Generalized Notion of Conjugacy in Semigroups

Aftab Hussain Shah and Mohd Rafiq Parray
Communicated by Ayman Badawi

MSC 2010 Classifications: 20M07; 20M15; 20M20.
Keywords and phrases: Semigroups, conjugacy, transformations, homomorphism.

Abstract

In this paper, we study the new notion \sim_{r} notion of conjugacy in subsemigroups of partial transformation semigroup through restricted homomorphism of the digraphs.

1 introduction

If G is a group and $a, b \in G$ then a is said to be conjugate to b if there exists $g \in G$ such that $a=g b g^{-1}$ which is equivalent to $a g=g b$. Due to this fact \sim_{l} notion was introduced in a semigroup S as

$$
x \sim_{l} y \Leftrightarrow \exists p \in S^{1} \text { such that } x p=p y
$$

where S^{1} is S with an identity adjoined. If $x \sim_{l} y$, we say x is left conjugate to y (see [4], [13] and [14]). The relation \sim_{l} is always reflexive and transitive in any semigroup but not symmetric in general. Lallement in [7] has defined the conjugate elements of a free semigroup S as those related by \sim_{l} and showed that \sim_{l} is equal to the following equivalence on the free semigroup S :

$$
x \sim_{p} y \Leftrightarrow \exists u, v \in S^{1} \text { such that } x=u v \text { and } y=v u
$$

The relation \sim_{p} is always reflexive and symmetric but not transitive in general.
The relation \sim_{l} has been restricted to \sim_{o} in [4], and \sim_{p} has been extended to \sim_{p}^{*} in [5] and in [6], in such a way that the modified relations are equivalences on an arbitrary semigroup S :

$$
x \sim_{o} y \Leftrightarrow \exists p, q \in S^{1} \text { such that } x p=p y \text { and } y q=q x
$$

$\sim_{p}^{*}=$ the transitive closure of \sim_{p} (i.e., the smallest transitive relation on S containing \sim_{p}).
The relation \sim_{o} is not useful for semigroups S with zero since for every such S, we have $\sim_{o}=S \times S$. This deficiency has been remedied in [8] by Araujo et al., where the following relation has been defined on an arbitrary semigroup S,

$$
x \sim_{c} y \Leftrightarrow \exists p \in \mathbb{P}^{1}(x), q \in \mathbb{P}^{1}(y) \text { such that } x p=p y \text { and } y q=q x
$$

where for $x \neq 0, \mathbb{P}(x)=\left\{p \in S:(m x) p \neq 0\right.$ for all $\left.m x \in S^{1} x \backslash\{0\}\right\}$ denotes the left principal ideal generated by x and $\mathbb{P}(0)=\{0\}$. The relation \sim_{c} is an equivalence relation in any semigroup and does not reduce to $S \times S$ if S has a zero, and it is equal to \sim_{o} if S does not have a zero.

Furthermore, J. Konieczny in [10] introduced the \sim_{n} notion of conjugacy in semigroup S as

$$
x \sim_{n} y \Leftrightarrow \exists p, q \in S^{1} \text { such that } x p=p y, y q=q x, x=p y q \text { and } y=q x p
$$

This relation is an equivalence relation in any semigroup and does not reduce to universal relation in a semigroup S with zero.

For a non-empty set $X, \mathcal{P}(X)$ denotes the set of all partial transformations on X and it forms a semigroup under operation as composition of maps and is known as partial transformation semigroup. For each $\rho \in \mathcal{P}(X)$, the domain of ρ is denoted by

$$
\operatorname{dom}(\rho)=\{x \in X: \text { there exists } y \in X \text { with }(x, y) \in \rho\}
$$

the image of ρ is denoted by

$$
\operatorname{im}(\rho)=\{y \in X: \text { there exists } x \in X \text { with }(x, y) \in \rho\}
$$

and the span of ρ is denoted by

$$
\operatorname{span}(\rho)=\operatorname{dom}(\rho) \cup \operatorname{im}(\rho) .
$$

By $\sigma \neq 0$ we mean ρ such that $\operatorname{dom}(\rho) \neq \emptyset$.
A semigroup S is called an inverse semigroup if for every $a \in S$, there is a unique $a^{-1} \in S$ (called the inverse of a) such that

$$
a a^{-1} a=a \text { and } a^{-1} a a^{-1}=a^{-1}
$$

For a non-empty set X, denote by $\mathcal{I}(X)$ the symmetric inverse semigroup on X, which is the subsemigroup of $\mathcal{P}(X)$ consisting of all partial injective transformations on X. Both $\mathcal{P}(X)$ and $\mathcal{I}(X)$ have the symmetric group $\operatorname{Sym}(X)$ of permutations on X as their group of units, and the zero in $\mathrm{P}(\mathrm{X})$ is an element of $\mathcal{I}(X)$. The semigroup $\mathcal{I}(X)$ is universal for the class of inverse semigroups because of the Vagner-Preston theorem that states that every inverse semigroup can be embedded in some $\mathcal{I}(X)$ [12, Theorem 5.1.7]. This is analogous to the Cayley theorem for groups that states that every group can be embedded in some symmetric group $\operatorname{Sym}(X)$.

Next we discuss \sim_{i} notion of conjugacy in inverse semigroups. This was introduced by Araujo et al. in [11].

