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Abstract In this paper, we study the new notion ∼r notion of conjugacy in subsemigroups of
partial transformation semigroup through restricted homomorphism of the digraphs.

1 introduction

If G is a group and a, b ∈ G then a is said to be conjugate to b if there exists g ∈ G such that
a = gbg−1 which is equivalent to ag = gb. Due to this fact ∼l notion was introduced in a
semigroup S as

x ∼l y ⇔ ∃ p ∈ S1 such that xp = py

where S1 is S with an identity adjoined. If x ∼l y, we say x is left conjugate to y (see [4], [13]
and [14]). The relation ∼l is always reflexive and transitive in any semigroup but not symmetric
in general. Lallement in [7] has defined the conjugate elements of a free semigroup S as those
related by ∼l and showed that ∼l is equal to the following equivalence on the free semigroup S:

x ∼p y ⇔ ∃ u, v ∈ S1 such that x = uv and y = vu

The relation ∼p is always reflexive and symmetric but not transitive in general.
The relation ∼l has been restricted to ∼o in [4], and ∼p has been extended to ∼∗

p in [5] and
in [6], in such a way that the modified relations are equivalences on an arbitrary semigroup S:

x ∼o y ⇔ ∃ p, q ∈ S1 such that xp = py and yq = qx.

∼∗
p= the transitive closure of ∼p (i.e., the smallest transitive relation on S containing ∼p).

The relation ∼o is not useful for semigroups S with zero since for every such S, we have
∼o= S × S. This deficiency has been remedied in [8] by Araujo et al., where the following
relation has been defined on an arbitrary semigroup S,

x ∼c y ⇔ ∃p ∈ P1(x), q ∈ P1(y) such that xp = py and yq = qx,

where for x 6= 0, P(x) = {p ∈ S : (mx)p 6= 0 for all mx ∈ S1x \ {0}} denotes the left
principal ideal generated by x and P(0) = {0}. The relation ∼c is an equivalence relation in any
semigroup and does not reduce to S × S if S has a zero, and it is equal to ∼o if S does not have
a zero.

Furthermore, J. Konieczny in [10] introduced the ∼n notion of conjugacy in semigroup S as

x ∼n y ⇔ ∃ p, q ∈ S1 such that xp = py, yq = qx, x = pyq and y = qxp.

This relation is an equivalence relation in any semigroup and does not reduce to universal relation
in a semigroup S with zero.

For a non-empty setX , P(X) denotes the set of all partial transformations onX and it forms
a semigroup under operation as composition of maps and is known as partial transformation
semigroup. For each ρ ∈ P(X), the domain of ρ is denoted by

dom(ρ) = {x ∈ X : there exists y ∈ X with (x, y) ∈ ρ},
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the image of ρ is denoted by

im(ρ) = {y ∈ X : there exists x ∈ X with (x, y) ∈ ρ},

and the span of ρ is denoted by

span(ρ) = dom(ρ) ∪ im(ρ).

By σ 6= 0 we mean ρ such that dom(ρ) 6= ∅.
A semigroup S is called an inverse semigroup if for every a ∈ S, there is a unique a−1 ∈ S

(called the inverse of a) such that

aa−1a = a and a−1aa−1 = a−1.

For a non-empty set X , denote by I(X) the symmetric inverse semigroup on X , which is the
subsemigroup of P(X) consisting of all partial injective transformations on X . Both P(X) and
I(X) have the symmetric group Sym(X) of permutations on X as their group of units, and the
zero in P(X) is an element of I(X). The semigroup I(X) is universal for the class of inverse
semigroups because of the Vagner-Preston theorem that states that every inverse semigroup can
be embedded in some I(X) [12, Theorem 5.1.7]. This is analogous to the Cayley theorem for
groups that states that every group can be embedded in some symmetric group Sym(X).

Next we discuss ∼i notion of conjugacy in inverse semigroups. This was introduced by
Araujo et al. in [11].

Definition 1.1. let S be an inverse semigroup and a, b ∈ S. Then a ∼i b if and only if there exists
g ∈ S1 such that

g−1ag = b and gbg−1 = a.

