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Abstract In this article, we present the existence of a solution of the fractional-order semi-
linear classical and non-local generalized Cauchy problem with non-instantaneous impulses on
the Banach space. The existence results of the problem with classical conditions are established
using operator semigroup theory and generalized Banach contraction principle. The problem
with non-local conditions is established through operator semigroup theory and Krasnoselkii’s
fixed point theorem. This article is also derived uniqueness results for the problem with clas-
sical conditions. Finally, illustrations for the Cauchy problem with the classical and nonlocal
problems are added to validate derived results.

1 Introduction

In the past few decades, fractional Calculus became one of the important branches of the ap-
plied mathematics. This is because fractional-order dynamical models give much better ap-
proximations in many physical situations like seepage flow in porous media, anomalous diffu-
sion, the nonlinear oscillations of the earthquake, traffic flow, electromagnetism, dynamics of
many infectious diseases. The details of applications are found in books of [1, 2] and articles of
[3, 4, 5, 6, 7, 8, 12, 9, 10, 11, 37, 38, 39, 40, 41, 42, 54, 55]. Existence theory of fractional differ-
ential equations and evolution equations of Caputo type with classical conditions using different
fixed point theory is found in the articles of [13, 14, 15, 57] and non-local condition is found in
the articles of [17, 18, 19, 20, 21, 22, 23, 56].

Changes in state at a fixed moment or for a small interval of time in dynamical systems are
model into impulsive dynamical systems. These impulses are instantaneous or non-instantaneous
depending on the time at which impulses are applied. Existence results and applications of the in-
stantaneous integer order impulsive dynamical or evolution systems are found in [24, 25, 26, 27]
while, existence results for fractional instantaneous impulsive equation are found in [28, 29, 30,
31, 32, 33, 34, 35]. In some dynamic process changes in state are applied for small-time interval
time rather than a fixed moment. Existence results of fractional order impulsive dynamical sys-
tems and evolution systems with non-instantaneous impulses with local and non-local conditions
are studied by [36, 43, 44]

In this article, we established sufficient conditions for the existence of the fractional order
generalized Cauchy problem:

cDλs(ς) = As(ς) + fk

(
ς, s(ς),

∫ ς

0
ak(ς, ζ, s(ζ))dζ

)
, ς ∈ [ζk−1, ςk), k = 1, 2, · · · , p

u(ς) = gk(k, s(ς)), ς ∈ [ςk−1, ζk)

with local condition s(0) = s0 and non-local condition s(0) = s0 + h(s) over the interval [0, T ]
in a Banach space U . Here A : U → U is linear operator, Pks =

∫ ς
0 ak(ς, ζ, s(ζ))dζ are nonlinear

Volterra integral operator on U , fk : [0, T ] × U × U → U are nonlinear functions applied in
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the intervals [ζk−1, ςk) and gk : [0, T ] × U are set of nonlinear functions applied in the interval
[ςk, ζk) for all k = 1, 2, · · · , p.

The structure of the article is as follows:

1. Section (2) present some basic defination realted to fractional calculus and theories related
to fixed points.

2. Section (3) discusses the existence and uniqueness of mild solution for the impulsive frac-
tional integro-differential with classical condition.

3. Section (4) discusses the sufficient condition for existence of the impulsive fractional integro-
differential equation with nonlocal condition.

4. Finally conclusion is found in the section (5)

2 Preliminaries

This section discussed preliminaries about fractional differential operators and some definitions
and theorem from the functional analysis.

Definition 2.1. [46] “The Liouville-Caputo fractional derivative of order β > 0, n− 1 < β < n,
n ∈ N, is defined as

cDλ
ς0+h(ς) =

1
Γ(n− λ)

∫ ς

ς0

(ς − q)n−λ−1 d
nh(q)

dqn
dq

where, the function h(ς) has absolutely continuous derivatives up to order (n− 1)".

Theorem 2.2. (Banach Fixed Point Theorem)[52] “Let F be closed subset of a Banach Space
(X , || · ||) and let T : F → F contraction then, T has unique fixed point in F ".

Theorem 2.3. (Krasnoselskii’s Fixed Point Theorem)[52] “Let E be closed convex nonempty
subset of a Banach Space (X , || · ||) and P and Q are two operators on E satisfying:

(1) Pv +Qs ∈ F , whenever v, s ∈ F ,

(2) P is contraction,

(3) Q is completely continuous

then, the equation Pv +Qv = v has unique solution".

