Generalized Notion of Conjugacy in Semigroups

Aftab Hussain Shah and Mohd Rafiq Parray

Communicated by Ayman Badawi

MSC 2010 Classifications: 20M07; 20M15; 20M20.

Keywords and phrases: Semigroups, conjugacy, transformations, homomorphism.

Abstract In this paper, we study the new notion \sim_r notion of conjugacy in subsemigroups of partial transformation semigroup through restricted homomorphism of the digraphs.

1 introduction

If G is a group and $a, b \in G$ then a is said to be conjugate to b if there exists $g \in G$ such that $a = gbg^{-1}$ which is equivalent to ag = gb. Due to this fact \sim_l notion was introduced in a semigroup S as

$$x \sim_l y \Leftrightarrow \exists p \in S^1$$
 such that $xp = py$

where S^1 is S with an identity adjoined. If $x \sim_l y$, we say x is left conjugate to y (see [4], [13] and [14]). The relation \sim_l is always reflexive and transitive in any semigroup but not symmetric in general. Lallement in [7] has defined the conjugate elements of a free semigroup S as those related by \sim_l and showed that \sim_l is equal to the following equivalence on the free semigroup S:

$$x \sim_p y \Leftrightarrow \exists u, v \in S^1$$
 such that $x = uv$ and $y = vu$

The relation \sim_p is always reflexive and symmetric but not transitive in general.

The relation \sim_l has been restricted to \sim_o in [4], and \sim_p has been extended to \sim_p^* in [5] and in [6], in such a way that the modified relations are equivalences on an arbitrary semigroup S:

$$x \sim_o y \Leftrightarrow \exists \ p, q \in S^1$$
 such that $xp = py$ and $yq = qx$.

 \sim_p^* = the transitive closure of \sim_p (i.e., the smallest transitive relation on S containing \sim_p).

The relation \sim_o is not useful for semigroups S with zero since for every such S, we have $\sim_o = S \times S$. This deficiency has been remedied in [8] by Araujo et al., where the following relation has been defined on an arbitrary semigroup S,

$$x \sim_{c} y \Leftrightarrow \exists p \in \mathbb{P}^{1}(x), q \in \mathbb{P}^{1}(y)$$
 such that $xp = py$ and $yq = qx$,

where for $x \neq 0$, $\mathbb{P}(x) = \{p \in S : (mx)p \neq 0 \text{ for all } mx \in S^1x \setminus \{0\}\}\$ denotes the left principal ideal generated by x and $\mathbb{P}(0) = \{0\}$. The relation \sim_c is an equivalence relation in any semigroup and does not reduce to $S \times S$ if S has a zero, and it is equal to \sim_o if S does not have a zero.

Furthermore, J. Konieczny in [10] introduced the \sim_n notion of conjugacy in semigroup S as

$$x \sim_n y \Leftrightarrow \exists p, q \in S^1$$
 such that $xp = py, yq = qx, x = pyq$ and $y = qxp$.

This relation is an equivalence relation in any semigroup and does not reduce to universal relation in a semigroup S with zero.

For a non-empty set X, $\mathcal{P}(X)$ denotes the set of all *partial transformations* on X and it forms a semigroup under operation as composition of maps and is known as partial transformation semigroup. For each $\rho \in \mathcal{P}(X)$, the *domain* of ρ is denoted by

dom
$$(\rho) = \{x \in X : \text{ there exists } y \in X \text{ with } (x, y) \in \rho\},\$$

the *image* of ρ is denoted by

 $\operatorname{im}(\rho) = \{ y \in X : \text{ there exists } x \in X \text{ with } (x, y) \in \rho \},\$

and the span of ρ is denoted by

 $\operatorname{span}(\rho) = \operatorname{dom}(\rho) \cup \operatorname{im}(\rho).$

By $\sigma \neq 0$ we mean ρ such that dom $(\rho) \neq \emptyset$.

A semigroup S is called an *inverse semigroup* if for every $a \in S$, there is a unique $a^{-1} \in S$ (called the inverse of a) such that

 $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

For a non-empty set X, denote by $\mathcal{I}(X)$ the symmetric inverse semigroup on X, which is the subsemigroup of $\mathcal{P}(X)$ consisting of all partial injective transformations on X. Both $\mathcal{P}(X)$ and $\mathcal{I}(X)$ have the symmetric group Sym(X) of permutations on X as their group of units, and the zero in P(X) is an element of $\mathcal{I}(X)$. The semigroup $\mathcal{I}(X)$ is universal for the class of inverse semigroups because of the Vagner-Preston theorem that states that every inverse semigroup can be embedded in some $\mathcal{I}(X)$ [12, Theorem 5.1.7]. This is analogous to the Cayley theorem for groups that states that every group can be embedded in some symmetric group Sym(X).

Next we discuss \sim_i notion of conjugacy in inverse semigroups. This was introduced by Araujo et al. in [11].

