x

2

dt
log t

, (1.4)

as x → ∞. In 1850 Pafnuty Chebyshev showed that [2],

0.89 Li(x) < ß(x) < 1.11 Li(x), (1.5)

for all sufficiently large x. He then extended the definition of the Euler zeta function
(1.1) to complex numbers z ∈ C where ℜ(z) > 1 and showed that [3],

ζ(z) =
z

z − 1
+

1
Γ(z)

∫ ∞

0

(
1

ex − 1
− 1

x

)
e−xxz−1dx. (1.6)

In 1859 Bernhard Riemann used the extension of Euler’s product formula to the com-
plex plane and Chebyshev’s result (1.6) to calculate the analytic continuation of ζ(z)
to the entire complex plane given by [1],

ζ(z) = 2zπz−1 sin
(

πz
2

)
Γ(1 − z)ζ(1 − z). (1.7)
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Riemann used his result (1.7) to study the zeros of ζ(z) and proposed that all non-
trivial zeros of ζ(z) lie on the line z = 1

2 + iy, where y ∈ R. Sometime after this, ζ(z)
became known as the Riemann zeta function.

The analytic continuation of ζ(z) to ℜ(z) > 0 is calculated as follows,
∞

∑
n=1

(−1)n

nz +
∞

∑
n=1

1
nz = 2

∞

∑
n=2,4,...

1
nz

= 2
∞

∑
k=1

1
(2k)z

= 21−z
∞

∑
k=1

1
kz ,

then rewriting this in terms of ζ(z) gives,
∞

∑
n=1

(−1)n

nz + ζ(z) = 21−zζ(z), (1.8)

which ultimately gives [4],

ζ(z) =
1

1 − 21−z

∞

∑
n=1

(−1)n−1

nz . (1.9)

In this work we use (1.9) as a starting point and we derive a power series representation
of ζ(z) in section 2. This allows us to use the tools of power series in order to study
the zeros of the Riemann zeta function. In section 3 we calculate a few coefficients
of this power series and use the results to approximate a general formula for the
coefficients. In section 4 we use the results of section 3 to calculate an approximation
of the Riemann zeta function that we denote with ζa(z) and we compare some values
of ζa(z) and ζ(z). In section 5 we calculate the zeros of ζa(z) and discuss some of their
properties. Then we compare some of these zeros to some of the non-trivial zeros of
ζ(z). In section 6 we do a calculation in order to answer a question we have about the
zeros of ζa(z).

2 Expressing ζ(z) in power series form

Let z ∈ C, then the Riemann zeta function is given by,

ζ(z) =
∞

∑
n=1

1
nz , (2.1)

and is defined for ℜ(z) > 1. However as we stated in the previous section an analytic
continuation of this function exists and is given by,

ζ(z) =
1

1 − 21−z

∞

∑
n=1

(−1)n−1 1
nz , (2.2)

which is defined for ℜ(z) > 0 and diverges at z = 1. The Mclaurin series for ez is given
by,

ez =
∞

∑
m=0

zm

m!
. (2.3)

We can also write nz = elog nz
= ez log n. This then implies that n−z = e−z log n and if we

substitute this into (2.3) we get the following,

n−z =
∞

∑
m=0

(−1)m zm (log n)m

m!
. (2.4)
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This then implies that,

∞

∑
n=1

(−1)n−1 n−z =
∞

∑
n=1

(−1)n−1
∞

∑
m=0

(−1)m zm (log n)m

m!
. (2.5)

If we expand the right-hand side of (2.5) we get the following,

∞

∑
n=1

(−1)n−1 n−z =
1
0!

[
∞

∑
m=1

(−1)m−1

]
z0 − 1

1!

[
∞

∑
m=1

(−1)m−1 log m

]
z

+
1
2!

[
∞

∑
m=1

(−1)m−1 (log m)2

]
z2 − ...,

(2.6)

and we can then express (2.6) in the following simplified form,

∞

∑
n=1

(−1)n−1 n−z =
∞

∑
n=0

(−1)n kn
zn

n!
, (2.7)

where,

kn =
∞

∑
m=1

(−1)m−1 (log m)n, (2.8)

for all n = 0, 1, 2, .... So we can now write the Riemann zeta function (2.2) as follows,

ζ(z) =
1

1 − 21−z

∞

∑
n=0

(−1)n kn
zn

n!
. (2.9)

3 Calculating the kn’s

In the previous section we expressed the Riemann zeta function in power series form,
which will allow us to use the techniques of power series to study the Riemann zeta
function. Our task now is to calculate the kn’s. We will calculate 30 of them and
study the pattern they follow in order to write a general formula for them. The
kn’s are given by (2.8), so in order to calculate them we have to calculate the sum
∑∞

m=1(−1)m−1 (log m)n for n = 0, 1, 2, ... . In order to calculate these sums we use
Cesàro summation defined below.