We refer the reader to Howie [12] for any unexplained terminology in semigroups.

2 The notion∼r

In [2] and [3] we introduced∼r notion of conjugacy in semigroups. The notion∼r in semigroups
is defined as in the following.

Definition 2.1. Define a relation ∼r on a semigroup S by

a ∼r b⇔ ∃ g, h, u, v ∈ S1 such that ag = gb, bh = ha, a = gbu and b = hav.

The r-notion of conjugacy is an equivalence relation in any semigroup and it does not reduce
to a universal relation in a semigroup with zero ([2, Theorem 2.1]). In case S is a group, then ∼r
reduces to the usual notion of conjugacy ([2, Theorem 2.1]). Also∼n⊆∼r⊆∼c⊆∼o [2, Theorem
2.2].

Theorem 2.2. [10, Theorem 2.6] Let S be an inverse semigroup and let a, b ∈ S. Then a ∼n b if
and only if a ∼i b.

In the next theorem we show ∼r coincides with ∼n in an inverse semigroup.

Theorem 2.3. Let S be an inverse semigroup and let a, b ∈ S. Then a ∼r b if and only if a ∼n b.

Proof. By definition of∼n and∼r, we have∼n⊆∼r. So for any a, b ∈ S, a ∼n b implies a ∼r b.
For the converse, we may assume by the Vagner-Preston Theorem that S is a subsemigroup

of some symmetric inverse semigroup I(X). Let a ∼r b in S, then there exist g, h, u, v ∈ S1

such that
ag = gb, bh = ha, a = gbu and b = hav.

We claim agg−1 = a. Clearly dom(agg−1) ⊆ dom(a). Let x ∈ dom(a) implies xa ∈ im(a) ⊆
dom(g) implies (xa) ∈ dom(g), which implies (xa)g ∈ dom(g−1). Hence x ∈ dom(agg−1),
which implies dom(a) ⊆ dom(agg−1). Thus dom(a) = dom(agg−1). Next for every x ∈ dom(a),



Generalized Notion of Conjugacy in Semigroups 215

x(agg−1) = (xa)gg−1 = xa. So agg−1 = a. Since ag = gb implies agg−1 = gbg−1 and so
a = gbg−1.

Next we claim that g−1gb = b. For if

g−1gb 6= b

⇒ g−1ag 6= b

⇒ g−1agg−1 6= bg−1

⇒ g−1a 6= bg−1

⇒ g−1gbu 6= bg−1

⇒ gg−1gbu 6= gbg−1

⇒ gbu 6= gbg−1

⇒ a 6= gbg−1

which is a contradiction. Hence g−1gb = b. Since ag = gb, we have g−1ag = g−1gb we have
g−1ag = b. Thus a ∼i b and so by Theorem 2.2, a ∼n b.

Due to Theorem 2.2 and Theorem 2.3 we have the following corollary.

Corollary 2.4. Let S be an inverse semigroup. Then ∼n=∼r=∼i in S.

3 ∼r in general subsemigroups of P(X)

Definition 3.1. Let A be any set (not necessarily finite and possibly empty) and E be a binary
relation on A, then Γ = (A,E) is called a directed graph (or a digraph). We call any p ∈ A a
vertex and any (p, q) ∈ E an arc of Γ.

For example, let A = {1, 2, 3, 4} and E = {(1, 2), (1, 4), (2, 3), (4, 1)}. Then the digraph Γ

is as under,

Figure 1. Digraph

Definition 3.2. A vertex p ∈ A is said to be an initial vertex if there is no q ∈ A for which
(q, p) ∈ E while a vertex p ∈ A is said to be a non-initial vertex if (q, p) ∈ E for some q ∈ A.

Definition 3.3. A vertex p ∈ A for which there exists no q in A such that (p, q) ∈ E is called a
terminal vertex of Γ.

Remark 3.4. Let ρ ∈ P (X). Then ρ can be represented by the digraph Γ(ρ) = (A,E), where
A = span(ρ) and for all x, y ∈ A, (x, y) ∈ E if and only if x ∈ dom(ρ) and xρ = y. For example,
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the partial transformation

ρ =

(
1 2 3 7 8 . . .

