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Abstract In this paper, we study the new notion ~,. notion of conjugacy in subsemigroups of
partial transformation semigroup through restricted homomorphism of the digraphs.

1 introduction

If G is a group and a,b € G then a is said to be conjugate to b if there exists g € G such that
a = gbg~' which is equivalent to ag = gb. Due to this fact ~; notion was introduced in a
semigroup S as

x ~;y < Ipe S!such that zp = py

where S! is S with an identity adjoined. If z ~; y, we say x is left conjugate to y (see [4], [13]
and [14]). The relation ~; is always reflexive and transitive in any semigroup but not symmetric
in general. Lallement in [7] has defined the conjugate elements of a free semigroup S as those
related by ~; and showed that ~; is equal to the following equivalence on the free semigroup S:

.L“pr<:>E|U,UESl such that x = uv and y = vu

The relation ~, is always reflexive and symmetric but not transitive in general.
The relation ~; has been restricted to ~, in [4], and ~;, has been extended to ~ in [5] and
in [6], in such a way that the modified relations are equivalences on an arbitrary semigroup S

z ~oy< 3 p,qe S such that zp = py and yq = qa.

~,= the transitive closure of ~,, (i.e., the smallest transitive relation on S containing ~,).

The relation ~, is not useful for semigroups S with zero since for every such .S, we have
~,= S x S. This deficiency has been remedied in [8] by Araujo et al., where the following
relation has been defined on an arbitrary semigroup .5,

x ~cy < Ip € P(z),q € P'(y) such that zp = py and yq = qz,

where for x # 0, P(z) = {p € S : (mx)p # 0 for all maz € S'x \ {0}} denotes the left
principal ideal generated by = and P(0) = {0}. The relation ~.. is an equivalence relation in any
semigroup and does not reduce to .S x S if S has a zero, and it is equal to ~, if S does not have
a zero.

Furthermore, J. Konieczny in [10] introduced the ~,, notion of conjugacy in semigroup S as

chny@ﬂp,qESl such that xp = py, yq = qz,z = pyq and y = qxp.

This relation is an equivalence relation in any semigroup and does not reduce to universal relation
in a semigroup S with zero.

For a non-empty set X, P(X) denotes the set of all partial transformations on X and it forms
a semigroup under operation as composition of maps and is known as partial transformation
semigroup. For each p € P(X), the domain of p is denoted by

dom(p) = {x € X : there exists y € X with (z,y) € p},
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the image of p is denoted by
im(p) = {y € X : there exists z € X with (x,y) € p},

and the span of p is denoted by

span(p) = dom(p) Uim(p).

By o # 0 we mean p such that dom(p) # 0.
A semigroup S is called an inverse semigroup if for every a € S, there is a unique a~! € S
(called the inverse of a) such that

1 1 —1

ae 'a=aanda 'aa" ' = a
For a non-empty set X, denote by Z(X) the symmetric inverse semigroup on X, which is the
subsemigroup of P(X) consisting of all partial injective transformations on X. Both P(X) and
Z(X) have the symmetric group Sym(X) of permutations on X as their group of units, and the
zero in P(X) is an element of Z(X). The semigroup Z(X) is universal for the class of inverse
semigroups because of the Vagner-Preston theorem that states that every inverse semigroup can
be embedded in some Z(X) [12, Theorem 5.1.7]. This is analogous to the Cayley theorem for
groups that states that every group can be embedded in some symmetric group Sym(X).

Next we discuss ~; notion of conjugacy in inverse semigroups. This was introduced by
Araujo et al. in [11].

Definition 1.1. let S be an inverse semigroup and a,b € S. Then a ~; b if and only if there exists
g € S' such that

g 'ag =band gbg~' = a.

We refer the reader to Howie [12] for any unexplained terminology in semigroups.

2 The notion ~,.

In [2] and [3] we introduced ~,. notion of conjugacy in semigroups. The notion ~,. in semigroups
is defined as in the following.

Definition 2.1. Define a relation ~, on a semigroup S by
an~ybe3 g huve S suchthat ag = gb,bh = ha,a = gbu and b = hav.