Definition 1.1. let S be an inverse semigroup and $a, b \in S$. Then $a \sim_{i} b$ if and only if there exists $g \in S^{1}$ such that

$$
g^{-1} a g=b \text { and } g b g^{-1}=a .
$$

We refer the reader to Howie [12] for any unexplained terminology in semigroups.

2 The notion \sim_{r}

In [2] and [3] we introduced \sim_{r} notion of conjugacy in semigroups. The notion \sim_{r} in semigroups is defined as in the following.

Definition 2.1. Define a relation \sim_{r} on a semigroup S by

$$
a \sim_{r} b \Leftrightarrow \exists g, h, u, v \in S^{1} \text { such that } a g=g b, b h=h a, a=g b u \text { and } b=h a v .
$$

The r-notion of conjugacy is an equivalence relation in any semigroup and it does not reduce to a universal relation in a semigroup with zero ([2, Theorem 2.1]). In case S is a group, then \sim_{r} reduces to the usual notion of conjugacy ([2, Theorem 2.1]). Also $\sim_{n} \subseteq \sim_{r} \subseteq \sim_{c} \subseteq \sim_{o}$ [2, Theorem 2.2].

Theorem 2.2. [10, Theorem 2.6] Let S be an inverse semigroup and let $a, b \in S$. Then $a \sim_{n} b$ if and only if $a \sim_{i} b$.

In the next theorem we show \sim_{r} coincides with \sim_{n} in an inverse semigroup.
Theorem 2.3. Let S be an inverse semigroup and let $a, b \in S$. Then $a \sim_{r} b$ if and only if $a \sim_{n} b$.
Proof. By definition of \sim_{n} and \sim_{r}, we have $\sim_{n} \subseteq \sim_{r}$. So for any $a, b \in S, a \sim_{n} b$ implies $a \sim_{r} b$.
For the converse, we may assume by the Vagner-Preston Theorem that S is a subsemigroup of some symmetric inverse semigroup $\mathcal{I}(X)$. Let $a \sim_{r} b$ in S, then there exist $g, h, u, v \in S^{1}$ such that

$$
a g=g b, b h=h a, a=g b u \text { and } b=h a v .
$$

We claim $a g g^{-1}=a$. Clearly $\operatorname{dom}\left(a g g^{-1}\right) \subseteq \operatorname{dom}(a)$. Let $x \in \operatorname{dom}(a)$ implies $x a \in \operatorname{im}(a) \subseteq$ $\operatorname{dom}(g)$ implies $(x a) \in \operatorname{dom}(g)$, which implies $(x a) g \in \operatorname{dom}\left(g^{-1}\right)$. Hence $x \in \operatorname{dom}\left(a g g^{-1}\right)$, which implies $\operatorname{dom}(a) \subseteq \operatorname{dom}\left(a g g^{-1}\right)$. Thus $\operatorname{dom}(a)=\operatorname{dom}\left(a g g^{-1}\right)$. Next for every $x \in \operatorname{dom}(a)$,
$x\left(a g g^{-1}\right)=(x a) g g^{-1}=x a$. So $a g g^{-1}=a$. Since $a g=g b$ implies $a g g^{-1}=g b g^{-1}$ and so $a=g b g^{-1}$.

Next we claim that $g^{-1} g b=b$. For if

$$
\begin{aligned}
& g^{-1} g b \neq b \\
\Rightarrow & g^{-1} a g \neq b \\
\Rightarrow & g^{-1} a g g^{-1} \neq b g^{-1} \\
\Rightarrow & g^{-1} a \neq b g^{-1} \\
\Rightarrow & g^{-1} g b u \neq b g^{-1} \\
\Rightarrow & g g^{-1} g b u \neq g b g^{-1} \\
\Rightarrow & g b u \neq g b g^{-1} \\
\Rightarrow & a \neq g b g^{-1}
\end{aligned}
$$

which is a contradiction. Hence $g^{-1} g b=b$. Since $a g=g b$, we have $g^{-1} a g=g^{-1} g b$ we have $g^{-1} a g=b$. Thus $a \sim_{i} b$ and so by Theorem 2.2, $a \sim_{n} b$.

Due to Theorem 2.2 and Theorem 2.3 we have the following corollary.
Corollary 2.4. Let S be an inverse semigroup. Then $\sim_{n}=\sim_{r}=\sim_{i}$ in S.

$3 \sim_{r}$ in general subsemigroups of $\mathcal{P}(X)$

Definition 3.1. Let A be any set (not necessarily finite and possibly empty) and E be a binary relation on A, then $\Gamma=(A, E)$ is called a directed graph (or a digraph). We call any $p \in A a$ vertex and any $(p, q) \in E$ an arc of Γ.

For example, let $A=\{1,2,3,4\}$ and $E=\{(1,2),(1,4),(2,3),(4,1)\}$. Then the digraph Γ is as under,

Figure 1. Digraph

Definition 3.2. A vertex $p \in A$ is said to be an initial vertex if there is no $q \in A$ for which $(q, p) \in E$ while a vertex $p \in A$ is said to be a non-initial vertex if $(q, p) \in E$ for some $q \in A$.

Definition 3.3. A vertex $p \in A$ for which there exists no q in A such that $(p, q) \in E$ is called a terminal vertex of Γ.