Definition 1.1. *let S be an inverse semigroup and* $a, b \in S$ *. Then* $a \sim_i b$ *if and only if there exists* $g \in S^1$ *such that*

$$g^{-1}ag = b$$
 and $gbg^{-1} = a$.

We refer the reader to Howie [12] for any unexplained terminology in semigroups.

2 The notion \sim_r

In [2] and [3] we introduced \sim_r notion of conjugacy in semigroups. The notion \sim_r in semigroups is defined as in the following.

Definition 2.1. Define a relation \sim_r on a semigroup S by

$$a \sim_r b \Leftrightarrow \exists g, h, u, v \in S^1$$
 such that $ag = gb, bh = ha, a = gbu$ and $b = hav$.

The *r*-notion of conjugacy is an equivalence relation in any semigroup and it does not reduce to a universal relation in a semigroup with zero ([2, Theorem 2.1]). In case *S* is a group, then \sim_r reduces to the usual notion of conjugacy ([2, Theorem 2.1]). Also $\sim_n \subseteq \sim_r \subseteq \sim_c \subseteq \sim_o$ [2, Theorem 2.2].

Theorem 2.2. [10, Theorem 2.6] Let S be an inverse semigroup and let $a, b \in S$. Then $a \sim_n b$ if and only if $a \sim_i b$.

In the next theorem we show \sim_r coincides with \sim_n in an inverse semigroup.

Theorem 2.3. Let S be an inverse semigroup and let $a, b \in S$. Then $a \sim_r b$ if and only if $a \sim_n b$.

Proof. By definition of \sim_n and \sim_r , we have $\sim_n \subseteq \sim_r$. So for any $a, b \in S$, $a \sim_n b$ implies $a \sim_r b$.

For the converse, we may assume by the Vagner-Preston Theorem that S is a subsemigroup of some symmetric inverse semigroup $\mathcal{I}(X)$. Let $a \sim_r b$ in S, then there exist $g, h, u, v \in S^1$ such that

$$ag = gb, bh = ha, a = gbu$$
 and $b = hav$.

We claim $agg^{-1} = a$. Clearly dom $(agg^{-1}) \subseteq$ dom(a). Let $x \in$ dom(a) implies $xa \in$ im $(a) \subseteq$ dom(g) implies $(xa) \in$ dom(g), which implies $(xa)g \in$ dom (g^{-1}) . Hence $x \in$ dom (agg^{-1}) , which implies dom $(a) \subseteq$ dom (agg^{-1}) . Thus dom(a) = dom (agg^{-1}) . Next for every $x \in$ dom(a),

 $x(agg^{-1}) = (xa)gg^{-1} = xa$. So $agg^{-1} = a$. Since ag = gb implies $agg^{-1} = gbg^{-1}$ and so $a = gbg^{-1}$.

Next we claim that $g^{-1}gb = b$. For if

$$g^{-1}gb \neq b$$

$$\Rightarrow g^{-1}ag \neq b$$

$$\Rightarrow g^{-1}agg^{-1} \neq bg^{-1}$$

$$\Rightarrow g^{-1}a \neq bg^{-1}$$

$$\Rightarrow g^{-1}gbu \neq bg^{-1}$$

$$\Rightarrow gg^{-1}gbu \neq gbg^{-1}$$

$$\Rightarrow gbu \neq gbg^{-1}$$

$$\Rightarrow a \neq gbg^{-1}$$

which is a contradiction. Hence $g^{-1}gb = b$. Since ag = gb, we have $g^{-1}ag = g^{-1}gb$ we have $g^{-1}ag = b$. Thus $a \sim_i b$ and so by Theorem 2.2, $a \sim_n b$.

Due to Theorem 2.2 and Theorem 2.3 we have the following corollary.

Corollary 2.4. Let S be an inverse semigroup. Then $\sim_n = \sim_r = \sim_i$ in S.

3 \sim_r in general subsemigroups of $\mathcal{P}(X)$

Definition 3.1. Let A be any set (not necessarily finite and possibly empty) and E be a binary relation on A, then $\Gamma = (A, E)$ is called a directed graph (or a digraph). We call any $p \in A$ a vertex and any $(p, q) \in E$ an arc of Γ .

For example, let $A = \{1, 2, 3, 4\}$ and $E = \{(1, 2), (1, 4), (2, 3), (4, 1)\}$. Then the digraph Γ is as under,

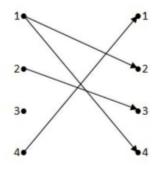


Figure 1. Digraph

Definition 3.2. A vertex $p \in A$ is said to be an initial vertex if there is no $q \in A$ for which $(q, p) \in E$ while a vertex $p \in A$ is said to be a non-initial vertex if $(q, p) \in E$ for some $q \in A$.

Definition 3.3. A vertex $p \in A$ for which there exists no q in A such that $(p,q) \in E$ is called a terminal vertex of Γ .