The r-notion of conjugacy is an equivalence relation in any semigroup and it does not reduce
to a universal relation in a semigroup with zero ([2, Theorem 2.1]). In case S is a group, then ~,.
reduces to the usual notion of conjugacy ([2, Theorem 2.1]). Also ~,,C~,.C~.C~, [2, Theorem
2.2].

Theorem 2.2. [ 10, Theorem 2.6] Let S be an inverse semigroup and let a,b € S. Then a ~,, b if
and only if a ~; b.

In the next theorem we show ~,. coincides with ~,, in an inverse semigroup.
Theorem 2.3. Let S be an inverse semigroup and let a,b € S. Then a ~, b if and only if a ~,, b.

Proof. By definition of ~,, and ~,, we have ~,, C~,.. So for any a,b € S, a ~,, bimplies a ~,. b.
For the converse, we may assume by the Vagner-Preston Theorem that S is a subsemigroup
of some symmetric inverse semigroup Z(X). Let a ~, bin S, then there exist g, h,u,v € S!
such that
ag = gb,bh = ha,a = gbu and b = hav.
1

= a. Clearly dom(agg~!) C dom(a). Let € dom(a) implies za € im(a) C
1

We claim agg~
dom(g) implies (za) € dom(g), which implies (za)g € dom(g~!). Hence z € dom(agg™
which implies dom(a) C dom(agg~"). Thus dom(a) = dom(agg—'). Next for every = € dom(a

):
)

’
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1 1 1 1

= a. Since ag = gb implies agg™ and so

= za. So agg~ = gbg™

z(agg™") = (za)gg™
a=gbg~ .

Next we claim that g~'gb = b. For if

g 'gb#b
= g lag #*b
= g lagg™" #bg™!
= g laFbg!
= g 'gbu # by~
= g9 'gbu # gbg™"
= gbu # gbg ™"
= a# gbg~!

Yag = g~ 'gb we have

ag = b. Thus a ~; b and so by Theorem 2.2, a ~,, b. m|

which is a contradiction. Hence g~ 'gb = b. Since ag = gb, we have g~
—1
g

Due to Theorem 2.2 and Theorem 2.3 we have the following corollary.

Corollary 2.4. Let S be an inverse semigroup. Then ~,=rs,=r~; in S.

3 ~, in general subsemigroups of P(X)

Definition 3.1. Let A be any set (not necessarily finite and possibly empty) and E be a binary
relation on A, then T = (A, E) is called a directed graph (or a digraph). We call any p € A a
vertex and any (p,q) € E an arc of T.

For example, let A = {1,2,3,4} and E = {(1,2),(1,4),(2,3), (4,1)}. Then the digraph I"
is as under,

1 i
] 2
3e 3
4 4

Figure 1. Digraph

Definition 3.2. A vertex p € A is said to be an initial vertex if there is no q € A for which
(¢,p) € E while a vertex p € A is said to be a non-initial vertex if (q,p) € E for some q € A.

Definition 3.3. A vertex p € A for which there exists no q in A such that (p,q) € E is called a
terminal vertex of T.

Remark 3.4. Let p € P(X). Then p can be represented by the digraph I'(p) = (A, E), where
A =span(p) andforall v,y € A, (x,y) € E ifand only if v € dom(p) and xp = y. For example,



216 Aftab Hussain Shah and Mohd Rafiq Parray

the partial transformation

12378 ..
- e P(X),
p<23189...>7)(>

where X = {1,2,3,...} is represented by the digraph as in figure 2

2 8
3 /\
1 7 Se ...

Figure 2. The Digraph of a Transformation.

Remark 3.5. For a non empty X, we fix an element o ¢ X. For o € P(X) and xz € X, we will
write oo = ¢ if and only if x ¢ dom(«). We also assume that oo = <. With this notation it makes
sense to write vao = yf8 or xav # yB (o, 8 € P(X),z,y € X) even when x ¢ dom(a) ory ¢
dom(B). For any a € P(X), by a # 0, we mean dom(c) # 0. Thus o = 0 if and only if dom(c)
= (.

Definition 3.6. Let I = (A, E) and A = (B, F) be digraphs. A mapping p from A to B is called
a homomorphism from T to A if for all p,q € A, (p,q) € E implies (pp, qp) € F.