Remark 3.4. Let $\rho \in P(X)$. Then ρ can be represented by the digraph $\Gamma(\rho)=(A, E)$, where $A=\operatorname{span}(\rho)$ and for all $x, y \in A,(x, y) \in E$ if and only if $x \in \operatorname{dom}(\rho)$ and $x \rho=y$. For example,
the partial transformation

$$
\rho=\left(\begin{array}{llllll}
1 & 2 & 3 & 7 & 8 & \ldots \\
2 & 3 & 1 & 8 & 9 & \ldots
\end{array}\right) \in \mathcal{P}(X)
$$

where $X=\{1,2,3, \ldots\}$ is represented by the digraph as in figure 2

Figure 2. The Digraph of a Transformation.

Remark 3.5. For a non empty X, we fix an element $\diamond \notin X$. For $\alpha \in \mathcal{P}(X)$ and $x \in X$, we will write $x \alpha=\diamond$ if and only if $x \notin \operatorname{dom}(\alpha)$. We also assume that $\diamond \alpha=\diamond$. With this notation it makes sense to write $x \alpha=y \beta$ or $x \alpha \neq y \beta(\alpha, \beta \in \mathcal{P}(X), x, y \in X)$ even when $x \notin \operatorname{dom}(\alpha)$ or $y \notin$ $\operatorname{dom}(\beta)$. For any $\alpha \in \mathcal{P}(X)$, by $\alpha \neq 0$, we mean $\operatorname{dom}(\alpha) \neq \emptyset$. Thus $\alpha=0$ if and only if $\operatorname{dom}(\alpha)$ $=\emptyset$.

Definition 3.6. Let $\Gamma=(A, E)$ and $\Lambda=(B, F)$ be digraphs. A mapping ρ from A to B is called a homomorphism from Γ to Λ iffor all $p, q \in A,(p, q) \in E$ implies $(p \rho, q \rho) \in F$.

Definition 3.7. Let $\Gamma=(A, E)$ and $\Lambda=(B, F)$ be digraphs. A homomorphism $\alpha: A \rightarrow B$ is called a restricted homomorphism from Γ to Λ, if
(i) for every terminal vertex x of $\Gamma, x \alpha$ is a terminal vertex of Λ;
(ii) for every initial vertex x of Γ, either $x \alpha$ is an initial vertex of Λ or there are vertices t, z, y of Γ such that $(x, y),(t, z),(z, y) \in E$.

Throughout this paper, by a hom, we shall mean a homomorphism, and by a restricted hom, we shall mean a restricted homomorphism.

Now in order to prove the main theorem of this section we need the following two lemmas.
Lemma 3.8. Let $\rho, \pi, \alpha, \beta, \sigma, \tau \in \mathcal{P}(X)$ be such that $\rho \alpha=\alpha \pi, \pi \beta=\beta \rho, \rho=\alpha \pi \sigma, \pi=\beta \rho \tau$. Then $\operatorname{dom}(\alpha)=\operatorname{span}(\rho), \operatorname{dom}(\beta)=\operatorname{span}(\pi)$.

Proof. Let $x \in \operatorname{span}(\rho)$ which implies $x \in \operatorname{dom}(\rho) \cup \operatorname{im}(\rho)$. If $x \in \operatorname{dom}(\rho)$ then as $\rho=\alpha \pi \sigma$ which means $x \in \operatorname{dom}(\alpha)$ and if $x \in \operatorname{im}(\rho)$ then as $\rho \alpha=\alpha \pi, x \in \operatorname{dom}(\alpha)$. Thus span $(\rho) \subseteq$ $\operatorname{dom}(\alpha)$. Next we have to show $\operatorname{dom}(\alpha) \subseteq \operatorname{span}(\rho)$. For if $\operatorname{dom}(\alpha) \nsubseteq \operatorname{span}(\rho)$, then there is some $x \in X$ such that $x \in \operatorname{dom}(\alpha)$ but $x \notin \operatorname{span}(\rho)$, which implies there is some $z \in X$ such that $x \alpha \pi \sigma=z$ (as $\rho=\alpha \pi \sigma$) which implies $x \rho=z$, which is a contradiction as $x \notin \operatorname{span}(\rho)$. Thus $\operatorname{dom}(\alpha) \subseteq \operatorname{span}(\rho)$. Hence $\operatorname{dom}(\alpha)=\operatorname{span}(\rho)$. Similarly we can prove that $\operatorname{dom}(\beta)=\operatorname{span}(\pi)$.

