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Abstract Let G = (V,E) be a connected graph with diameter d and order n. A non-empty
subset X of V is called a resolving set if for each pair u, v ∈ V such that u ̸= v, then there is a
vertex x in X satisfies d(x, u) ̸= d(x, v). The minimum cardinality of all such resolving sets is
called the resolving number of G. Let X be a non-empty minimum cardinality resolving set of G.
An injection σ : V (G) → N is said to be a radio resolving labelling if d (u, x)+|σ (u)− σ(x)| ≥
1+ d, ∀ u ∈ V \X , x ∈ X, where d (u, x) is the distance between u and x. The radio resolving
number of σ denoted rβ(σ) is the biggest number labelled under the mapping σ. The minimum
taken over all rβ(σ) is called radio resolving number, denoted by rβ (G) . If rβ (G) = n, then
G is called radio resolving graceful graph. In this research article, we introduce the concept of
radio resolving number and present some results connecting the radio resolving number with
resolving number and radio number. Further, we investigate the exact radio resolving number
for complete graph, path, cycle, star graph, complete k−partite graph, and complete binary tree.

1 Introduction

With the exceptional capabilities of 5G, it virtually connects everything together including ob-
jects, communication devices, and machines. Due to the introduction of 5G in the market place,
the efficiency of robotic process automation (RPA) has been enhanced in several ways. Today in
the world of modern technology, the robotic systems are used in the field of Health care, vehicle
automation, and smart industries. In the medical field, RPA plays a major role in urologic, cardio-
thoracic, neck, head, gynaecologic, and general surgeries [1]. Due to the growing needs of robots
in medical field, nowadays the designers and manufacturers of robots are focusing on enhancing
the robotic capabilities to meet the same. Robotic surgery systems are computer-controlled, and
therefore, sensitive electronic components must be shielded from radio frequency interference
(RFI). Radio frequency interference (RFI) or electromagnetic interference (EMI) happens when
an electromagnetic field of a natural source or device interferes with another system or device,
resulting in both of them getting distorted [2, 3]. These problems make the robots to act un-
expectedly such as, moving unintentionally, showing a limited radio frequency range, affecting
other nearby robots, and requiring frequent restarts. Hence, the robotic developers must under-
stand the radio frequency interference undoubtedly and take appropriate steps to prevent it. To
avoid this frequency interference between the robot, we introduce the concept of radio resolv-
ing number problem which helps monitor the robot’s positions and avoid the radio frequency
interference from other devices.

Samir et al. [4] described the navigation of robots in a graph-structured framework, which
can move from a verted to vertex of a graph-space. It can navigate itself by sensing the distances
to a set of labelled vertices of resolving set (landmark nodes) in the graph-space. Evidently, if
the robot knows its distances to a large set of landmarks, its location on the graph is uniquely
determined. A smallest non-empty resolving set which uniquely determines the robot’s location
is called a minimum resolving set and its cardinality is called the resolving number or minimum
metric dimension of a graph. The graph theoretical definition of the above problem was first
formulated by Harary et al. [5] as follows: Let G = (V,E) be a connected graph with diameter
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d and order n. A non-empty subset X of V is called a resolving set if for each pair u, v ∈ V such
that u ̸= v, then there is a vertex x in X satisfies d(x, u) ̸= d(x, v). The minimum cardinality
of all such resolving sets is called the resolving number of G. It is denoted by dim(G) or β(G).
This problem and its application have been studied in various fields such as pharmaceutical
chemistry [6], combinatorial optimization [7], and robot navigation [4].

Avoiding the radio frequency interferences between the transmitters on assigning the chan-
nels to the radio stations was extensively studied in [8, 9] as a radio labelling problem. This
radio labelling problem was formulated from the real-life problem of frequency assignment to
radio transmitters based on the shortest distance between the radio transmitters. According to
the pre-established bandwidth assigned by the federal radio commission, if there is a large net-
work of transmitters spread out in a geographical area, then the channel assignment problem
is to assign a frequency (numerical value) to each transmitter without co-channel interference.
To avoid such interferences, few separation constraints must be satisfied between the channels
allotted to nearby radio transmitters. The main goal of this problem is to maximize the num-
ber of channels in a geographical area by minimizing the usage of allotted portion of frequency
bandwidth without radio frequency interference. In 2001, Chartrand et al. [8] was fascinated
by this frequency assignment problem and introduced a classical graph vertex-labelling prob-
lem called radio number which includes the difference between frequencies and the distance
between the transmitters as its parameters. A radio labelling σ of a connected graph G = (V,E)
with diameter d is a mapping of distinct natural numbers to V (G) satisfying the radio condition
| σ (u) σ (w)| + d (u,w) ≥ 1 + d, ∀ u, w ∈ V (G) . The maximum number assigned to any
vertex of G under the mapping σ is called the radio number of σ and its denoted by rn (σ) . The
minimum taken overall labellings of G denoted rn(G), is called the radio number of G. This
problem is also proved as NP-complete problem [10] and its application to channel allocation in
radio networks has been broadly studied in [11, 12].