Remark 3.4. Let $\rho \in P(X)$. Then ρ can be represented by the digraph $\Gamma(\rho) = (A, E)$, where $A = span(\rho)$ and for all $x, y \in A$, $(x, y) \in E$ if and only if $x \in dom(\rho)$ and $x\rho = y$. For example,

the partial transformation

$$\rho = \left(\begin{array}{rrrr} 1 & 2 & 3 & 7 & 8 & \dots \\ 2 & 3 & 1 & 8 & 9 & \dots \end{array}\right) \in \mathcal{P}(X),$$

where $X = \{1, 2, 3, ...\}$ is represented by the digraph as in figure 2

Figure 2. The Digraph of a Transformation.

Remark 3.5. For a non empty X, we fix an element $\diamond \notin X$. For $\alpha \in \mathcal{P}(X)$ and $x \in X$, we will write $x\alpha = \diamond$ if and only if $x \notin dom(\alpha)$. We also assume that $\diamond \alpha = \diamond$. With this notation it makes sense to write $x\alpha = y\beta$ or $x\alpha \neq y\beta$ ($\alpha, \beta \in \mathcal{P}(X), x, y \in X$) even when $x \notin dom(\alpha)$ or $y \notin dom(\beta)$. For any $\alpha \in \mathcal{P}(X)$, by $\alpha \neq 0$, we mean $dom(\alpha) \neq \emptyset$. Thus $\alpha = 0$ if and only if $dom(\alpha) = \emptyset$.

Definition 3.6. Let $\Gamma = (A, E)$ and $\Lambda = (B, F)$ be digraphs. A mapping ρ from A to B is called a homomorphism from Γ to Λ if for all $p, q \in A, (p,q) \in E$ implies $(p\rho, q\rho) \in F$.

Definition 3.7. Let $\Gamma = (A, E)$ and $\Lambda = (B, F)$ be digraphs. A homomorphism $\alpha : A \to B$ is called a restricted homomorphism from Γ to Λ , if

- (i) for every terminal vertex x of Γ , $x\alpha$ is a terminal vertex of Λ ;
- (ii) for every initial vertex x of Γ , either $x\alpha$ is an initial vertex of Λ or there are vertices t, z, y of Γ such that $(x, y), (t, z), (z, y) \in E$.

Throughout this paper, by a *hom*, we shall mean a homomorphism, and by a *restricted hom*, we shall mean a restricted homomorphism.

Now in order to prove the main theorem of this section we need the following two lemmas.

Lemma 3.8. Let $\rho, \pi, \alpha, \beta, \sigma, \tau \in \mathcal{P}(X)$ be such that $\rho\alpha = \alpha\pi, \pi\beta = \beta\rho, \rho = \alpha\pi\sigma, \pi = \beta\rho\tau$. Then dom(α) = span(ρ), dom(β) = span(π).

Proof. Let $x \in \text{span}(\rho)$ which implies $x \in \text{dom}(\rho) \cup \text{im}(\rho)$. If $x \in \text{dom}(\rho)$ then as $\rho = \alpha \pi \sigma$ which means $x \in \text{dom}(\alpha)$ and if $x \in \text{im}(\rho)$ then as $\rho \alpha = \alpha \pi$, $x \in \text{dom}(\alpha)$. Thus $\text{span}(\rho) \subseteq$ $\text{dom}(\alpha)$. Next we have to show $\text{dom}(\alpha) \subseteq \text{span}(\rho)$. For if $\text{dom}(\alpha) \nsubseteq \text{span}(\rho)$, then there is some $x \in X$ such that $x \in \text{dom}(\alpha)$ but $x \notin \text{span}(\rho)$, which implies there is some $z \in X$ such that $x\alpha\pi\sigma = z$ (as $\rho = \alpha\pi\sigma$) which implies $x\rho = z$, which is a contradiction as $x \notin \text{span}(\rho)$. Thus $\text{dom}(\alpha) \subseteq \text{span}(\rho)$. Hence $\text{dom}(\alpha) = \text{span}(\rho)$. Similarly we can prove that $\text{dom}(\beta) = \text{span}(\pi)$. \Box

Lemma 3.9. Let $\rho, \pi, \alpha, \beta, \sigma, \tau \in \mathcal{P}(X)$ be such that $\rho\alpha = \alpha\pi, \pi\beta = \beta\rho, \rho = \alpha\pi\sigma, \pi = \beta\rho\tau$ i.e, $\rho \sim_r \tau$ satisfying

$$\rho\tau\sigma = \rho \text{ and } \pi\sigma\tau = \pi. \tag{1.1}$$

Then α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$.

Proof. Let $\Gamma(\rho) = (A, E)$ and $\Gamma(\pi) = (B, F)$, where $A = \operatorname{span}(\rho)$ and $B = \operatorname{span}(\pi)$. Suppose that $(x, y) \in E$ i.e, $x\rho = y$. Then,

$$(x\alpha)\pi = x(\alpha\pi) = x(\rho\alpha) = (x\rho)\alpha = y\alpha.$$

Hence $(x\alpha, y\alpha) \in F$, which implies α is a hom from $\Gamma(\rho)$ to $\Gamma(\pi)$.