Lemma 3.9. Let $\rho, \pi, \alpha, \beta, \sigma, \tau \in \mathcal{P}(X)$ be such that $\rho \alpha=\alpha \pi, \pi \beta=\beta \rho, \rho=\alpha \pi \sigma, \pi=\beta \rho \tau$ i.e, $\rho \sim_{r} \tau$ satisfying

$$
\begin{equation*}
\rho \tau \sigma=\rho \text { and } \pi \sigma \tau=\pi \tag{1.1}
\end{equation*}
$$

Then α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$.
Proof. Let $\Gamma(\rho)=(A, E)$ and $\Gamma(\pi)=(B, F)$, where $A=\operatorname{span}(\rho)$ and $B=\operatorname{span}(\pi)$. Suppose that $(x, y) \in E$ i.e, $x \rho=y$. Then,

$$
(x \alpha) \pi=x(\alpha \pi)=x(\rho \alpha)=(x \rho) \alpha=y \alpha .
$$

Hence $(x \alpha, y \alpha) \in F$, which implies α is a hom from $\Gamma(\rho)$ to $\Gamma(\pi)$.
Suppose that x is a terminal vertex of $\Gamma(\rho)$. Since $\rho \alpha=\alpha \pi$ and $x \notin \operatorname{dom}(\rho)$, so $x \rho=\diamond$ which implies $x \rho \alpha=\diamond$ which implies $x \alpha \pi=\diamond$. Thus $x \alpha$ is a terminal vertex of $\Gamma(\pi)$.

Suppose that x is an initial vertex of $\Gamma(\rho)$ and let $u=x \alpha$ is not an initial vertex of $\Gamma(\pi)$. Then $v \pi=u$ for some $v \in \operatorname{dom}(\pi)$. Let $t=v \beta$ and $z=u \beta$. Since $\pi \beta=\beta \rho$, the preceding argument for ρ and α applied to π and β shows that β is a hom from $\Gamma(\pi)$ to $\Gamma(\rho)$. Thus $(v, u) \in F$ implies that $(t, z)=(v \beta, u \beta) \in E$. Since $x \in \operatorname{span}(\rho)$ and $x \notin \operatorname{im}(\rho)$, we have $x \in \operatorname{dom}(\rho)$. Setting $y=x \rho$, we have $(x, y) \in E$. Now $y=x \rho=x \alpha \pi \sigma=u \pi \sigma=u \beta \rho \tau \sigma=z \rho \tau \sigma \stackrel{(1.1)}{=} z \rho$ and so $(z, y) \in E$. By the similar argument, we can prove β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$. Hence proved.
Definition 3.10. Let S be a subsemigroup of $\mathcal{P}(X)$. We say S is closed under restriction to spans if for all $\rho, \pi \in S$ such that $\operatorname{span}(\rho) \subseteq \operatorname{dom}(\pi),\left.\pi\right|_{\operatorname{span}(\rho)} \in S$.

Note that every subsemigroup of the semigroup of $\mathcal{T}(X)$ (semigroup of full transformations on X) is closed under restrictions to spans.

Theorem 3.11. Let S be a subsemigroup of $\mathcal{P}(X)$ such that S is closed under restrictions to spans and $\rho, \pi \in S$
(1) If $\rho \sim_{r} \pi$ satisfying (1.1), then there exist $\alpha, \beta \in S^{1}$ such that α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$.
(2) Conversely, if α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$. Then $\rho \sim_{r} \pi$.

Proof. Let $\Gamma(\rho)=(A, E)$ and $\Gamma(\pi)=(B, F)$.
(1) Let $\rho \sim_{r} \pi$ then there exist $\delta, \gamma, \sigma, \tau \in S^{1}$ such that

$$
\rho \delta=\delta \pi, \pi \gamma=\gamma \rho, \rho=\delta \pi \sigma \text { and } \pi=\gamma \rho \tau .
$$

Here $\operatorname{span}(\rho) \subseteq \operatorname{dom}(\delta)$ and $\operatorname{span}(\pi) \subseteq \operatorname{dom}(\gamma)$. Let $\alpha=\delta|\operatorname{span}(\rho), \beta=\gamma| \operatorname{span}(\pi)$. First we prove $\rho \alpha=\alpha \pi$ and $\rho=\alpha \pi \sigma$. Let $x \in X$. If $x \in \operatorname{span}(\rho)$. Then $x \alpha \pi=x \delta \pi=x \rho \delta=$ $x \rho \alpha$ and $x \alpha \pi \sigma=x \delta \pi \gamma=x \rho$. If $x \notin \operatorname{span}(\rho)$, i.e., $x \rho=\diamond$, then $x \rho \alpha=\diamond$ and $x \alpha \pi=\diamond$ and also $x \alpha \pi \sigma=\diamond=x \rho$. Similarly we can prove $\pi \beta=\beta \rho$ and $\pi=\beta \rho \tau$. Therefore we have

$$
\rho \alpha=\alpha \pi, \pi \beta=\beta \rho, \rho=\alpha \pi \sigma \text { and } \pi=\beta \rho \tau .
$$

Now $\rho=\rho \tau \sigma$ and $\pi=\pi \sigma \tau$. Therefore by Lemma 3.9 we have α as a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β as a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$. Next for all $y \in \operatorname{im}(\rho)$, $y \alpha \sigma=x \rho \alpha \sigma($ for some $x \in \operatorname{dom}(\rho))=x \alpha \pi \sigma=x \rho=y$. Similarly for all $u \in \operatorname{im}(\pi)$, $u \beta \tau=u$.
(2) Let the desired α and β exist with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$. We have to prove $\rho \sim_{r} \pi$. First we will prove that $\rho \alpha=\alpha \pi$ and $\rho=\alpha \pi \sigma$. Let $x \in X$. Two cases arise here.
Case(1): Suppose $x \notin \operatorname{dom}(\rho)$. Then $x \rho \alpha=\diamond$.
(i) If $x \notin \operatorname{dom}(\alpha)$, then $x(\alpha \pi)=\diamond$ and $x \alpha \pi \sigma=\diamond$. So, $\rho \alpha=\alpha \pi$ and $\rho=\alpha \pi \sigma$ in this case.
(ii) If $x \in \operatorname{dom}(\alpha)$, then x is a terminal vertex of $\Gamma(\rho)$, and so $x \alpha$ is a terminal vertex in $\Gamma(\pi)$, which implies that $x(\alpha \pi)=(x \alpha) \pi=\diamond$ and $x \alpha \pi \sigma=\diamond$. Thus $\rho \alpha=\alpha \pi$ and $\rho=\alpha \pi \sigma$ in this case also.
Case(2): Suppose $x \in \operatorname{dom}(\rho)$ and let $y=x \rho \in X$ i.e, $(x, y) \in E$ which implies $(x \alpha, y \alpha) \in$ F i.e,