2 3 1 8 9 . . .

)
∈ P(X),

where X = {1, 2, 3, . . .} is represented by the digraph as in figure 2

Figure 2. The Digraph of a Transformation.

Remark 3.5. For a non empty X , we fix an element � /∈ X . For α ∈ P(X) and x ∈ X , we will
write xα = � if and only if x /∈ dom(α). We also assume that �α = �. With this notation it makes
sense to write xα = yβ or xα 6= yβ (α, β ∈ P(X), x, y ∈ X) even when x /∈ dom(α) or y /∈
dom(β). For any α ∈ P(X), by α 6= 0, we mean dom(α) 6= ∅. Thus α = 0 if and only if dom(α)
= ∅.

Definition 3.6. Let Γ = (A,E) and Λ = (B,F ) be digraphs. A mapping ρ from A to B is called
a homomorphism from Γ to Λ if for all p, q ∈ A, (p, q) ∈ E implies (pρ, qρ) ∈ F .

Definition 3.7. Let Γ = (A,E) and Λ = (B,F ) be digraphs. A homomorphism α : A → B is
called a restricted homomorphism from Γ to Λ, if

(i) for every terminal vertex x of Γ, xα is a terminal vertex of Λ;

(ii) for every initial vertex x of Γ, either xα is an initial vertex of Λ or there are vertices t, z, y
of Γ such that (x, y), (t, z), (z, y) ∈ E.

Throughout this paper, by a hom, we shall mean a homomorphism, and by a restricted hom,
we shall mean a restricted homomorphism.

Now in order to prove the main theorem of this section we need the following two lemmas.

Lemma 3.8. Let ρ, π, α, β, σ, τ ∈ P(X) be such that ρα = απ, πβ = βρ, ρ = απσ, π = βρτ .
Then dom(α) = span(ρ), dom(β) = span(π).

Proof. Let x ∈ span(ρ) which implies x ∈ dom(ρ)∪ im(ρ). If x ∈ dom(ρ) then as ρ = απσ
which means x ∈ dom(α)and if x ∈ im(ρ) then as ρα = απ, x ∈ dom(α). Thus span(ρ) ⊆
dom(α). Next we have to show dom(α) ⊆ span(ρ). For if dom(α) * span(ρ), then there is some
x ∈ X such that x ∈ dom(α) but x /∈ span(ρ), which implies there is some z ∈ X such that
xαπσ = z (as ρ = απσ) which implies xρ = z, which is a contradiction as x /∈ span(ρ). Thus
dom(α) ⊆ span(ρ). Hence dom(α) = span(ρ). Similarly we can prove that dom(β) = span(π).

Lemma 3.9. Let ρ, π, α, β, σ, τ ∈ P(X) be such that ρα = απ, πβ = βρ, ρ = απσ, π = βρτ i.e,
ρ ∼r τ satisfying

ρτσ = ρ and πστ = π. (1.1)

Then α is a restricted hom from Γ(ρ) to Γ(π) and β is a restricted hom from Γ(π) to Γ(ρ).

Proof. Let Γ(ρ) = (A,E) and Γ(π) = (B,F ), where A = span(ρ) and B = span(π). Suppose
that (x, y) ∈ E i.e, xρ = y. Then,

(xα)π = x(απ) = x(ρα) = (xρ)α = yα.



Generalized Notion of Conjugacy in Semigroups 217

Hence (xα, yα) ∈ F , which implies α is a hom from Γ(ρ) to Γ(π).
Suppose that x is a terminal vertex of Γ(ρ). Since ρα = απ and x /∈ dom(ρ), so xρ = �

which implies xρα = � which implies xαπ = �. Thus xα is a terminal vertex of Γ(π).
Suppose that x is an initial vertex of Γ(ρ) and let u = xα is not an initial vertex of Γ(π). Then

vπ = u for some v ∈ dom(π). Let t = vβ and z = uβ. Since πβ = βρ, the preceding argument
for ρ and α applied to π and β shows that β is a hom from Γ(π) to Γ(ρ). Thus (v, u) ∈ F implies
that (t, z) = (vβ, uβ) ∈ E. Since x ∈ span(ρ) and x /∈ im(ρ), we have x ∈ dom(ρ). Setting

y = xρ, we have (x, y) ∈ E. Now y = xρ = xαπσ = uπσ = uβρτσ = zρτσ
(1.1)
= zρ and

so (z, y) ∈ E. By the similar argument, we can prove β is a restricted hom from Γ(π) to Γ(ρ).
Hence proved.