Suppose that x is a terminal vertex of $\Gamma(\rho)$. Since $\rho \alpha = \alpha \pi$ and $x \notin \text{dom}(\rho)$, so $x\rho = \diamond$ which implies $x\rho\alpha = \diamond$ which implies $x\alpha\pi = \diamond$. Thus $x\alpha$ is a terminal vertex of $\Gamma(\pi)$.

Suppose that x is an initial vertex of $\Gamma(\rho)$ and let $u = x\alpha$ is not an initial vertex of $\Gamma(\pi)$. Then $v\pi = u$ for some $v \in \operatorname{dom}(\pi)$. Let $t = v\beta$ and $z = u\beta$. Since $\pi\beta = \beta\rho$, the preceding argument for ρ and α applied to π and β shows that β is a hom from $\Gamma(\pi)$ to $\Gamma(\rho)$. Thus $(v, u) \in F$ implies that $(t, z) = (v\beta, u\beta) \in E$. Since $x \in \operatorname{span}(\rho)$ and $x \notin \operatorname{im}(\rho)$, we have $x \in \operatorname{dom}(\rho)$. Setting $y = x\rho$, we have $(x, y) \in E$. Now $y = x\rho = x\alpha\pi\sigma = u\pi\sigma = u\beta\rho\tau\sigma = z\rho\tau\sigma \stackrel{(1.1)}{=} z\rho$ and so $(z, y) \in E$. By the similar argument, we can prove β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$. Hence proved.

Definition 3.10. Let S be a subsemigroup of $\mathcal{P}(X)$. We say S is closed under restriction to spans if for all $\rho, \pi \in S$ such that $span(\rho) \subseteq dom(\pi), \pi|_{span(\rho)} \in S$.

Note that every subsemigroup of the semigroup of $\mathcal{T}(X)$ (semigroup of full transformations on X) is closed under restrictions to spans.

Theorem 3.11. Let S be a subsemigroup of $\mathcal{P}(X)$ such that S is closed under restrictions to spans and $\rho, \pi \in S$

- (1) If $\rho \sim_r \pi$ satisfying (1.1), then there exist $\alpha, \beta \in S^1$ such that α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y\alpha\sigma = y$ for all $y \in im(\rho)$ and $u\beta\tau = u$ for all $u \in im(\pi)$.
- (2) Conversely, if α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y\alpha\sigma = y$ for all $y \in im(\rho)$ and $u\beta\tau = u$ for all $u \in im(\pi)$. Then $\rho \sim_r \pi$.

Proof. Let $\Gamma(\rho) = (A, E)$ and $\Gamma(\pi) = (B, F)$.

(1) Let $\rho \sim_r \pi$ then there exist $\delta, \gamma, \sigma, \tau \in S^1$ such that

$$\rho\delta = \delta\pi, \pi\gamma = \gamma\rho, \rho = \delta\pi\sigma \text{ and } \pi = \gamma\rho\tau.$$

Here span(ρ) \subseteq dom(δ) and span(π) \subseteq dom(γ). Let $\alpha = \delta$ | span(ρ), $\beta = \gamma$ | span(π). First we prove $\rho \alpha = \alpha \pi$ and $\rho = \alpha \pi \sigma$. Let $x \in X$. If $x \in$ span(ρ). Then $x \alpha \pi = x \delta \pi = x \rho \delta = x \rho \alpha$ and $x \alpha \pi \sigma = x \delta \pi \gamma = x \rho$. If $x \notin$ span(ρ), i.e., $x \rho = \diamond$, then $x \rho \alpha = \diamond$ and $x \alpha \pi = \diamond$ and also $x \alpha \pi \sigma = \diamond = x \rho$. Similarly we can prove $\pi \beta = \beta \rho$ and $\pi = \beta \rho \tau$. Therefore we have

$$\rho\alpha = \alpha\pi, \pi\beta = \beta\rho, \rho = \alpha\pi\sigma \text{ and } \pi = \beta\rho\tau.$$

Now $\rho = \rho \tau \sigma$ and $\pi = \pi \sigma \tau$. Therefore by Lemma 3.9 we have α as a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β as a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$. Next for all $y \in \operatorname{im}(\rho)$, $y\alpha\sigma = x\rho\alpha\sigma$ (for some $x \in \operatorname{dom}(\rho)$) = $x\alpha\pi\sigma = x\rho = y$. Similarly for all $u \in \operatorname{im}(\pi)$, $u\beta\tau = u$.

(2) Let the desired α and β exist with $y\alpha\sigma = y$ for all $y \in im(\rho)$ and $u\beta\tau = u$ for all $u \in im(\pi)$. We have to prove $\rho \sim_r \pi$. First we will prove that $\rho\alpha = \alpha\pi$ and $\rho = \alpha\pi\sigma$. Let $x \in X$. Two cases arise here.

Case(1): Suppose $x \notin \text{dom}(\rho)$. Then $x\rho\alpha = \diamond$.