Using both the concepts of resolving number and the radio number, we are introducing a new
vertex labelling technique called radio resolving number as follows: Let G = (V,E) be a graph
with order n and diameter d. Let X be a non-empty minimum cardinality resolving set of G. An
injection σ : V (G) → N is said to be a radio resolving labelling if d (u, x) + |σ (u)− σ(x)| ≥
1+ d, ∀ u ∈ V \X , x ∈ X, where d (u, x) is the distance between u and x. The radio resolving
number of σ denoted rβ(σ) is the biggest number labelled under the mapping σ. The minimum
taken over all rβ(σ) is called radio resolving number. It is denoted by rβ (G) . If rβ (G) = n,
then G is called radio resolving graceful graph. The following example in Figure 1, illustrates
the definition of radio resolving number of a graph G:

Figure 1. A graph G and its different radio resolving labellings
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In Figure 1(a), we have given a graph G with V = {v1, v2 . . . v7} and X = {v5, v7} as its ver-
tex set and resolving set, respectively. Also, from Figure 1(b) to 1(e) the different radio resolving
labelling’s for G and their radio resolving number under the mappings are illustrated. From the
definition, radio resolving number of G is obtained by finding the minimum value among all
rβ (σ). That is, rβ (G)= min {rβ (σ1) , rβ (σ2) , rβ (σ3) , rβ (σ1)} = {10, 9, 8, 8} = 8.
For this particular example, rβ (G) > n, where n is the number of vertices. For solving this
problem, we first need to find the minimum resolving set. However, by the method of reduc-
tion from 3-dimensional matching problem, Garey et al. [13] proved that finding the minimum
resolving set for general graphs is NP-complete. Hence, computing the radio resolving number
for general graph is a non-trivial problem.

2 Application of Radio Resolving Number

As more medical companies seek robots for increasingly complex tasks of robotic-assisted surg-
eries, robotic systems developers tend to build these robots with a sophisticated robotic control
and tasking software without radio frequency interference. Motion Control software in robotic
system enables articulated arms to move through the action of rotating and sliding joints, to
move through locomotion and steering. This controlled motion enables these complex tasks to
be achieved with whatever end effector is appropriate on the robot [1]. In the motion control,
the methodology of obtaining the precise location of the robot or its nearby systems are often
posing challenge due to several other factors like global positioning system (GPS) limitations or
correlating the positioning information with the neighbouring systems. In either scenario, the
received radio signals can be used by a robot to infer positioning information, but the process
is challenging because of the radio frequency interference [2, 3]. Since the robotic surgery sys-
tems are computer-controlled, the sensitive electronic components must be shielded from radio
frequency interference. Otherwise, if it gets to interfere with other natural sources or devices
and gets distorted, which may result in poor controlled surgery in turn will give unwanted results
of the surgical procedures. These motion control and avoiding radio frequency interference of
robots are studied in a graph-space using radio resolving number. Let us consider a robot that
is navigating in the graph-space and is modelled by a graph G = (V,E). The main goal is to
avoid the radio frequency interference between nearby robots or other natural sources and wants
to know its current location. By computing the minimum resolving set for a graph, the robot
can find its distance from its current location by sending signals to the vertices of the minimum
resolving set or landmarks. This process can be done by finding the minimum resolving set as
in the first part of the definition of radio resolving labelling. The next goal of avoiding the radio
frequency interference of a robot is taken care by the radio labelling condition technique between
any other device or natural source position u in V \X to the vertex (a landmark of the robot’s
position) x of a minimum resolving set X . It is illustrated diagrammatically in Figure 2.