Definition 3.10. Let S be a subsemigroup of P(X). We say S is closed under restriction to spans
if for all ρ, π ∈ S such that span(ρ)⊆ dom(π), π|span(ρ) ∈ S.

Note that every subsemigroup of the semigroup of T (X) (semigroup of full transformations
on X) is closed under restrictions to spans.

Theorem 3.11. Let S be a subsemigroup of P(X) such that S is closed under restrictions to
spans and ρ, π ∈ S

(1) If ρ ∼r π satisfying (1.1), then there exist α, β ∈ S1 such that α is a restricted hom from
Γ(ρ) to Γ(π) and β is a restricted hom from Γ(π) to Γ(ρ) with yασ = y for all y ∈ im(ρ)
and uβτ = u for all u ∈ im(π).

(2) Conversely, if α is a restricted hom from Γ(ρ) to Γ(π) and β is a restricted hom from Γ(π)
to Γ(ρ) with yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π). Then ρ ∼r π.

Proof. Let Γ(ρ) = (A,E) and Γ(π) = (B,F ).

(1) Let ρ ∼r π then there exist δ, γ, σ, τ ∈ S1 such that

ρδ = δπ, πγ = γρ, ρ = δπσ and π = γρτ.

Here span(ρ) ⊆ dom(δ) and span(π) ⊆ dom(γ). Let α = δ| span(ρ), β = γ| span(π). First
we prove ρα = απ and ρ = απσ. Let x ∈ X . If x ∈ span(ρ). Then xαπ = xδπ = xρδ =
xρα and xαπσ = xδπγ = xρ. If x /∈ span(ρ), i.e., xρ = �, then xρα = � and xαπ = � and
also xαπσ = � = xρ. Similarly we can prove πβ = βρ and π = βρτ . Therefore we have

ρα = απ, πβ = βρ, ρ = απσ and π = βρτ.

Now ρ = ρτσ and π = πστ . Therefore by Lemma 3.9 we have α as a restricted hom
from Γ(ρ) to Γ(π) and β as a restricted hom from Γ(π) to Γ(ρ). Next for all y ∈ im(ρ),
yασ = xρασ (for some x ∈ dom(ρ)) = xαπσ = xρ = y. Similarly for all u ∈ im(π),
uβτ = u .

(2) Let the desired α and β exist with yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π).
We have to prove ρ ∼r π. First we will prove that ρα = απ and ρ = απσ. Let x ∈ X . Two
cases arise here.
Case(1): Suppose x /∈ dom(ρ). Then xρα = �.
(i) If x /∈ dom(α), then x(απ) = � and xαπσ = �. So, ρα = απ and ρ = απσ in this case.
(ii) If x ∈ dom(α), then x is a terminal vertex of Γ(ρ), and so xα is a terminal vertex in
Γ(π), which implies that x(απ) = (xα)π = � and xαπσ = �. Thus ρα = απ and ρ = απσ
in this case also.
Case(2): Suppose x ∈ dom(ρ) and let y = xρ ∈ X i.e, (x, y) ∈ E which implies (xα, yα) ∈
F i.e,

(xα)π = yα.

Now, x(ρα) = (xρ)α = yα = x(απ) = (xα)π and xαπσ = [(xα)π]σ = yασ = y = xρ
which implies xαπσ = xρ. Thus in both the cases we have proved that

ρα = απ, ρ = απσ (1.2)
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Similarly by using that β is restricted hom from Γ(π) to Γ(ρ) with uβτ = u for all u ∈
im(π) we can prove that

πβ = βρ and π = βρτ. (1.3)

Therefore by combining (1.2) and (1.3) we get ρ ∼r π.