Definition 3.1. A sequence (am) is called Cesàro summable with Cesàro sum A ∈ R if
as m tends to infinity, the arithmetic mean of its first m partial sums s1, s2, ..., sm tends
to A. That is [5],

lim
m→∞

s1 + s2 + ... + sm

m
= A.

Two of the properties of Cesàro summation are:

(i) If a series converges then it’s also Cesàro summable and its sum is equal to its
Cesàro sum.

(ii) If a series diverges but is Cesàro summable then its Cesàro sum is its sum.

We first calculate ∑∞
m=1(−1)m−1 (log m)n for n = 0, which when expanded gives,

∞

∑
m=1

(−1)m−1 = 1 − 1 + 1 − 1 + ..., (3.1)
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which is known as Grandi’s series. We let am = (−1)m−1, then the m-th partial sum of
this series is given by sm = a1 + a2 + ... + am. The arithmetic mean of its first m partial
sums is given by,

cm =
s1 + s2 + ... + sm

m
. (3.2)

Using formula (3.2) we calculate a few cm’s for Grandi’s series analytically and find
that they quickly converge to 1

2 . Therefore k0 = 1
2 . We notice that the bigger n gets the

slower cm converges for ∑∞
m=1(−1)m−1 (log m)n. We also find that for n = 1, 2, 3, ..., cm

can be expressed as follows,

cm =
∑m

i=2(−1)i+1 (m − (i − 1)) (log i)n

m
. (3.3)

Table 1.
n 1 2 3 4 5 6 7 8

kn −0.2250 −0.0600 0.0200 0.0500 0.0374 0.0034 −0.0300 −0.0583

Table 2.
n 9 10 11 12 13 14 15 16

kn −0.0500 −0.0090 0.0694 0.1586 0.2082 0.1438 −0.1142 −0.6011

Table 3.
n 17 18 19 20 21 22 23 24

kn −1.2207 −1.6221 −1.0871 1.4560 7.0560 15.6420 23.8103 21.4361

We use formula (3.3) to write computer code to calculate kn for n = 1, 2, ..., 30. The
results of this are shown in the tables 1 to 4. We then plot the kn’s in order to study
their behaviour, see figure 1. We find that the kn’s generally have a behaviour that is
oscillatory with increasing amplitude. We then fit a curve to this kn data, see figure 2.

5 10 15 20 25

-6

-4

-2

2

4

6

Figure 1. The horizontal axis displays the values of n and the vertical axis displays the
values of kn.
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Table 4.
n 25 26 27 28 29 30

kn −11.7646 −105.7842 −286.9028 −535.0485 −690.4405 −297.3133

5 10 15 20 25 30

-60

-40

-20

20

Figure 2. We fit a curve to the kn values plotted in figure 1.

As we can see in figure 2, the curve doesn’t fit the data perfectly but it approximates
it and models its general behavior. Therefore we can use this curve to predict future
values of kn. Therefore we have that,

kn ≈ e0.458187n sin(28.2652 + 0.000378965n), (3.4)

which is the function that generates the curve in figure 2.

4 Approximating the Riemann Zeta Function

If we let a = 0.458187, b = 28.2652 and c = 0.000378965 and then substitute (3.4) into
(2.9) we get,

ζ(z) ≈ 1
1 − 21−z

[
1
2
+

∞

∑
n=1

(−1)n ean sin(b + cn)
zn

n!

]
. (4.1)

Using the ratio test we find that (4.1) converges and has radius of convergence R = ∞.
Therefore we write computer code to calculate (4.1) and we get,

ζ(z) ≈ 1
1 − 21−z

[
1
2
+ Aeα1z

(
B + Ceα2z − Deα3z

)]
, (4.2)

where,

A = 0.00456688 − 0.49997i,

B = −0.999833 + 0.0182667i,

C = 1,

D = 0.000166851 + 0.0182667i,

α1 = −1.5812 − 0.000599221i,

α2 = 0.00119844i,

α3 = 1.5812 + 0.000599221i.

(4.3)
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Table 5.
z ζa(z) ζ(z)

0 − 1
2 − 1

2

2 0.98261 1.64493

3 0.65462 1.20206

4 0.56101 1.08232

5 0.52360 1.03693

6 0.50670 1.01734

7 0.49866 1.00835

8 0.49473 1.00408

9 0.49279 1.00201

10 0.49183 1.00099

0 2 4 6 8 10

-4

-2

0

2

4

Figure 3. Contour-plot of |ζa(x + iy)| for 0 ≤ x ≤ 10 and −5 ≤ y ≤ 5.