$$
(x \alpha) \pi=y \alpha .
$$

Now, $x(\rho \alpha)=(x \rho) \alpha=y \alpha=x(\alpha \pi)=(x \alpha) \pi$ and $x \alpha \pi \sigma=[(x \alpha) \pi] \sigma=y \alpha \sigma=y=x \rho$ which implies $x \alpha \pi \sigma=x \rho$. Thus in both the cases we have proved that

$$
\begin{equation*}
\rho \alpha=\alpha \pi, \rho=\alpha \pi \sigma \tag{1.2}
\end{equation*}
$$

Similarly by using that β is restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $u \beta \tau=u$ for all $u \in$ $\operatorname{im}(\pi)$ we can prove that

$$
\begin{equation*}
\pi \beta=\beta \rho \text { and } \pi=\beta \rho \tau \tag{1.3}
\end{equation*}
$$

Therefore by combining (1.2) and (1.3) we get $\rho \sim_{r} \pi$.

$4 \sim_{r}$ through the trims of digraphs

Definition 4.1. Let $\Gamma=(A, E)$ and $\Lambda=(B, F)$ be digraphs. A mapping $\alpha: A \rightarrow B$ is called an isomorphism from Γ to Λ if α is a bijection and for all $x, y \in A,(x, y) \in E$ if and only if $(x \alpha, y \alpha) \in F$. Note that a bijection $\alpha: A \rightarrow B$ is an isomorphism if and only if both α and α^{-1} are isomorphisms. We will say that Γ and Λ are isomorphic, written $\Gamma \cong \Lambda$, if there exists an isomorphism from Γ to Λ.

For $\rho \in \mathcal{P}(X)$ and $y \in \operatorname{im}(\rho)$, denote by $y \rho^{-1}$ the set of all elements $x \in X$ such that $x \rho=y$. Note that $y \rho^{-1}$ is not empty (since $\left.y \in \operatorname{im}(\rho)\right)$ and that it is the set of all vertices x in $\Gamma(\rho)$ such that (x, y) is an edge in $\Gamma(\rho)$.

Definition 4.2. Let $\rho \in \mathcal{P}(X)$ and $\Gamma(\rho)=(A, E)$. Denote by A^{i} the set of initial vertices of $\Gamma(\rho)$. For every non-initial vertex y of $\Gamma(\rho)$ such that y $\rho^{-1} \subseteq A^{i}$, select $y^{*} \in y \rho^{-1}$. Let A_{t} and E_{t} be sets of vertices and edges respectively, defined by

$$
\begin{aligned}
& A_{t}=\left(A \backslash A^{i}\right) \cup\left\{y^{*}: y \text { is a non-initial vertex of } \Gamma(\rho) \text { and } y \rho^{-1} \subseteq A^{i}\right\} \\
& E_{t}=\left\{(x, y) \in E: x, y \in A_{t}\right\}
\end{aligned}
$$

Then the digraph $\Gamma_{t}(\rho)=\left(A_{t}, E_{t}\right)$ will be called trim of $\Gamma(\rho)$.
In other words, a trim $\Gamma_{t}(\rho)$ is obtained from $\Gamma(\rho)$ by removing all initial vertices of $\Gamma(\rho)$ with the following exception: If y is a non-initial vertex of $\Gamma(\rho)$ and all vertices in $y \rho^{-1}$ are initial, then exactly one of these vertices (denoted y^{*} in Definition 4.2) are retained. There may be multiple trims of $\Gamma(\rho)$ since there may be multiple choices for y^{*}. However a trim of $\Gamma(\rho)$ is unique upto isomorphism.

For a function $f: A \rightarrow B$, the rank of f, denoted $\operatorname{rank}(f)$, is the cardinality of the image of f.

Lemma 4.3. [10, Lemma 4.4] Let $\rho, \pi \in \mathcal{P}(X)$ with $\Gamma(\rho)=(A, E)$ and $\Gamma(\pi)=(B, F)$. Suppose that δ is an isomorphism from $\operatorname{trim}(\Gamma(\rho))=\left(A_{t}, E_{t}\right)$ to $\operatorname{trim}(\Gamma(\pi))=\left(B_{t}, F_{t}\right)$.
(1) Let y be a non-initial vertex of $\operatorname{trim}(\Gamma(\rho))$ and let $u=y \delta$. Then $u \pi^{-1} \neq \emptyset$. Moreover, if $y \rho^{-1} \subseteq A^{i}$, then $u \pi^{-1} \subseteq B^{i}$ and $y^{*} \delta=u^{*}$.
(2) there exist a restricted hom α of rank $\left|A_{t}\right|$ from $\Gamma(\rho)$ to $\Gamma(\pi)$ such that $x \alpha=x \delta$ for every vertex x of $\operatorname{trim}(\Gamma(\rho))$.