3 General Results on Radio Resolving Number

In this section, we have proved certain general results of radio resolving number with the aid
of known theorems. First, we have listed few theorems proved by Chartrand et al. [8, 14] in
minimum metric dimension or minimum resolving set.

Theorem 3.1. If G is a connected graph of order n⩾2 and diameter d, then 1 ≤ dim(G) ⩽ n−1.

Theorem 3.2. A connected graph G of order n has dimension 1 if and only if G = Pn.

Theorem 3.3. A connected graph G of order n⩾2 has dimension n−1 if and only if G=Kn.

Theorem 3.4. For the cycle Cn, dim (Cn) = 2, n ≥ 3.

Theorem 3.5. A connected graph G of order has dimension n−2 if and only if G is a complete
bi-patriate graph.

Theorem 3.6. If G is a connected graph of order n and diameter d; then n ≤ rn(G) ≤ (n− 1) d.
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Figure 2. A diagrammatical representation of landmarks and the RFI between the robot and
natural source or the device in a graph-space

Theorem 3.7. If G is a connected graph of diameter d and clique number ω, then rn (G) ≤
1 + d(ω − 1).

The following theorem is showed by Saputro et al. [15].

Theorem 3.8. For a complete k−partite graph G of order n, rn(G) = n+ (k − 1).

Using the above results, now we are presenting few of the general results connecting the radio
number, minimum resolving set and the radio resolving number.

Theorem 3.9. For any non-trivial connected graph G, rn (G) ≥ rβ(G).

Proof. We know from the definition of radio labelling, for every distinct pair of vertices in G
the radio labelling inequality must be satisfied. But, for radio resolving number the condition is
restricted between the vertices of the resolving set X and its complement in G. Hence, rn(G) ≥
rβ(G).

Theorem 3.10. A connected graph G = (V,E) of order n satisfies rβ(G) ≥ n.

Proof. As per the definition of radio resolving labelling, it is a mapping from V (G) to the set of
distinct natural numbers and hence rβ (G) ≥ |V (G)| = n.

Theorem 3.11. For any graph G of order n, the radio resolving number is always greater than
the resolving number.

Proof. From the definition of minimum resolving set, it is a proper subset of the vertex set of G.
Therefore, the minimum resolving number of G is less than n. Hence, by using Theorem 3.10,
the result is proved.

The next theorem provides an efficient upper bound for the radio resolving number of any
graph.

Theorem 3.12. For any connected graph G of resolving number k and order n, rβ (G) ≤ n+
d− 1, where d is the diameter of the graph G.

Proof. Initially, let us assume that the vertices in G are named as u1, u2 . . . un. Let {uα1 , uα2 . . . uαk
}

⊆ {u1, u2 . . . un} be a minimum resolving set of G. We now start renaming the n−k vertices in
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{u1, u2 . . . un}\ {uα1 , uα2 . . . uαk
} as v1, v2 . . . vn−k and the remaining vertices uα1 , uα2 . . . uαk

as vn−k+1, vn−k+2 . . . vn. Define a valid radio resolving labelling σ by assigning first n− k nat-
ural numbers to the first n − k vertices as σ (vi) = i, 1, 2..n − k. In addition, label the vertex
vn−k+1 with a difference d, so that it satisfies the radio resolving condition with the vertices
in the set {v1, v2 . . . vn−k}. Finally, the vertices vn−k+2, vn−k+3 . . . vn are labelled with con-
secutive numbers so that it trivially satisfies the radio resolving condition. Thus, the maximum
number needed to label all the n vertices is at most n + d − 1. Therefore, we concluded that,
n ≤ rβ (G) ≤ n+ d− 1.

4 Radio Resolving Number of Certain Graphs

In this section we have investigated the radio resolving number of complete graphs, paths, cycles,
complete k−partite graphs, star graph and complete binary trees.

Theorem 4.1. The radio resolving number of path is rβ (Pn) = n, n > 1.