The function (4.2) is defined for all z ∈ C accept for at z = 1 and the approximation
is valid for ℜ(z) ≥ 0. If we denote the approximate Riemann zeta function (4.2) with
ζa(z) and compare it with the exact Riemann zeta function ζ(z) for
z = 0, 2, 3, .., 10, we get the results in table 5. Figure 3 and 5 show contour plots
for ζa(z) and figure 4 and 6 show contour plots for ζ(z). The results in table 5 and
the contour plots of ζa(z) and ζ(z) show that ζa(z) approximates ζ(z) not perfectly
but nonetheless ζa(z) models the behaviour of ζ(z) and we can possibly improve the
precision of the approximation.
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Figure 4. Contour-plot of |ζ(x + iy)| for 0 ≤ x ≤ 10 and −5 ≤ y ≤ 5.
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Figure 5. Unshaded contour-plot of |ζa(x + iy)| for 0 ≤ x ≤ 3 and −3 ≤ y ≤ 3.
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Figure 6. Unshaded contour-plot of |ζ(x + iy)| for 0 ≤ x ≤ 3 and −3 ≤ y ≤ 3.

5 Finding The Zeros of ζa(z)

We now calculate the zeros of ζa(z) and study their behavior. We therefore have to
solve ζa(z) = 0 which implies that,

1
2
+ Aeα1z

(
B + Ceα2z − Deα3z

)
= 0. (5.1)

If we let z = x + iy and expand equation (5.1) using Euler’s formula which is given by,

eiθ = cos(θ) + i sin(θ), (5.2)
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we get the following simultaneous equations,



(4.5668 × 10−3)

[
F1 cos(F2x + F3y) + G1 cos(−F2x + F3y)

]
+ (0.499969927)

[
− F1 sin(F2x + F3y) + G1 sin(−F2x + F3y)

]
= −0.4908672,

(5.3)

(4.5668 × 10−3)

[
F1 sin(F2x + F3y) + G1 sin(−F2x + F3y)

]
+ (0.499969927)

[
F1 cos(F2x + F3y)− G1 cos(−F2x + F3y)

]
= −8.3420 × 10−5,

(5.4)

where,

F1 = e(−1.5812x+0.000599221y),

F2 = −0.000599221,

F3 = −1.5812,

G1 = e(−1.5812x−5.99219×10−4y),

G2 = −F2,

G3 = F3.

(5.5)

-10 -5 0 5 10

-10

-5

0

5

10

Figure 7. The solutions of the simultaneous equations (5.3) and (5.4) for -10 ≤ x ≤ 10
and −10 ≤ y ≤ 10. Where the blue curve cuts the yellow curve is where the solutions
lie.
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0
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Figure 8. The solutions of the simultaneous equations (5.3) and (5.4) for -50 ≤ x ≤ 50
and −50 ≤ y ≤ 50. Where the blue curve cuts the yellow curve is where the solutions
lie.

When we plot the solutions of the simultaneous equations (5.3) and (5.4) we get the
results in figure 7 and 8. In these plots, where the blue curve and the yellow curve
intersect is where the zeros of ζa(z) lie. We can see from the plots that these two curves
intersect along a vertical line. This is behavior that we expected from an approximate
function of the Riemann zeta function. When we solve the simultaneous equations
(5.3) and (5.4) numerically we find that the zeros of ζa(z) are given by,

z = −2 + i(4n + 10.1638), (5.6)

for all n ∈ Z. As we can see, the expression (5.6) shows that the zeros of ζa(z) lie on
the vertical line z = −2 + iy, where y ∈ R. As we mentioned before we expected this
behavior since ζa(z) approximates ζ(z). We also think that if we improve the precision
at which ζa(z) approximates ζ(z) then the vertical line where its zeros lie will coincide
with z = 1

2 + iy, where y ∈ R, which is the vertical line where the zeros of ζ(z) lie.
In table 6, we compare 22 zeros of ζa(z) and ζ(z). The table lists the imaginary parts.
Table 6 shows that even though the imaginary parts of the zeros of ζa(z) and ζ(z) don’t
exactly coincide, they’re however still not far from each other.

6 More on The Zeros of ζa(z)

Now we want to know whether ζa(z) has any zeros outside of (5.6). In order to find
out, we first reduce equation (5.1) into a simpler approximate form. We first rearrange
(5.1) and write it as follows,

Ceα2z − Deα3z = −B −
(

1
2

)
A−1e−α1z. (6.1)
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Table 6.
ζa(z) ζ(z)

14.1638 14.1347

18.1995 21.0220

22.2289 25.0109

26.2523 30.4249

30.2700 32.9351

34.2826 37.5862

38.2908 40.9187

42.295 43.3271

46.2958 48.0052

50.2936 49.7738

54.289 52.9703

58.2821 56.4462

62.2733 59.3470

66.2628 60.8318

70.2509 65.1125

74.2377 67.0798

78.2234 69.5464

82.2081 72.0672

86.1919 75.7047

90.175 77.1448

94.1573 79.3374

98.139 82.9104

Now (4.3) shows that C = 1 and α2 = 0.00119844i ≈ 0. This therefore implies that
Ceα2z ≈ e0 = 1. Therefore (6.1) reduces to,