Definition 3.7. Let ' = (A, E) and A = (B, F) be digraphs. A homomorphism o.: A — B is
called a restricted homomorphism from I to A, if

(i) for every terminal vertex x of I, x« is a terminal vertex of A,

(i) for every initial vertex x of T, either x« is an initial vertex of A or there are vertices t, z,y
of I such that (x,y), (t,z), (z,y) € E.

Throughout this paper, by a hom, we shall mean a homomorphism, and by a restricted hom,
we shall mean a restricted homomorphism.

Now in order to prove the main theorem of this section we need the following two lemmas.

Lemma 3.8. Let p, 7,0, 3,0, 7 € P(X) be such that poa = an, 78 = Bp,p = arwo, m = BpT.
Then dom(a) = span(p), dom(3) = span(m).

Proof. Let z € span(p) which implies € dom(p)U im(p). If x € dom(p) then as p = ano
which means x € dom(w)and if = € im(p) then as pa = am, € dom(«). Thus span(p) C
dom(cr). Next we have to show dom(«) C span(p). For if dom(«) 51 span(p), then there is some
z € X such that z € dom(«) but = ¢ span(p), which implies there is some z € X such that
zamwo = z (as p = aro) which implies zp = z, which is a contradiction as = ¢ span(p). Thus
dom(ar) C span(p). Hence dom(«a) = span(p). Similarly we can prove that dom(3) = span(w). O

Lemma 3.9. Let p, 7, o, 3,0, 7 € P(X) be such that po = amw, 78 = Bp, p = anwo, 7 = Bp7 ie,
P~ T satisfying
pTo = pand ToT = T. (1.1)

Then « is a restricted hom from T'(p) to T'(m) and 8 is a restricted hom from T'(7) to T'(p).

Proof. LetT'(p) = (A, FE) and I'(7) = (B, F), where A = span(p) and B = span(r). Suppose
that (z,y) € F i.e, zp = y. Then,

(za)m = z(am) = z(pa) = (zp)a = ya.
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Hence (zo, ya) € F, which implies « is a hom from I'(p) to I'().

Suppose that z is a terminal vertex of I'(p). Since pa = arn and z ¢ dom(p), so zp = ¢
which implies zpa = ¢ which implies zar = ¢. Thus z« is a terminal vertex of I'(7r).

Suppose that x is an initial vertex of I'(p) and let w = x« is not an initial vertex of I'(7). Then
v = u for some v € dom(w). Lett = v3 and z = uf. Since 78 = [p, the preceding argument
for p and « applied to 7 and 8 shows that 3 is a hom from I'(7) to I'(p). Thus (v, u) € F implies
that (¢,2z) = (vB,uB) € E. Since z € span(p) and = ¢ im(p), we have x € dom(p). Setting

1.1
y = xp, we have (z,y) € E. Now y = zp = zarmo = uro = ufpto = zpTo (L zp and
so (z,y) € E. By the similar argument, we can prove /3 is a restricted hom from I'() to I'(p).
Hence proved. O

Definition 3.10. Let S be a subsemigroup of P(X). We say S is closed under restriction to spans
if for all p,m € S such that span(p)C dom(r), 7T|span(p) es.

Note that every subsemigroup of the semigroup of 7 (X) (semigroup of full transformations
on X) is closed under restrictions to spans.

Theorem 3.11. Ler S be a subsemigroup of P(X) such that S is closed under restrictions to
spans and p,m € S

(1) If p ~, = satisfying (1.1), then there exist a, 3 € S' such that o is a restricted hom from
I'(p) to T'(m) and B is a restricted hom from T'(m) to T'(p) with yao =y for all y € im(p)
and uBt = u for all v € im(7).

(2) Conversely, if « is a restricted hom from T'(p) to T'(w) and B is a restricted hom from T'(r)
to T(p) with yao = y for all y € im(p) and uBt = u for all u € im(w). Then p ~, .

Proof. LetT(p) = (A, E) and I'(w) = (B, F).
(1) Let p ~, 7 then there exist §,v, 0,7 € S’ such that

pd = o,y = yp, p = dmwo and ™ = ~ypT.