Proof. Let u1, u2 . . . un be the vertices of the path Pn. It is trivial that d(u, u1) ̸= d(v, u1) for
all u, v ∈ {u2, u3 . . . un}. Using Theorem 3.2, the set X = {u1} becomes a minimum resolving
set. Now, we define an injection σ : V (Pn) → {1, 2 . . . n} as σ (ui+1) = i , i = 1, 2, ..n − 1
and σ (u1) = n. As the diameter of path is n− 1, we must verify σ is a radio resolving labelling
by showing that d (u, x) + |σ (u)− σ(x)| ≥ n ∀ u ∈ V (Pn), x ∈ X . Since |X| = 1, from
the definition of radio resolving number, we can find for each vertex u ∈ V \W the unique
vertex u1 ∈ X such that d (uk+1, x) = k, 1 ≤ k ≤ n − 1 and |σ (uk+1)− σ(x)| = |(k − n| =
n−k. Therefore, d (uk, x)+ |σ (uk)− σ(x)| = k+n−k = n. So, rβ (G) ≥ n. But, by Theorem
4.1, rβ (G) ≥ n , and hence, we get: rβ (Pn) = n, n > 1.

Figure 3. A radio resolving labelling and the minimum radio resolving set of a Path P7

As the radio resolving number of path is n, we have the following theorem.

Theorem 4.2. For n > 1, the path Pn is radio resolving graceful.

Theorem 4.3. For n > 2, the complete graph Kn is radio resolving graceful.

Proof. As we know that, the diameter of a complete graph is 1, by using main Theorem, we
get rn (Kn) ≤ n + 1 − 1 = n. Also, by Theorem 3.12, we have, rn (Kn) ≥ n. Therefore,
rn (Kn) = n and hence the complete graph is radio resolving graceful
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Theorem 4.4. For n > 3, the cycle graph Cn is radio resolving graceful.

Proof. Let us name the vertices of cycle Cn as w1, w2 . . . wn in the clockwise sense. By using
Theorem 3.4, we can choose the set X = {w1, wn } as the minimum resolving set for Cn. Now,
define an injection σ : V (Cn) → N as σ (w1) = 1, σ (wn) = 2, σ

(
w(1−i)+⌈n

2 ⌉
)
= 2+ i, i =

1, 2 . . .
⌈
n
2

⌉
− 1, σ

(
w⌈n

2 ⌉+i

)
=

⌈
n
2

⌉
+ 1+ i, i = 1, 2 . . .

⌊
n
2

⌋
− 1. Since the diameter of cycle

is
⌊
n
2

⌋
, we must verify that d (u, x) + |σ (u)− σ (x)| ≥

⌊
n
2

⌋
+ 1 ∀ u ∈ V \X , x ∈ X .

Figure 4. A radio resolving labelling and the minimum radio resolving set a complete graph K5,
a cycle C7 and a star graph S9

Case 4.1: Let u = w⌈n
2 ⌉−k+1, 1 ≤ k ≤

⌈
n
2

⌉
− 1 be a vertex in V \X . If x = w1, then

d
(
w1, w⌈n

2 ⌉−k+1

)
=

⌈
n
2

⌉
− k and |σ (u)− σ (x)| ≥ |1 − (2 + k)| = k + 1. Also, if x = wn,

then d
(
wn, w⌈n

2 ⌉−k+1

)
=

⌊
n
2

⌋
+ 1 − k and |σ (u)− σ (x)| ≥ |2 − (2 + k)| = k. Therefore, in

both the possibilities, d (u, x) + |σ (u)− σ (x)| ≥
⌊
n
2

⌋
+ 1.

Case 4.2: Assume u = w⌈n
2 ⌉+kbe a vertex in V \X , where 1 ≤ k ≤

⌊
n
2

⌋
− 1. If we choose

w1in X , then d
(
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2 ⌉+k

)
=

⌈
n
2
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∣∣1 −
(⌈

n
2

⌉
+ 1 + k

)∣∣ =

k +
⌈
n
2

⌉
. Again, if x = wn, then d

(
wn, w⌈n

2 ⌉−k+1

)
=

⌊
n
2

⌋
− k and |σ (u)− σ (x)| ≥⌊

2 −
(⌈

n
2
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+ 1 + k
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= k+

⌈
n
2

⌉
−1. Consequently, in both the subcases, d (u, x)+|σ (u)− σ (x)| ≥⌊

n
2

⌋
+1. Hence the radio resolving labelling condition is true for any pair of vertices in the cycle

Cn.
Thus, rβ (Cn) ≤ n. Further, applying Theorem 3,12, we have attained the result, rβ (Cn) = n.
Consequently, the cycle Cn is radio resolving graceful.

Theorem 4.5. For the star graph Sn+1 = K1,n, the radio resolving number is n+ 1, n > 1.