Lemma 4.4. Let $\rho, \pi, \alpha, \beta, \sigma, \tau \in \mathcal{P}(X)$ and let $\rho \sim_{r} \pi$ satisfying (3.1). Then $\alpha \mid \operatorname{im}(\rho)=\tau$ and $\beta \mid \operatorname{im}(\pi)=\sigma$.

Proof. Let $\rho \sim_{r} \pi$ then there exist $\alpha, \beta, \sigma, \tau$ such that $\rho \alpha=\alpha \pi, \pi \beta=\beta \rho, \rho=\alpha \pi \sigma$ and $\pi=\beta \rho \tau$. Let $y \in \operatorname{im}(\rho)$ then there exist $x \in X$ such that $y=x \rho$. Now

$$
\begin{aligned}
y \alpha & =x \rho \alpha \\
& =x \alpha \pi \\
& =x \alpha \pi \sigma \tau \\
& =x \rho \tau \\
& =y \tau .
\end{aligned}
$$

Similarly, $\beta \mid \operatorname{im}(\pi)=\sigma$.

Lemma 4.5. Let $\sigma, \tau \in \mathcal{P}(X)$ with $\sigma \sim_{r} \tau$ satisfying (3.1). Let y be a non-initial vertex of $\Gamma(\rho)$ and $u=y \alpha \in B$. Then u is not initial in $\Gamma(\pi)$. Moreover, if $y \rho^{-1} \subseteq A^{i}$, then $u \pi^{-1} \subseteq B^{i}$ and for every $x \in y \rho^{-1}, x \alpha \in u \pi^{-1}$.

Proof. Let $\sigma, \tau \in \mathcal{P}(X)$ with $\sigma \sim_{r} \tau$ satisfying (3.1), then by Theorem 3.11 there exists $\alpha, \beta \in$ $\mathcal{P}(X)$ such that α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$. Let $\Gamma(\rho)=(A, E)$ and $\Gamma(\pi)=(B, F)$. Since y is not initial, $(x, y) \in E$ for some $x \in A$. Then $(x \alpha, u)=(x \alpha, y \alpha) \in F$, and so u is a non-initial vertex of $\Gamma(\pi)$. Suppose to the contrary that $u \pi^{-1} \nsubseteq B^{i}$, that is, $(v, u) \in F$ for some non-initial $v \in B$. Then there is $t \in B$ such that $(t, v) \in F$. Since β is a hom from $\Gamma(\pi)$ to $\Gamma(\rho),(t \beta, v \beta),(v \beta, u \beta) \in E$. But $u \sigma=y \alpha \sigma=y$ (since $y \in \operatorname{im}(\rho))$. Now, by Lemma $4.4 u \beta=y$. So $(t \beta, v \beta),(v \beta, y) \in E$ which contradicts the hypothesis that $y \rho^{-1} \subseteq A^{i}$. Hence $u \pi^{-1} \subseteq B^{i}$. Finally, if $x \in y \rho^{-1}$, then $(x, y) \in E$, and so $x \alpha \in u \pi^{-1}$ since $(x \alpha, u)=(x \alpha, y \alpha) \in F$.

Now we have the main result on r-notion of conjugacy in the semigroup $\mathcal{P}(X)$ through trims of the digraphs.

Theorem 4.6. Let $\rho, \pi \in \mathcal{P}(X)$

(1) Let $\rho \sim_{r} \pi$ satisfying (3.1). Then $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$.
(2) Conversely, if $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$ with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$, then $\rho \sim_{r} \pi$.

Proof. (1) Let $\Gamma(\rho)=(A, E), \Gamma(\pi)=(B, F)$, $\operatorname{trim}(\Gamma(\rho))=\left(A_{t}, E_{t}\right)$, and $\operatorname{trim}(\Gamma(\pi))=$ $\left(B_{t}, F_{t}\right)$. Suppose that $\rho \sim_{r} \pi$ then by Theorem 3.11, there exists $\alpha, \beta, \sigma, \tau$ such that α is a restricted hom from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β is a restricted hom from $\Gamma(\pi)$ to $\Gamma(\rho)$ with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$. Suppose that x is an initial vertex of $\operatorname{trim}(\Gamma(\rho))$. Let $y=x \rho \in A$ and $u_{x}=y \alpha=y \tau$ (by Lemma 4.4) $\in B$. By Lemma 4.5, u_{x} is a non-initial vertex of $\operatorname{trim}(\Gamma(\pi))$ and $u_{x} \pi^{-1} \subseteq B^{i}$ (so $\left(u_{x}\right)^{*}$ exists). Therefore, we can define $\mu: A_{t} \rightarrow B_{t}$ by

$$
x \mu= \begin{cases}x \alpha & \text { if } x \text { is not initial in } \operatorname{trim}(\Gamma(\rho)) \\ \left(u_{x}\right)^{*} & \text { otherwise } .\end{cases}
$$