4 ∼r through the trims of digraphs

Definition 4.1. Let Γ = (A,E) and Λ = (B,F ) be digraphs. A mapping α : A → B is called
an isomorphism from Γ to Λ if α is a bijection and for all x, y ∈ A, (x, y) ∈ E if and only if
(xα, yα) ∈ F . Note that a bijection α : A→ B is an isomorphism if and only if both α and α−1

are isomorphisms. We will say that Γ and Λ are isomorphic, written Γ ∼= Λ, if there exists an
isomorphism from Γ to Λ.

For ρ ∈ P(X) and y ∈ im(ρ), denote by yρ−1 the set of all elements x ∈ X such that xρ = y.
Note that yρ−1 is not empty (since y ∈ im(ρ)) and that it is the set of all vertices x in Γ(ρ) such
that (x, y) is an edge in Γ(ρ).

Definition 4.2. Let ρ ∈ P(X) and Γ(ρ) = (A,E). Denote by Ai the set of initial vertices of
Γ(ρ). For every non-initial vertex y of Γ(ρ) such that yρ−1 ⊆ Ai, select y∗ ∈ yρ−1. Let At and
Et be sets of vertices and edges respectively, defined by

At = (A \Ai) ∪ {y∗ : y is a non-initial vertex of Γ(ρ) and yρ−1 ⊆ Ai},
Et = {(x, y) ∈ E : x, y ∈ At}.

Then the digraph Γt(ρ) = (At, Et) will be called trim of Γ(ρ).

In other words, a trim Γt(ρ) is obtained from Γ(ρ) by removing all initial vertices of Γ(ρ)
with the following exception: If y is a non-initial vertex of Γ(ρ) and all vertices in yρ−1 are
initial, then exactly one of these vertices (denoted y∗ in Definition 4.2) are retained. There may
be multiple trims of Γ(ρ) since there may be multiple choices for y∗. However a trim of Γ(ρ) is
unique upto isomorphism.

For a function f : A → B, the rank of f , denoted rank(f ), is the cardinality of the image of
f .

Lemma 4.3. [10, Lemma 4.4] Let ρ, π ∈ P(X) with Γ(ρ) = (A,E) and Γ(π) = (B,F ). Sup-
pose that δ is an isomorphism from trim(Γ(ρ)) = (At, Et) to trim(Γ(π)) = (Bt, Ft).

(1) Let y be a non-initial vertex of trim(Γ(ρ)) and let u = yδ. Then uπ−1 6= ∅. Moreover, if
yρ−1 ⊆ Ai, then uπ−1 ⊆ Bi and y∗δ = u∗.

(2) there exist a restricted hom α of rank |At| from Γ(ρ) to Γ(π) such that xα = xδ for every
vertex x of trim(Γ(ρ)).

Lemma 4.4. Let ρ, π, α, β, σ, τ ∈ P(X) and let ρ ∼r π satisfying (3.1). Then α|im(ρ) = τ and
β|im(π) = σ.

Proof. Let ρ ∼r π then there exist α, β, σ, τ such that ρα = απ, πβ = βρ, ρ = απσ and
π = βρτ . Let y ∈ im(ρ) then there exist x ∈ X such that y = xρ. Now

yα = xρα

= xαπ

= xαπστ

= xρτ

= yτ.

Similarly, β|im(π) = σ .
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Lemma 4.5. Let σ, τ ∈ P(X) with σ ∼r τ satisfying (3.1). Let y be a non-initial vertex of Γ(ρ)
and u = yα ∈ B. Then u is not initial in Γ(π). Moreover, if yρ−1 ⊆ Ai, then uπ−1 ⊆ Bi and
for every x ∈ yρ−1, xα ∈ uπ−1.