Proof. Let w1 be the vertex of degree n in Sn+1 and the remaining n vertices of degree one are
named as w2, w3 . . . wn+1. Choose the minimum resolving set for Sn+1 as {w3, w4 . . . wn+1.} =
X . Define a mapping σ from {w1, w2 . . . wn+1.} to N as σ (wi) = i, i = 1, 2..n + 1. For this
mapping it is easy to verify the radio resolving condition. Hence, rβ (Sn+1) = n+ 1

Theorem 4.6. Let n1 ≤ n2 ≤ · · · ≤ nk be the number of vertices in the k−partitions of the
complete k−partite graph Kn1,n2...nk

. Then, the graph Kn1,n2...nk
is radio resolving graceful.

Proof. Let n = n1 + n2 + · · ·+ nk be the number of vertices in Kn1,n2...nk
. First, we name the

vertices of Kn1,n2...nk
as

{
wj

i , i = 1, 2 . . . nj , j = 1, 2 . . . .k
}

. If we apply the same concept as
in Theorem 2.8, for the complete k−patite graph we can able to find a minimum resolving set
with cardinality n−k. Let X =

{{
wj

i+1 \ i = 1, 2 . . . nj − 1, j = 1, 2 . . . .k
}}

be the minimum
resolving set. Now, we define an injection σ from the vertex set of complete k−partite graph to
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the set of distinct natural numbers is as follows: σ
(
wj

1

)
= j, j = 1, 2 . . . k and σ

(
wj

i+1

)
=

i + k − j + 1 +
∑j−1

r=1 nr, i = 1, 2 . . . nj − 1, j = 1, 2 . . . .k. Next, we prove that σ is a radio
resolving labelling by verifying the condition d (u, x) + |σ (u)− σ(x)| ≥ 3 ∀ u ∈ V \X , x ∈ X .
Since n1 > 1 and k > 1, the graph contains al teast four vertices and so the greatest number
labelled in the graph is atleast 4. Suppose that u ∈ V \X , then u is of the form wt

1, 1 ≤ t ≤ k.
If x is of the form wt

s+1, 1 ≤ s ≤ nt − 1, 1 ≤ t ≤ k, then the distance between u and x
is 2 and|σ (u)− σ(x)| ≥ 1. Otherwise, since n ≥ 4 the modulus difference between σ (u) and
σ (x) is at least 2. Thus, in both the possibilities, the inequality for the radio resolving labelling
is satisfied. Hence, rβ (Kn1,n2...nk) = n1 + n2 + · · ·+ nk, whenever n1, k > 1. Since the radio
resolving number of Kn1,n2...nk

is equal to the cardinality of the vertex set, it is radio resolving
graceful.

Corollary 4.7. For m,n > 1, the radio resolving number of the complete bi-partite graph Km,n

is m+ n.

Proof. Take m = n1 and n = n2 in the main Theorem, we get rβ (Km,n) = m+ n.

Harary et al. [5] proved the following results for the trees.

Theorem 4.8. Let L be the set of leaf nodes and P be the set of vertices that have degree at least
three and that are connected by paths of degree-2 vertices to one or more leaves in a tree T , then
the metric dimension is |L| − |P |.

Further, Harary et al. [5] explained that the minimum resolving set may be obtained by re-
moving one of the leaves from L that associated with each vertex in P.

A binary tree is particular type of tree in which it starts with a single node (vertex) called root
node and each node has at most two children. If such children exist, then they are called left and
right nodes respectively. If all the leaves in a binary tree will have the same distance from the
root vertex, then such a binary tree is called a complete binary tree. We denote it by BT (ξ ) ,
where ξ is the distance from the leaf node to the root node.

Remark 4.9. In the complete binary tree, the minimum resolving set can be formed by choosing
half of the leaf vertices alternatively. Since, there are 2ξ leaves in BT (ξ ) is 2ξ, the resolving
number for complete binary tree is equal to 2ξ−1. See Figure 4.

Remark 4.10. We note that the number of levels in BT (ξ) is ξ + 1 and the cardinality of
V (BT (ξ)) in kth level is 2k−1, 1 ≤ k ≤ ξ+ 1. Therefore, the total number of vertices BT (ξ) is
1 + 2 + 22 + · · ·+ 2ξ = 2ξ+1 − 1. In addition, the diameter of BT (ξ) is 2ξ.