We claim that μ is an isomorphism from $\operatorname{trim}\left(\Gamma(\rho)\right.$ to $\operatorname{trim}(\Gamma(\pi))$. Let $(x, y) \in E_{t}$. If x is not initial, then $(x \mu, y \mu)=(x \alpha, y \alpha) \in F$, and so $(x \mu, y \mu) \in F_{t}$ since $x \mu, y \mu \in B_{t}$. Suppose that x is initial and let $y=x \rho$. Then $(x \mu, y \mu)=\left(\left(u_{x}\right)^{*}, u_{x}\right) \in F_{t}$. Hence μ is a hom.
Let $x, s \in A_{t}$ be such that $x \mu=s \mu$. If x and s are both not initial, then $x \alpha=s \alpha$ (since $x \mu=x \alpha$ and $s \mu=s \alpha$), and so $x=x(\alpha \sigma)($ by Theorem 3.11) $=(x \alpha) \sigma=(s \alpha) \sigma=$ $s(\alpha \sigma)=s$. Suppose that at least one of x and s, say x, is initial. Then $x \mu=\left(u_{x}\right)^{*} \in B_{t}$ is initial. So s must be initial since otherwise, $s \mu=s \alpha$ would not be initial (by Lemma 4.5), which would contradict $x \mu=s \mu$. Thus, $s \mu=\left(u_{s}\right)^{*}$. Let $y=x \rho$ and $z=s \rho$, so $y \alpha=u_{x}$ and $z \alpha=u_{s}$. Since y and z are not initial, we have $y \mu=y \alpha=z \alpha=z \mu$, and so $y=z$ by the preceding argument. Hence $x=y^{*}=z^{*}=s$. We have proved that μ is injective.
Let $v \in B_{t}$. If v is not initial, then $y=v \beta \in A$ is not initial (so $y \in A_{t}$), and so $y \mu=y \alpha=y \tau=v \beta \tau=v$. Suppose that v is initial and let $u=v \pi$. Then, by Lemma 4.5, $y=u \beta$ is not initial and $y \rho^{-1} \subseteq A^{i}$. Let $x=y^{*} \in A_{t}$, so $y=x \rho$. Then $x \mu=\left(u_{x}\right)^{*}=$ $(y \alpha)^{*}=(y \tau)^{*}\left(\right.$ by Lemma 4.4) $=((u \beta) \tau)^{*}=(u \beta \tau)^{*}=u^{*}=v$, where the last equality is true since there is only one initial vertex of $\operatorname{trim}(\Gamma(\pi))$ in $u \pi^{-1}$. We have proved that μ is surjective.
Hence μ is a bijective hom from $\operatorname{trim}(\Gamma(\rho))$ to $\operatorname{trim}(\Gamma(\pi))$ such that for every non-initial $y \in A_{t}, y \mu=y \alpha=y \tau$ (by Lemma 4.4) and $y^{*} \mu=(y \alpha)^{*}=(y \tau)^{*}$ if $y \rho^{-1} \subseteq A^{i}$. Similarly, we can define bijective hom λ from $\operatorname{trim}(\Gamma(\pi))$ to $\operatorname{trim}(\Gamma(\rho))$ such that for every non-initial $u \in B_{t}, u \lambda=u \beta=u \sigma$ (by Lemma 4.4) and $u^{*} \lambda=(u \beta)^{*}=(u \sigma)^{*}$ if $u \pi^{-1} \subseteq B^{i}$. Let $x \in A_{t}$. If x is not initial, then $x \alpha \in B_{t}$ is not initial and $x(\mu \lambda)=(x \mu) \lambda=(x \alpha) \lambda=$
$(x \alpha) \beta=x(\alpha \sigma)=x$. Suppose that x is initial and let $y=x \rho$. Then $x=y^{*}$ and $x(\mu \lambda)=$ $\left(y^{*} \mu\right) \lambda=(y \alpha)^{*} \lambda=((y \alpha) \beta)^{*}=((y \alpha) \sigma)^{*}\left(\right.$ by Lemma 4.4) $=(y(\alpha \sigma))^{*}=y^{*}=x$. Similarly $v(\lambda \mu)=v$ for every $v \in B_{t}$. Hence $\lambda=\mu^{-1}$ and so μ is an isomorphism.
(2) Conversely, suppose that $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$ and let $\mu: A_{t} \rightarrow B_{t}$ be an isomorphism from $\operatorname{trim}(\Gamma(\rho))$ to $\operatorname{trim}(\Gamma(\pi))$. Then $\mu^{-1}: B_{t} \rightarrow A_{t}$ is an isomorphism from $\operatorname{trim}(\Gamma(\pi))$ to $\operatorname{trim}(\Gamma(\rho))$. By Lemma 4.3, there are restricted homs α from $\Gamma(\rho)$ to $\Gamma(\pi)$ and β from $\Gamma(\pi)$ to $\Gamma(\rho)$. By given condition $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$. Now apply Theorem 3.11, we get $\rho \sim_{r} \pi$.