Here span(p) C dom(¢) and span(r) C dom(~y). Let o = 4| span(p), 8 = ~| span(r). First
we prove pa = am and p = ano. Letx € X. If © € span(p). Then zam = zém = xpd =
zpa and zamo = xdny = xzp. If x ¢ span(p), i.e., xp = o, then zpa = ¢ and zam = ¢ and
also zamo = ¢ = xp. Similarly we can prove 73 = Bp and m = Bp7. Therefore we have

pa = am, w3 = Bp,p=anc and T = BpT.

Now p = pro and # = mwor. Therefore by Lemma 3.9 we have « as a restricted hom
from I'(p) to I'(7) and S as a restricted hom from I'(7) to I'(p). Next for all y € im(p),
yao = xpao (for some x € dom(p)) = xrarc = xp = y. Similarly for all v € im(n),
ubT =u.

(2) Let the desired o and 3 exist with yao = y for all y € im(p) and u87 = w for all u € im(r).
We have to prove p ~,. 7. First we will prove that pa = am and p = amo. Let x € X. Two
cases arise here.

Case(1): Suppose = ¢ dom(p). Then zpa = .
() If z ¢ dom(«v), then z(arn) = ¢ and zamo = ©. So, pa = am and p = amo in this case.
(ii) If z € dom(«), then z is a terminal vertex of I'(p), and so z« is a terminal vertex in
I'(), which implies that z(aw) = (za)m = ¢ and zaro = ¢. Thus pa = aw and p = ano
in this case also.
Case(2): Suppose z € dom(p) and lety = zp € X i.e, (z,y) € F which implies (zc, ya) €
Fi.e,

(za)m = ya.

Now, z(pa) = (zp)a = ya = z(ar) = (za)r and zaro = [(za)r|o = yao =y = xp
which implies zamo = xp. Thus in both the cases we have proved that

po = Qm,p = ano (1.2)
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Similarly by using that 3 is restricted hom from I'(7) to I'(p) with uf7 = w for all u €
im(7) we can prove that

7B = Bpand T = BprT. (1.3)
Therefore by combining (1.2) and (1.3) we get p ~,. 7.

4 ~, through the trims of digraphs

Definition 4.1. Let I" = (A, E) and A = (B, F) be digraphs. A mapping o : A — B is called
an isomorphism from T to A if « is a bijection and for all z,y € A, (z,y) € E if and only if
(za, ya) € F. Note that a bijection o : A — B is an isomorphism if and only if both o and o™ !
are isomorphisms. We will say that I" and A are isomorphic, written I = A, if there exists an
isomorphism from I to A.

For p € P(X) and y € im(p), denote by yp~! the set of all elements » € X such that zp = y.
Note that yp~! is not empty (since y € im(p)) and that it is the set of all vertices = in I'(p) such
that (z,y) is an edge in I'(p).

Definition 4.2. Let p € P(X) and I'(p) = (A, E). Denote by A’ the set of initial vertices of
[(p). For every non-initial vertex y of T'(p) such that yp~' C A%, select y* € yp~!. Let A; and
E, be sets of vertices and edges respectively, defined by
Ay = (A\ AY) U {y* : y is a non-initial vertex of T'(p) and yp~' C A'},
Ey={(z,y) € E:z,y € A}

Then the digraph T'y(p) = (Ay, Ey) will be called trim of T(p).

In other words, a trim I';(p) is obtained from I'(p) by removing all initial vertices of I'(p)

with the following exception: If y is a non-initial vertex of I'(p) and all vertices in yp~! are

initial, then exactly one of these vertices (denoted y* in Definition 4.2) are retained. There may
be multiple trims of I'(p) since there may be multiple choices for y*. However a trim of I'(p) is
unique upto isomorphism.

For a function f : A — B, the rank of f, denoted rank(f), is the cardinality of the image of

1.

Lemma 4.3. [10, Lemma 4.4] Let p,m € P(X) withT'(p) = (A,E) and I'(w) = (B, F). Sup-
pose that § is an isomorphism from trim(T'(p)) = (As, Ey) to trim(T'(7r)) = (B, Fy).

(1) Let y be a non-initial vertex of trim(T'(p)) and let u = y6. Then ux~"' # (. Moreover, if
yp~! C A% then ur™' C B and y*6 = u*.