(i) If $x \notin \text{dom}(\alpha)$, then $x(\alpha \pi) = \diamond$ and $x\alpha \pi \sigma = \diamond$. So, $\rho \alpha = \alpha \pi$ and $\rho = \alpha \pi \sigma$ in this case. (ii) If $x \in \text{dom}(\alpha)$, then x is a terminal vertex of $\Gamma(\rho)$, and so $x\alpha$ is a terminal vertex in $\Gamma(\pi)$, which implies that $x(\alpha \pi) = (x\alpha)\pi = \diamond$ and $x\alpha\pi\sigma = \diamond$. Thus $\rho\alpha = \alpha\pi$ and $\rho = \alpha\pi\sigma$ in this case also.

Case(2): Suppose $x \in \text{dom}(\rho)$ and let $y = x\rho \in X$ i.e, $(x, y) \in E$ which implies $(x\alpha, y\alpha) \in F$ i.e,

$$(x\alpha)\pi = y\alpha.$$

Now, $x(\rho\alpha) = (x\rho)\alpha = y\alpha = x(\alpha\pi) = (x\alpha)\pi$ and $x\alpha\pi\sigma = [(x\alpha)\pi]\sigma = y\alpha\sigma = y = x\rho$ which implies $x\alpha\pi\sigma = x\rho$. Thus in both the cases we have proved that

$$\rho\alpha = \alpha\pi, \rho = \alpha\pi\sigma \tag{1.2}$$

Similarly by using that β is restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $u\beta\tau = u$ for all $u \in im(\pi)$ we can prove that

$$\pi\beta = \beta\rho \text{ and } \pi = \beta\rho\tau.$$
 (1.3)

Therefore by combining (1.2) and (1.3) we get $\rho \sim_r \pi$.

4 \sim_r through the trims of digraphs

Definition 4.1. Let $\Gamma = (A, E)$ and $\Lambda = (B, F)$ be digraphs. A mapping $\alpha : A \to B$ is called an isomorphism from Γ to Λ if α is a bijection and for all $x, y \in A, (x, y) \in E$ if and only if $(x\alpha, y\alpha) \in F$. Note that a bijection $\alpha : A \to B$ is an isomorphism if and only if both α and α^{-1} are isomorphisms. We will say that Γ and Λ are isomorphic, written $\Gamma \cong \Lambda$, if there exists an isomorphism from Γ to Λ .

For $\rho \in \mathcal{P}(X)$ and $y \in \operatorname{im}(\rho)$, denote by $y\rho^{-1}$ the set of all elements $x \in X$ such that $x\rho = y$. Note that $y\rho^{-1}$ is not empty (since $y \in \operatorname{im}(\rho)$) and that it is the set of all vertices x in $\Gamma(\rho)$ such that (x, y) is an edge in $\Gamma(\rho)$.

Definition 4.2. Let $\rho \in \mathcal{P}(X)$ and $\Gamma(\rho) = (A, E)$. Denote by A^i the set of initial vertices of $\Gamma(\rho)$. For every non-initial vertex y of $\Gamma(\rho)$ such that $y\rho^{-1} \subseteq A^i$, select $y^* \in y\rho^{-1}$. Let A_t and E_t be sets of vertices and edges respectively, defined by

 $A_t = (A \setminus A^i) \cup \{y^* : y \text{ is a non-initial vertex of } \Gamma(\rho) \text{ and } y\rho^{-1} \subseteq A^i\},$ $E_t = \{(x, y) \in E : x, y \in A_t\}.$

Then the digraph $\Gamma_t(\rho) = (A_t, E_t)$ will be called trim of $\Gamma(\rho)$.

In other words, a trim $\Gamma_t(\rho)$ is obtained from $\Gamma(\rho)$ by removing all initial vertices of $\Gamma(\rho)$ with the following exception: If y is a non-initial vertex of $\Gamma(\rho)$ and all vertices in $y\rho^{-1}$ are initial, then exactly one of these vertices (denoted y^* in Definition 4.2) are retained. There may be multiple trims of $\Gamma(\rho)$ since there may be multiple choices for y^* . However a trim of $\Gamma(\rho)$ is unique upto isomorphism.

For a function $f : A \to B$, the rank of f, denoted rank(f), is the cardinality of the image of f.

Lemma 4.3. [10, Lemma 4.4] Let $\rho, \pi \in \mathcal{P}(X)$ with $\Gamma(\rho) = (A, E)$ and $\Gamma(\pi) = (B, F)$. Suppose that δ is an isomorphism from trim $(\Gamma(\rho)) = (A_t, E_t)$ to trim $(\Gamma(\pi)) = (B_t, F_t)$.

- (1) Let y be a non-initial vertex of trim($\Gamma(\rho)$) and let $u = y\delta$. Then $u\pi^{-1} \neq \emptyset$. Moreover, if $y\rho^{-1} \subseteq A^i$, then $u\pi^{-1} \subseteq B^i$ and $y^*\delta = u^*$.
- (2) there exist a restricted hom α of rank $|A_t|$ from $\Gamma(\rho)$ to $\Gamma(\pi)$ such that $x\alpha = x\delta$ for every vertex x of trim $(\Gamma(\rho))$.