5 Characterization of \sim_{r} in the proper ideals of $\mathcal{P}(X)$

By a proper ideal of a semigroup S we mean an ideal I of S such that $I \neq S$. For a cardinal k with $0<k \leq|X|$, denote by P_{k} the set of all $\rho \in \mathcal{P}(X)$ such that $\operatorname{rank}(\rho)<k$. It is well known (see [?, Sec 2.2]) that the set $\left\{P_{k}: 0<k \leq|X|\right\}$ is the set of proper ideals of $\mathcal{P}(X)$.

Theorem 5.1. Let P_{k} be a proper ideal of $\mathcal{P}(X)$ and let $\rho, \pi \in P_{k}$ with $\Gamma(\rho)=(A, E), \Gamma(\pi)=$ $(B, F), \operatorname{trim}(\Gamma(\rho))=\left(A_{t}, E_{t}\right)$ and $\operatorname{trim}(\Gamma(\pi))=\left(B_{t}, F_{t}\right)$.
(1) If k is infinite, let $\rho \sim_{r} \pi$ satisfying 3.1. Then $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$.
(2) Conversely, if $\operatorname{trim}(\Gamma(\rho) \cong \operatorname{trim}(\Gamma(\pi)$ with $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$, then $\rho \sim_{r} \pi$ in P_{k}.

Proof. (1) Let $\rho \sim_{r} \pi$ in P_{k}. Then $\rho \sim_{r} \pi$ in $\mathcal{P}(X)$ and so by part (1) of Theorem 4.6, we have $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$.
(2) Conversely, let $\operatorname{trim}(\Gamma(\rho)) \cong \operatorname{trim}(\Gamma(\pi))$. Suppose k is infinite. Then

$$
\begin{aligned}
\left|A_{t}\right| & =\left|A \backslash A^{i}\right|+\mid\left\{y^{*}: y \in A \backslash A^{i} \text { and } y \rho^{-1} \subseteq A^{i}\right\} \mid \\
& =\left|A \backslash A^{i}\right|+\mid\left\{y: y \in A \backslash A^{i} \text { and } y \rho^{-1} \subseteq A^{i}\right\} \mid \\
& \leq|\operatorname{im}(\rho)|+|\operatorname{im}(\rho)|<k+k=k .
\end{aligned}
$$

Thus $\left|A_{t}\right|<k$. let $\mu: A_{t} \rightarrow B_{t}$ be an isomorphism from $\operatorname{trim}(\Gamma(\rho))$ to $\operatorname{trim}(\Gamma(\pi))$. Then $\mu^{-1}: B_{t} \rightarrow A_{t}$ is an isomorphism from $\operatorname{trim}(\Gamma(\pi))$ to $\operatorname{trim}(\Gamma(\rho))$. By Lemma 4.3, there are r-homomorphisms $\alpha \in P_{k}$ from $\Gamma(\rho)$ to $\Gamma(\pi)$ and $\beta \in P_{k}$ from $\Gamma(\pi)$ to $\Gamma(\rho)$. By given condition $y \alpha \sigma=y$ for all $y \in \operatorname{im}(\rho)$ and $u \beta \tau=u$ for all $u \in \operatorname{im}(\pi)$. Then by Theorem 3.11, we have $\rho \sim_{r} \pi$ in $\mathcal{P}(X)$ i.e., $\rho \alpha=\alpha \pi, \pi \beta=\beta \rho, \rho=\alpha \pi \sigma$ and $\pi=\beta \rho \tau$. Since k is infinite, so $\operatorname{rank}(\sigma)<k$ and $\operatorname{rank}(\tau)<k$. So, $\sigma, \tau \in P_{k}$. Thus $\rho \sim_{r} \pi$ in P_{k}.

References

[1] A. H. Shah, M. R. Parray, D. J. Mir, Counting of conjugacy classes in partial transformation semigroups, Int.J.Nonlinear Anal.Appl. 13 (2022), 1909-1915.
[2] A. H. Shah, M. R. Parray, \sim_{r} notion of conjugacy in partial transformation semigroups, Korean J.Math 30 (2022), 115-125.
[3] A. H. Shah, M. R. Parray, \sim_{r} notion of conjugacy in partial and full injective transformation semigroups, Alg. Struc. Appl., http://doi.org/10.29252/AS.2022.2667.
[4] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum 29 (1984), 223-240.
[5] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen 70 (2007), 19-43.
[6] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum 78 (2009), 14-20.
[7] G. Lallement, Semigroups and combinatorial applications, John Wiley and Sons, New York, (1979).
[8] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 147 (2017), 1169-1214.
[9] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra 403 (2014), 93-134.
[10] J. Koneiczny, A new definition of conjugacy for semigroups, J. Algebra and Appl. 17 (2018), 1-20.
[11] J. Araujo, M. Kinyon and J. Konieczny, Conjugacy in inverse semigroups, Journal of Algebra 533 (2019), 142-173.
[12] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, (1995).
[13] L. Zhang, Conjugacy in special monoids, J. Algebra 143 (1991), 487-497.
[14] L. Zhang, On the conjugacy problem for one-relator monoids with elements of finite order, Internat. J. Algebra Comput. 2 (1992), 209-220.
[15] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.

Author information

Aftab Hussain Shah and Mohd Rafiq Parray, Department of Mathematics, Central University of Kashmir, Ganderbal 191201, India.
E-mail: parrayrafiq@cukashmir.ac.in
Received: October 10, 2021.
Accepted: March 23, 2022.