(2) there exist a restricted hom « of rank |A¢| from T(p) to T() such that xoo = x4 for every
vertex x of trim(T'(p)).

Lemma 4.4. Let p, 7,0, 3,0,7 € P(X) and let p ~, w satisfying (3.1). Then o|im(p) = T and
Blim(r) = o.

Proof. Let p ~, w then there exist a, 5,0, 7 such that pa = am, 75 = Bp,p = amc and
m = Bpt. Let y € im(p) then there exist x € X such that y = zp. Now
ya = xpo
= Tram
= zamoT
= xpT
= yT.

Similarly, B|im(r) = o . O
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Lemma 4.5. Let o, 7 € P(X) with o ~, T satisfying (3.1). Let y be a non-initial vertex of I'(p)
and v = ya € B. Then u is not initial in T'(r). Moreover, ify,o_1 C A%, then un~' C B and
foreveryx € yp~ ', za € un'.

Proof. Leto,7 € P(X) with o ~, T satisfying (3.1), then by Theorem 3.11 there exists a, 5 €
P(X) such that « is a restricted hom from I'(p) to I'(7r) and 3 is a restricted hom from I'(7) to
I'(p) with yao = y for all y € im(p) and uf7 = u for all u € im(rw). Let I'(p) = (A, E) and
I'(w) = (B, F). Since y is not initial, (x,y) € F for some x € A. Then (za,u) = (va,ya) € F,
and so u is a non-initial vertex of (7). Suppose to the contrary that ur~! g B, that is,
(v,u) € F for some non-initial v € B. Then there is ¢ € B such that (¢,v) € F. Since 8
is a hom from I'(r) to I'(p), (¢t8,v8), (vB,uB) € E. But uc = yaoc = y (since y € im(p)).
Now, by Lemma 4.4 u3 = y. So (¢3,v3), (vB,y) € E which contradicts the hypothesis that
yp~! C A'. Hence un~' C B’. Finally, if z € yp~', then (x,y) € E, and so za € un~' since
(za,u) = (za,ya) € F. i

Now we have the main result on r-notion of conjugacy in the semigroup P(X) through trims
of the digraphs.

Theorem 4.6. Let p,m € P(X)
(1) Let p ~, w satisfying (3.1). Then trim(I'(p)) = trim(T'(w)).

(2) Conversely, if trim(T'(p)) = trim(I'()) with yao = y for all y € im(p) and uBT = u for all
u € im(m),then p ~, 7.

Proof. (1) Let T'(p) = (A, E),[(x) = (B, F), timT(p)) = (A, Ey), and trim(I'(7)) =
(By, F}). Suppose that p ~, 7 then by Theorem 3.11, there exists «, 3,0, T such that «
is a restricted hom from I'(p) to I'(7) and S is a restricted hom from I'() to I'(p) with
yao = y for all y € im(p) and uBT = w for all u € im(7). Suppose that x is an initial vertex
of trim(I'(p)). Let y = zp € A and u, = ya = y7 (by Lemma 4.4) € B. By Lemma 4.5,
u, is a non-initial vertex of trim(I'(7)) and u,m~! C B’ (so (u,)* exists). Therefore, we
can define p : Ay — B; by

oy 7€ if z is not initial in trim(T'(p)),
H= (ug)* otherwise.

We claim that g is an isomorphism from trim(I'(p) to trim(I'(7)). Let (z,y) € E;. If x
is not initial, then (zp,yu) = (za,ya) € F, and so (zp,yu) € F since zu,ypu € By.
Suppose that x is initial and let y = zp. Then (zu, yu) = ((uz)*,u,) € F;. Hence p is a
hom.

Let z,s € A; be such that zu = su. If z and s are both not initial, then xa = s« (since
zp = za and sp = sa), and so © = z(ao)(by Theorem 3.11) = (za)o = (sa)o =
s(ao) = s . Suppose that at least one of = and s, say =, is initial. Then zp = (u,)* € By is
initial. So s must be initial since otherwise, sy = sa would not be initial (by Lemma 4.5),
which would contradict xp = su. Thus, sp = (us)*. Lety = zp and z = sp, S0 ya = uy
and za = u,. Since y and z are not initial, we have yu = ya = za = zu, and so y = z by
the preceding argument. Hence x = y* = 2* = s. We have proved that y is injective.