Lemma 4.4. Let $\rho, \pi, \alpha, \beta, \sigma, \tau \in \mathcal{P}(X)$ and let $\rho \sim_r \pi$ satisfying (3.1). Then $\alpha | \operatorname{im}(\rho) = \tau$ and $\beta | \operatorname{im}(\pi) = \sigma$.

Proof. Let $\rho \sim_r \pi$ then there exist $\alpha, \beta, \sigma, \tau$ such that $\rho \alpha = \alpha \pi, \pi \beta = \beta \rho, \rho = \alpha \pi \sigma$ and $\pi = \beta \rho \tau$. Let $y \in im(\rho)$ then there exist $x \in X$ such that $y = x\rho$. Now

$$y\alpha = x\rho\alpha$$
$$= x\alpha\pi$$
$$= x\alpha\pi\sigma\tau$$
$$= x\rho\tau$$
$$= y\tau.$$

Similarly, $\beta | \operatorname{im}(\pi) = \sigma$.

Lemma 4.5. Let $\sigma, \tau \in \mathcal{P}(X)$ with $\sigma \sim_r \tau$ satisfying (3.1). Let y be a non-initial vertex of $\Gamma(\rho)$ and $u = y\alpha \in B$. Then u is not initial in $\Gamma(\pi)$. Moreover, if $y\rho^{-1} \subseteq A^i$, then $u\pi^{-1} \subseteq B^i$ and for every $x \in y\rho^{-1}$, $x\alpha \in u\pi^{-1}$.

Proof. Let $\sigma, \tau \in \mathcal{P}(X)$ with $\sigma \sim_r \tau$ satisfying (3.1), then by Theorem 3.11 there exists $\alpha, \beta \in \mathcal{P}(X)$ such that α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y\alpha\sigma = y$ for all $y \in \operatorname{im}(\rho)$ and $u\beta\tau = u$ for all $u \in \operatorname{im}(\pi)$. Let $\Gamma(\rho) = (A, E)$ and $\Gamma(\pi) = (B, F)$. Since y is not initial, $(x, y) \in E$ for some $x \in A$. Then $(x\alpha, u) = (x\alpha, y\alpha) \in F$, and so u is a non-initial vertex of $\Gamma(\pi)$. Suppose to the contrary that $u\pi^{-1} \nsubseteq B^i$, that is, $(v, u) \in F$ for some non-initial $v \in B$. Then there is $t \in B$ such that $(t, v) \in F$. Since β is a hom from $\Gamma(\pi)$ to $\Gamma(\rho)$, $(t\beta, v\beta)$, $(v\beta, u\beta) \in E$. But $u\sigma = y\alpha\sigma = y$ (since $y \in \operatorname{im}(\rho)$). Now, by Lemma 4.4 $u\beta = y$. So $(t\beta, v\beta)$, $(v\beta, y) \in E$ which contradicts the hypothesis that $y\rho^{-1} \subseteq A^i$. Hence $u\pi^{-1} \subseteq B^i$. Finally, if $x \in y\rho^{-1}$, then $(x, y) \in E$, and so $x\alpha \in u\pi^{-1}$ since $(x\alpha, u) = (x\alpha, y\alpha) \in F$.

Now we have the main result on r-notion of conjugacy in the semigroup $\mathcal{P}(X)$ through trims of the digraphs.

Theorem 4.6. Let $\rho, \pi \in \mathcal{P}(X)$

- (1) Let $\rho \sim_r \pi$ satisfying (3.1). Then $trim(\Gamma(\rho)) \cong trim(\Gamma(\pi))$.
- (2) Conversely, if $trim(\Gamma(\rho)) \cong trim(\Gamma(\pi))$ with $y\alpha\sigma = y$ for all $y \in im(\rho)$ and $u\beta\tau = u$ for all $u \in im(\pi)$, then $\rho \sim_r \pi$.
- *Proof.* (1) Let $\Gamma(\rho) = (A, E), \Gamma(\pi) = (B, F)$, trim $(\Gamma(\rho)) = (A_t, E_t)$, and trim $(\Gamma(\pi)) = (B_t, F_t)$. Suppose that $\rho \sim_r \pi$ then by Theorem 3.11, there exists $\alpha, \beta, \sigma, \tau$ such that α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y\alpha\sigma = y$ for all $y \in \operatorname{im}(\rho)$ and $u\beta\tau = u$ for all $u \in \operatorname{im}(\pi)$. Suppose that x is an initial vertex of trim $(\Gamma(\rho))$. Let $y = x\rho \in A$ and $u_x = y\alpha = y\tau$ (by Lemma 4.4) $\in B$. By Lemma 4.5, u_x is a non-initial vertex of trim $(\Gamma(\pi))$ and $u_x\pi^{-1} \subseteq B^i$ (so $(u_x)^*$ exists). Therefore, we can define $\mu : A_t \to B_t$ by

$$x\mu = \begin{cases} x\alpha & \text{if } x \text{ is not initial in } \operatorname{trim}(\Gamma(\rho)), \\ (u_x)^* & \text{otherwise.} \end{cases}$$