1 − Deα3z ≈ −B −
(

1
2

)
A−1e−α1z. (6.2)

We then note that −α1 = α3, which further reduces (6.2) to,[
− D +

(
1
2

)
A−1

]
eα3z ≈ −(B + 1). (6.3)

We can also see in (4.3) that D = 0.000166851 + 0.0182667i which is approximately
0.0182667i. We also have that B = −0.999833 + 0.0182667i which implies that −(B +
1) ≈ −0.0182667i. When we substitute this approximate D and −(B+ 1) into equation
(6.3) we get, [

− 0.0182667i +
(

1
2

)
A−1

]
eα3z ≈ −0.0182667i. (6.4)

From (4.3) we also have that A = 0.00456688 − 0.49997i which implies that
A−1 = 0.0182697 + 2i. When we substitute A−1into equation (6.4) we get that eα3z ≈
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−1.7312 × 10−4i − 0.0186 which is approximately −0.0186. Therefore through approx-
imation equation (5.1) reduces to,

eα3z ≈ −0.0186. (6.5)

Let’s suppose that there exists a + bi where a + bi ̸= −2+ i(4n + 10.1638) for all n ∈ Z

such that,
eα3(a+bi) ≈ −0.0186. (6.6)

Since a + bi ̸= −2 + i(4n + 10.1638) for all n ∈ Z, we have that a ̸= −2 and that
b ̸= 4n + 10.1638 for all n ∈ Z. Which then implies that there exists δ ∈ R where δ ̸= 0
such that a = −2 + δ. It also implies that for each n ∈ Z there exists ϵ ∈ R where
ϵ ̸= 0 such that b = (4n + 10.1638) + ϵ. This then implies that,

e
α3

(
[−2+δ]+i[(4n+10.1638)+ϵ]

)
≈ −0.0186. (6.7)

Expanding equation (6.7) using Euler’s formula gives us the following equations,

{
(−2.2755) cos(16.071 + 6.3248n) = e−1.5812δ cos(−1.5812ϵ), (6.8)

(−2.2755) sin(16.071 + 6.3248n) = e−1.5812δ sin(−1.5812ϵ). (6.9)

Suppose that,
cos(θ1)

cos(θ2)
=

sin(θ1)

sin(θ2)
, (6.10)

which then implies,
sin(θ1) cos(θ2)− sin(θ2) cos(θ1) = 0. (6.11)

Equation (6.11) then implies that,

sin(θ1 − θ2) = 0. (6.12)

If we let θ1 = −1.5812ϵ and θ2 = 16.071 + 6.3248n then we get,

sin
[
− 1.5812ϵ − (16.071 + 6.3248n)

]
= 0. (6.13)

As we’ve stated before, for each n ∈ Z there exists ϵ ∈ R where ϵ ̸= 0 such that
b = (4n + 10.1638) + ϵ. This implies that there exists pairs (n, ϵn) such that
b = (4n + 10.1638) + ϵn for all n ∈ Z. We also have that,

−α3b = −1.5812ϵn − 16.071 − 6.3248n, (6.14)

for all n ∈ Z and this means that (6.13) implies the following,

sin
[
− 1.5812ϵn − 16.071 − 6.3248n

]
= 0, (6.15)

for all n ∈ Z. This then implies that there exists k ∈ Z such that,

−1.5812ϵn − 16.071 − 6.3248n = kπ, (6.16)

for all n ∈ Z. Which then implies that,

ϵn =
kπ + 16.071 + 6.3248n

−1.5812
, (6.17)

for all n ∈ Z. So for n = 0 (6.17) gives,

ϵ0 =
kπ + 16.071
−1.5812

. (6.18)
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So if we write ϵn in terms of ϵ0 for all n = 1, 2, 3, ... we get the following formula,

ϵn = ϵ0 − 4n, (6.19)

for all n ∈ Z \ {0}. If we let k = 1 then (6.18) gives ϵ0 ≈ −12.1506 and we use this
with (6.19) to generate pairs (n, ϵn) for which we find that b = −1.9868, δ = −0.51998
and a = −2.51998. This therefore implies that,

a + bi = −2.51998 − 1.9868i. (6.20)

We find that (6.20) does indeed satisfy (6.5) and that,

ζa(−2.51998 − 1.9868i) = −0.00638676 + 0.00651022i ≈ 0. (6.21)

So we have shown that ζa(z) does have at least one zero outside of (5.6) and it’s given
by (6.20).
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