Remark 4.11. In this paper, we are naming the vertices of BT (ξ) starting from the root vertex
as v1, then the second level from left to right as v2, v3, continue in the same manner, we name
the kth level vertices as v2k−1 , v2k−1+1 . . . v2k−1+2k−1−1. Finally, the leaf vertices in the ξ + 1th

level are named as v2ξ , v2ξ+1 . . . v2ξ+1−1. We denote the right and left components formed by the
deletion of the root vertex as LBT (ξ)left and RBT (ξ) respectively.

Theorem 4.12. Let BT (ξ) be the complete binary tree, where ξ is the distance from the leaf
vertex to the root vertex. If ξ > 3, then the radio resolving number of complete binary tree is
rβ (BT (ξ) ) = 2ξ+1 − 1.

Proof. Let X =
{
v2ξ+2j−1\ j = 1, 2.. , 2ξ−1

}
be the minimum resolving set. Define an injec-

tion σ from V (BT (ξ)) to N as follows: σ (vj) = j, j = 1, 2 . . . 2ξ − 1, σ
(
v2ξ+2(j−1)

)
=

j − 1+2ξ, j = 1, 2 . . . 2ξ−1, σ
(
v2ξ+2j+1

)
= 2ξ + 2ξ−1 + j − 1, j = 1, 2 . . . 2ξ−1. Next, we

claim that d (u, x) + |σ (u)− σ (x)| ≥ 2ξ + 1, ∀ u ∈ V \X and x ∈ X . Let u be an arbitrary
vertex in V \X .

Case 4.3: Suppose u lies in RBT (ξ), then σ (u) ≤ 2ξ − 1.
Case 4.3.1: For any x ∈ X in LBT (ξ), then the distance between u and x is at least ξ + 1 and
σ (x) ≥ 2ξ+2ξ−1. Therefore, the radio resolving conditions becomes, d (u, x)+|σ (u)− σ (x)| ≥
(ξ + 1) +

∣∣∣(2ξ − 1)− (2ξ−1 + 2ξ
)
∣∣∣ ≥ 2ξ + 1.
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Figure 5. A radio resolving labelling of complete binary tree BT (4)

Case 4.3.2: If x ∈ X in RBT (ξ), then d(u, x) ≥ 1 and σ (x) ≥ 2ξ + 2ξ−1 + 2ξ−2. So,
d (u, x) + |σ (u)− σ (x)| ≥ 1 +

∣∣2ξ − 1 −
(
2ξ + 2ξ−1 + 2ξ−2

)∣∣ ≥ 2ξ + 1, since ξ > 3.
Case 4.4: Assume u ∈ LBT (ξ), then σ (u) ≤ 2ξ − 2ξ−2 − 1.
Case 4.4.1: Let x ∈ X in LBT (ξ), then σ (x) ≥ 2ξ + 2ξ−1. If u is a leaf vertex of the form
v2ξ+2(k−1), 1 ≤ k ≤ 2ξ−2, then σ (u) = 2ξ +k− 1 the distance between u and x is 2 (k − 1) and
hence d (u, x) + |σ (u)− σ (x)| ≥ 2ξ + 1. Otherwise, the condition is obviously true.
Case 4.4.2: If x ∈ X in RBT (ξ), then as in case 1.1, we can easily verify the condition holds.
Case 4.5: If u is the root vertex, then the distance between u and x is ξ+1 and |σ (u)− σ (x)| ≥
2ξ + 2ξ−1. Hence, the radio resolving labelling condition is verified. Thus, rβ (BT (ξ) ) =
2ξ+1 − 1, ξ > 3.

5 Conclusion

In this paper, we have introduced a new vertex labelling problem called radio resolving number
that is used to find the current position of a robot in the graph-space. It also avoids the radio
frequency interference between the robot and natural source or any other devices. In addition,
certain theorems have been proven connecting the radio number and resolving number for any
connected graph G. Moreover, we have completely determined the radio resolving number of
certain graphs such as complete graphs, cycles, paths, star graph, complete k−partite graphs,
and complete binary trees. Furthermore, this new research topic can be extended into the other
classes of graphs and interconnection networks which will be helpful in the filed of applications
involving robotic process automation with other 5G application areas such as vehicle automation,
massive communication systems, mission critical applications, and smart IoT applications.
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