Proof. Let σ, τ ∈ P(X) with σ ∼r τ satisfying (3.1), then by Theorem 3.11 there exists α, β ∈
P(X) such that α is a restricted hom from Γ(ρ) to Γ(π) and β is a restricted hom from Γ(π) to
Γ(ρ) with yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π). Let Γ(ρ) = (A,E) and
Γ(π) = (B,F ). Since y is not initial, (x, y) ∈ E for some x ∈ A. Then (xα, u) = (xα, yα) ∈ F ,
and so u is a non-initial vertex of Γ(π). Suppose to the contrary that uπ−1 * Bi, that is,
(v, u) ∈ F for some non-initial v ∈ B. Then there is t ∈ B such that (t, v) ∈ F . Since β
is a hom from Γ(π) to Γ(ρ), (tβ, vβ), (vβ, uβ) ∈ E. But uσ = yασ = y (since y ∈ im(ρ)).
Now, by Lemma 4.4 uβ = y. So (tβ, vβ), (vβ, y) ∈ E which contradicts the hypothesis that
yρ−1 ⊆ Ai. Hence uπ−1 ⊆ Bi. Finally, if x ∈ yρ−1, then (x, y) ∈ E, and so xα ∈ uπ−1 since
(xα, u) = (xα, yα) ∈ F .

Now we have the main result on r-notion of conjugacy in the semigroup P(X) through trims
of the digraphs.

Theorem 4.6. Let ρ, π ∈ P(X)

(1) Let ρ ∼r π satisfying (3.1). Then trim(Γ(ρ)) ∼= trim(Γ(π)).

(2) Conversely, if trim(Γ(ρ)) ∼= trim(Γ(π)) with yασ = y for all y ∈ im(ρ) and uβτ = u for all
u ∈ im(π),then ρ ∼r π.

Proof. (1) Let Γ(ρ) = (A,E),Γ(π) = (B,F ), trim(Γ(ρ)) = (At, Et), and trim(Γ(π)) =
(Bt, Ft). Suppose that ρ ∼r π then by Theorem 3.11, there exists α, β, σ, τ such that α
is a restricted hom from Γ(ρ) to Γ(π) and β is a restricted hom from Γ(π) to Γ(ρ) with
yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π). Suppose that x is an initial vertex
of trim(Γ(ρ)). Let y = xρ ∈ A and ux = yα = yτ (by Lemma 4.4) ∈ B. By Lemma 4.5,
ux is a non-initial vertex of trim(Γ(π)) and uxπ−1 ⊆ Bi (so (ux)∗ exists). Therefore, we
can define µ : At → Bt by

xµ =

{
xα if x is not initial in trim(Γ(ρ)),

(ux)∗ otherwise.

We claim that µ is an isomorphism from trim(Γ(ρ) to trim(Γ(π)). Let (x, y) ∈ Et. If x
is not initial, then (xµ, yµ) = (xα, yα) ∈ F , and so (xµ, yµ) ∈ Ft since xµ, yµ ∈ Bt.
Suppose that x is initial and let y = xρ. Then (xµ, yµ) = ((ux)∗, ux) ∈ Ft. Hence µ is a
hom.

Let x, s ∈ At be such that xµ = sµ. If x and s are both not initial, then xα = sα (since
xµ = xα and sµ = sα), and so x = x(ασ)(by Theorem 3.11) = (xα)σ = (sα)σ =
s(ασ) = s . Suppose that at least one of x and s, say x, is initial. Then xµ = (ux)∗ ∈ Bt is
initial. So s must be initial since otherwise, sµ = sα would not be initial (by Lemma 4.5),
which would contradict xµ = sµ. Thus, sµ = (us)∗. Let y = xρ and z = sρ, so yα = ux
and zα = us. Since y and z are not initial, we have yµ = yα = zα = zµ, and so y = z by
the preceding argument. Hence x = y∗ = z∗ = s. We have proved that µ is injective.

Let v ∈ Bt. If v is not initial, then y = vβ ∈ A is not initial (so y ∈ At), and so
yµ = yα = yτ = vβτ = v. Suppose that v is initial and let u = vπ. Then, by Lemma 4.5,
y = uβ is not initial and yρ−1 ⊆ Ai. Let x = y∗ ∈ At, so y = xρ. Then xµ = (ux)∗ =
(yα)∗ = (yτ)∗ (by Lemma 4.4) = ((uβ)τ)∗ = (uβτ)∗ = u∗ = v, where the last equality
is true since there is only one initial vertex of trim(Γ(π)) in uπ−1. We have proved that µ
is surjective.