Let v € B;. If v is not initial, then y = v € A is not initial (so y € A;), and so
yp = ya = y1r = vP71 = v. Suppose that v is initial and let v = vw. Then, by Lemma 4.5,
y = uf is not initial and yp~! C A’ Letx = y* € Ay, soy = xp. Then zp = (u,)* =
(ya)* = (y7)* (by Lemma 4.4) = ((u8)7)* = (ufT)* = u* = v, where the last equality
is true since there is only one initial vertex of trim(I'(7)) in ur~!. We have proved that 1
is surjective.

Hence 1 is a bijective hom from trim(I'(p)) to trim(I'()) such that for every non-initial
y € Ay, yu = ya = y7 (by Lemma 4.4) and y*u = (ya)* = (y7)* if yp~! C A’. Similarly,
we can define bijective hom A from trim(I"(7)) to trim(I'(p)) such that for every non-initial
u € By, u\ = uf3 = uo(by Lemma 4.4) and u*\ = (uB)* = (uo)* if ur~! C B'. Let
x € Aq. If z is not initial, then zav € By is not initial and z(u)) = (zp)A = (za)\ =
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(za)B = z(ao) = z. Suppose that z is initial and let y = zp. Then z = y* and z(u)) =

(WA = (ya)'A = ((y2)B)" = ((ya)o)(by Lemma 4.4) = (y(a0))" = y* = .
Similarly v(Ap) = v for every v € B;. Hence A = p~! and so p is an isomorphism.

(2) Conversely, suppose that trim(I'(p)) = trim(I'(7)) and let p1 : A; — By be an isomorphism
from trim(I'(p)) to trim(I'(7)). Then p~! : B, — A, is an isomorphism from trim(I'(r)) to
trim(I"(p) ). By Lemma 4.3, there are restricted homs « from I'(p) to I'(7) and 8 from I"(r)
to ['(p). By given condition yao = y for all y € im(p) and w87 = w for all u € im(r). Now
apply Theorem 3.11, we get p ~, 7.

o

5 Characterization of ~,. in the proper ideals of P (X)

By a proper ideal of a semigroup S we mean an ideal I of S such that I # S. For a cardinal k
with 0 < k < | X/, denote by P, the set of all p € P(X) such that rank(p) < k. It is well known
(see [?, Sec 2.2]) that the set { Py, : 0 < k < |X|} is the set of proper ideals of P(X).

Theorem 5.1. Let Py, be a proper ideal of P(X) and let p, 7w € P, withT'(p) = (A, E),I['(7) =
(B, F), trim(T'(p)) = (A, Et) and trim(T'()) = (By, Fy).

(1) If k is infinite, let p ~,. 7 satisfying 3.1. Then trim(T'(p)) = trim(T'(r)).

(2) Conversely, if trim(T'(p) = trim(T () with yao = y for all y € im(p) and uBt = u for all
u € im(7), then p ~, win P.

Proof. (1) Let p ~, win Py. Then p ~, min P(X) and so by part (1) of Theorem 4.6, we have
trim(I'(p)) = trim(I'()).

(2) Conversely, let trim(I'(p)) = trim(I'()). Suppose k is infinite. Then
|[Ae| = [AN A+ [{y" :y € A\ A"and yp~! C A}
AN A £ {1y € A\ A and yp! C AT}
< |im(p)| + [im(p)| < k +k = k.

Thus |A;| < k. let p : Ay — B be an isomorphism from trim(I'(p)) to trim(I'(7)). Then
p~': B — A, is an isomorphism from trim(I'(7)) to trim(I'(p)). By Lemma 4.3, there
are r-homomorphisms « € Py, from I'(p) to I'(w) and 8 € Py, from I'(7) to I'(p). By given
condition yao = y for all y € im(p) and uBr = wu for all w € im(w). Then by Theorem
3.11, we have p ~, min P(X) i.e., pa = am, 78 = Bp,p = arwo and 7 = Bpr. Since k is
infinite, so rank(o) < k and rank(7) < k. So, 0,7 € P;. Thus p ~,. 7 in Py.

o
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