We claim that μ is an isomorphism from trim $(\Gamma(\rho)$ to trim $(\Gamma(\pi))$. Let $(x, y) \in E_t$. If x is not initial, then $(x\mu, y\mu) = (x\alpha, y\alpha) \in F$, and so $(x\mu, y\mu) \in F_t$ since $x\mu, y\mu \in B_t$. Suppose that x is initial and let $y = x\rho$. Then $(x\mu, y\mu) = ((u_x)^*, u_x) \in F_t$. Hence μ is a hom.

Let $x, s \in A_t$ be such that $x\mu = s\mu$. If x and s are both not initial, then $x\alpha = s\alpha$ (since $x\mu = x\alpha$ and $s\mu = s\alpha$), and so $x = x(\alpha\sigma)$ (by Theorem 3.11) = $(x\alpha)\sigma = (s\alpha)\sigma = s(\alpha\sigma) = s$. Suppose that at least one of x and s, say x, is initial. Then $x\mu = (u_x)^* \in B_t$ is initial. So s must be initial since otherwise, $s\mu = s\alpha$ would not be initial (by Lemma 4.5), which would contradict $x\mu = s\mu$. Thus, $s\mu = (u_s)^*$. Let $y = x\rho$ and $z = s\rho$, so $y\alpha = u_x$ and $z\alpha = u_s$. Since y and z are not initial, we have $y\mu = y\alpha = z\alpha = z\mu$, and so y = z by the preceding argument. Hence $x = y^* = z^* = s$. We have proved that μ is injective.

Let $v \in B_t$. If v is not initial, then $y = v\beta \in A$ is not initial (so $y \in A_t$), and so $y\mu = y\alpha = y\tau = v\beta\tau = v$. Suppose that v is initial and let $u = v\pi$. Then, by Lemma 4.5, $y = u\beta$ is not initial and $y\rho^{-1} \subseteq A^i$. Let $x = y^* \in A_t$, so $y = x\rho$. Then $x\mu = (u_x)^* = (y\alpha)^* = (y\tau)^*$ (by Lemma 4.4) $= ((u\beta\tau)^* = (u\beta\tau)^* = u^* = v$, where the last equality is true since there is only one initial vertex of trim($\Gamma(\pi)$) in $u\pi^{-1}$. We have proved that μ is surjective.

Hence μ is a bijective hom from trim($\Gamma(\rho)$) to trim($\Gamma(\pi)$) such that for every non-initial $y \in A_t, y\mu = y\alpha = y\tau$ (by Lemma 4.4) and $y^*\mu = (y\alpha)^* = (y\tau)^*$ if $y\rho^{-1} \subseteq A^i$. Similarly, we can define bijective hom λ from trim($\Gamma(\pi)$) to trim($\Gamma(\rho)$) such that for every non-initial $u \in B_t, u\lambda = u\beta = u\sigma$ (by Lemma 4.4) and $u^*\lambda = (u\beta)^* = (u\sigma)^*$ if $u\pi^{-1} \subseteq B^i$. Let $x \in A_t$. If x is not initial, then $x\alpha \in B_t$ is not initial and $x(\mu\lambda) = (x\mu)\lambda = (x\alpha)\lambda =$

 $(x\alpha)\beta = x(\alpha\sigma) = x$. Suppose that x is initial and let $y = x\rho$. Then $x = y^*$ and $x(\mu\lambda) = (y^*\mu)\lambda = (y\alpha)^*\lambda = ((y\alpha)\beta)^* = ((y\alpha)\sigma)^*$ (by Lemma 4.4) $= (y(\alpha\sigma))^* = y^* = x$. Similarly $v(\lambda\mu) = v$ for every $v \in B_t$. Hence $\lambda = \mu^{-1}$ and so μ is an isomorphism.

(2) Conversely, suppose that trim(Γ(ρ)) ≅ trim(Γ(π)) and let μ : A_t → B_t be an isomorphism from trim(Γ(ρ)) to trim(Γ(π)). Then μ⁻¹ : B_t → A_t is an isomorphism from trim(Γ(π)) to trim(Γ(ρ)). By Lemma 4.3, there are restricted homs α from Γ(ρ) to Γ(π) and β from Γ(π) to Γ(ρ). By given condition yασ = y for all y ∈ im(ρ) and uβτ = u for all u ∈ im(π). Now apply Theorem 3.11, we get ρ ~_r π.

5 Characterization of \sim_r in the proper ideals of $\mathcal{P}(X)$

By a proper ideal of a semigroup S we mean an ideal I of S such that $I \neq S$. For a cardinal k with $0 < k \le |X|$, denote by P_k the set of all $\rho \in \mathcal{P}(X)$ such that $\operatorname{rank}(\rho) < k$. It is well known (see [?, Sec 2.2]) that the set $\{P_k : 0 < k \le |X|\}$ is the set of proper ideals of $\mathcal{P}(X)$.