Hence µ is a bijective hom from trim(Γ(ρ)) to trim(Γ(π)) such that for every non-initial
y ∈ At, yµ = yα = yτ (by Lemma 4.4) and y∗µ = (yα)∗ = (yτ)∗ if yρ−1 ⊆ Ai. Similarly,
we can define bijective hom λ from trim(Γ(π)) to trim(Γ(ρ)) such that for every non-initial
u ∈ Bt, uλ = uβ = uσ(by Lemma 4.4) and u∗λ = (uβ)∗ = (uσ)∗ if uπ−1 ⊆ Bi. Let
x ∈ At. If x is not initial, then xα ∈ Bt is not initial and x(µλ) = (xµ)λ = (xα)λ =
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(xα)β = x(ασ) = x. Suppose that x is initial and let y = xρ. Then x = y∗ and x(µλ) =
(y∗µ)λ = (yα)∗λ = ((yα)β)∗ = ((yα)σ)∗(by Lemma 4.4) = (y(ασ))∗ = y∗ = x.
Similarly v(λµ) = v for every v ∈ Bt. Hence λ = µ−1 and so µ is an isomorphism.

(2) Conversely, suppose that trim(Γ(ρ)) ∼= trim(Γ(π)) and let µ : At → Bt be an isomorphism
from trim(Γ(ρ)) to trim(Γ(π)). Then µ−1 : Bt → At is an isomorphism from trim(Γ(π)) to
trim(Γ(ρ)). By Lemma 4.3, there are restricted homs α from Γ(ρ) to Γ(π) and β from Γ(π)
to Γ(ρ). By given condition yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π). Now
apply Theorem 3.11, we get ρ ∼r π.

5 Characterization of∼r in the proper ideals of P(X)

By a proper ideal of a semigroup S we mean an ideal I of S such that I 6= S. For a cardinal k
with 0 < k ≤ |X|, denote by Pk the set of all ρ ∈ P(X) such that rank(ρ) < k. It is well known
(see [?, Sec 2.2]) that the set {Pk : 0 < k ≤ |X|} is the set of proper ideals of P(X).

Theorem 5.1. Let Pk be a proper ideal of P(X) and let ρ, π ∈ Pk with Γ(ρ) = (A,E),Γ(π) =
(B,F ), trim(Γ(ρ)) = (At, Et) and trim(Γ(π)) = (Bt, Ft).

(1) If k is infinite, let ρ ∼r π satisfying 3.1. Then trim(Γ(ρ)) ∼= trim(Γ(π)).

(2) Conversely, if trim(Γ(ρ) ∼= trim(Γ(π) with yασ = y for all y ∈ im(ρ) and uβτ = u for all
u ∈ im(π), then ρ ∼r π in Pk.

Proof. (1) Let ρ ∼r π in Pk. Then ρ ∼r π in P(X) and so by part (1) of Theorem 4.6, we have
trim(Γ(ρ)) ∼= trim(Γ(π)).

(2) Conversely, let trim(Γ(ρ)) ∼= trim(Γ(π)). Suppose k is infinite. Then

|At| = |A \Ai|+ |{y∗ : y ∈ A \Ai and yρ−1 ⊆ Ai}|

= |A \Ai|+ |{y : y ∈ A \Ai and yρ−1 ⊆ Ai}|
≤ |im(ρ)|+ |im(ρ)| < k + k = k.

Thus |At| < k. let µ : At → Bt be an isomorphism from trim(Γ(ρ)) to trim(Γ(π)). Then
µ−1 : Bt → At is an isomorphism from trim(Γ(π)) to trim(Γ(ρ)). By Lemma 4.3, there
are r-homomorphisms α ∈ Pk from Γ(ρ) to Γ(π) and β ∈ Pk from Γ(π) to Γ(ρ). By given
condition yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π). Then by Theorem
3.11, we have ρ ∼r π in P(X) i.e., ρα = απ, πβ = βρ, ρ = απσ and π = βρτ . Since k is
infinite, so rank(σ) < k and rank(τ) < k. So, σ, τ ∈ Pk. Thus ρ ∼r π in Pk.
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