Theorem 5.1. Let P_k be a proper ideal of $\mathcal{P}(X)$ and let $\rho, \pi \in P_k$ with $\Gamma(\rho) = (A, E), \Gamma(\pi) = (B, F)$, trim $(\Gamma(\rho)) = (A_t, E_t)$ and trim $(\Gamma(\pi)) = (B_t, F_t)$.

- (1) If k is infinite, let $\rho \sim_r \pi$ satisfying 3.1. Then $trim(\Gamma(\rho)) \cong trim(\Gamma(\pi))$.
- (2) Conversely, if $trim(\Gamma(\rho) \cong trim(\Gamma(\pi) \text{ with } y\alpha\sigma = y \text{ for all } y \in im(\rho) \text{ and } u\beta\tau = u \text{ for all } u \in im(\pi), \text{ then } \rho \sim_r \pi \text{ in } P_k.$
- *Proof.* (1) Let $\rho \sim_r \pi$ in P_k . Then $\rho \sim_r \pi$ in $\mathcal{P}(X)$ and so by part (1) of Theorem 4.6, we have $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$.
- (2) Conversely, let trim($\Gamma(\rho)$) \cong trim($\Gamma(\pi)$). Suppose k is infinite. Then

$$|A_t| = |A \setminus A^i| + |\{y^* : y \in A \setminus A^i \text{ and } y\rho^{-1} \subseteq A^i\}|$$

= $|A \setminus A^i| + |\{y : y \in A \setminus A^i \text{ and } y\rho^{-1} \subseteq A^i\}|$
 $\leq |\operatorname{im}(\rho)| + |\operatorname{im}(\rho)| < k + k = k.$

Thus $|A_t| < k$. let $\mu : A_t \to B_t$ be an isomorphism from trim($\Gamma(\rho)$) to trim($\Gamma(\pi)$). Then $\mu^{-1} : B_t \to A_t$ is an isomorphism from trim($\Gamma(\pi)$) to trim($\Gamma(\rho)$). By Lemma 4.3, there are r-homomorphisms $\alpha \in P_k$ from $\Gamma(\rho)$ to $\Gamma(\pi)$ and $\beta \in P_k$ from $\Gamma(\pi)$ to $\Gamma(\rho)$. By given condition $y\alpha\sigma = y$ for all $y \in \text{im}(\rho)$ and $u\beta\tau = u$ for all $u \in \text{im}(\pi)$. Then by Theorem 3.11, we have $\rho \sim_r \pi$ in $\mathcal{P}(X)$ i.e., $\rho\alpha = \alpha\pi, \pi\beta = \beta\rho, \rho = \alpha\pi\sigma$ and $\pi = \beta\rho\tau$. Since k is infinite, so rank(σ) < k and rank(τ) < k. So, $\sigma, \tau \in P_k$. Thus $\rho \sim_r \pi$ in P_k .

References

- A. H. Shah, M. R. Parray, D. J. Mir, Counting of conjugacy classes in partial transformation semigroups, Int.J.Nonlinear Anal.Appl. 13 (2022), 1909-1915.
- [2] A. H. Shah, M. R. Parray, \sim_r notion of conjugacy in partial transformation semigroups, Korean J.Math 30 (2022), 115-125.
- [3] A. H. Shah, M. R. Parray, ~r notion of conjugacy in partial and full injective transformation semigroups, Alg. Struc. Appl., http://doi.org/10.29252/AS.2022.2667.
- [4] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum 29 (1984), 223-240.
- [5] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen 70 (2007), 19-43.
- [6] G. Kudryavtseva and V. Mazorchuk, *On three approaches to conjugacy in semigroups*, Semigroup Forum 78 (2009), 14-20.
- [7] G. Lallement, Semigroups and combinatorial applications, John Wiley and Sons, New York, (1979).
- [8] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, *Four notions of conjugacy for abstract semigroups*, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 147 (2017), 1169-1214.

- [9] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra 403 (2014), 93-134.
- [10] J. Koneiczny, A new definition of conjugacy for semigroups, J. Algebra and Appl. 17 (2018), 1-20.
- [11] J. Araujo, M. Kinyon and J. Konieczny, *Conjugacy in inverse semigroups*, Journal of Algebra 533 (2019), 142-173.
- [12] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, (1995).
- [13] L. Zhang, Conjugacy in special monoids, J. Algebra 143 (1991), 487-497.
- [14] L. Zhang, On the conjugacy problem for one-relator monoids with elements of finite order, Internat. J. Algebra Comput. 2 (1992), 209-220.
- [15] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.

Author information

Aftab Hussain Shah and Mohd Rafiq Parray, Department of Mathematics, Central University of Kashmir, Ganderbal 191201, India.

E-mail: parrayrafiq@cukashmir.ac.in

Received: October 10, 2021. Accepted: March 23, 2022.