Definition 2.4. (Completely Continuous Operator)[53] “Let X and Y be Banach spaces. Then
the operator T : D ⊂ X → Y is called completely continuous if it is continuous and maps any
bounded subset of D to relatively compact subset of Y ".

3 Equation with Local Conditions

Thus section derived sufficient conditions for the existence and uniqueness for the following
Cauchy problem:

cDλs(ς) = As(ς) + fk

(
ς, s(ς),

∫ ς

0
ak(ς, ζ, s(ζ))dζ

)
, ς ∈ [ζk, ςk+1), i = 1, 2, · · · , p

s(ς) = gk(ς, s(ς)), ς ∈ [ςk, ζk)

s(0) = s0

(3.1)

over the interval [0, T ] in the Banach space U ,
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Definition 3.1. The function s(ς) is called mild solution of the impulsive fractional equation
(3.1) over the interval if s(ς) satisfies the integral equation

s(ς) =


U(ς)s0 +

∫ ς

0
(ς − ζ)λ−1V (ς − ζ)f1(ς, s(ζ), P1s(ζ))dζ, ς ∈ [0, ς1)

gk(ς, s(ς)), ς ∈ [ςk, ζk)

U(ς − ζk)gk(ζk, s(ζk)) +
∫ ς

ζk

(ς − ζ)λ−1V (ς − ζ)fk+1(ς, s(ζ), Pk+1s(ζ))dζ, ς ∈ [ζk, ςk+1)

(3.2)
where,

Pks(ς) =

∫ ς

0
ak(ς, ζ, s(ζ))dζ, U(ς) =

∫ ∞
0

ζλ(θ)S(ς
λθ)dθ, V (ς) = λ

∫ ∞
0

θζλ(θ)S(ς
λθ)dθ

are the linear operators defined on U . Here, ζλ(θ) is probability density function over the interval
[0,∞) defined by

ζλ(θ) =
1
π

∞∑
n=1

(−1)n−1θ−λn−1 Γ(nλ+ 1)
n!

sin(nπλ)

and the operator S(ς) is semi-group generated by evolution operator A.

Assumption 3.2. Assumptions for the existence and uniqueness of the mild solution of fractional
evolution equation with non-instantaneous impulses.
(A1) The evolution operator A generates C0 semigroup S(ς) for all ς ∈ [0, T ].
(A2) The function fk : [0, T ]×U×U → U is continuous with respect to ς and there exist a positive
constants f∗1k and f∗2k such that ||fk(ς, v1, s1)− fk(ς, v2s2)|| ≤ f∗1k||v1 − v2||+ f∗2k||s1 − s2|| for
v1, s1, v2, s2 ∈ Br0 = {s ∈ U ; ||s|| ≤ r0} for some r0 and for all k = 1, 2, · · · , p+ 1.
(A3) The operator Pk : [0, T ] × U → U is continuous and there exist a constant p∗k such that
||Pkv − Pks|| ≤ p∗k||v − s|| for v, s ∈ Br0 for all k = 1, 2, · · · , p+ 1.
(A4) The functions gk : [ςk, ζk]×U are continuous and there exist a positive constants 0 < g∗k < 1
such that ||gk(ς, v(ς))− gk(ς, s(ς))|| ≤ g∗k||v − s||.

Lemma 3.3. [13]If the evolution operator A generates C0 semigroup S(ς) then the operators
U(ς) and V (ς) are strongly continuous and bounded. This is, there exist positive constant M
such that ||U(ς)s|| ≤M ||s|| and ||V (ς)s|| ≤ M

Γ(λ) ||s|| for all ς ∈ [0, T ].

Theorem 3.4. If assumptions (A1)-(A4) holds, then the generalized semilinear fractional integro-
differential equation with non-instantaneous impulses (3.1) has unique mild solution.

Proof. We convert the equation (3.2) into operator equation s(ς) = Fu(ς) by defining the oper-
ator F on U by

Fs(ς) =


F1s(ς), ς ∈ [0, ς1)

F2ks(ς), ς ∈ [ςk, ζk)

F3ks(ς), ς ∈ [ζk−1, ςk)

where, F1, F2k and F3k are

F1s(ς) = U(ς)s0 +

∫ ς

0
(ς − ζ)λ−1V (ς − ζ)f1(ς, s(ζ), P1s(ζ))dζ, ς ∈ [0, ς1)

F2ks(ς) = gk(ς, s(ς)), ς ∈ [ςk, ζk)

F3ks(ς) = U(ς − ζk)gk(ζk, s(ζk)) +
∫ ς

ζk

(ς − ζ)λ−1V (ς − ζ)fk(ς, s(ζ), Pk+1s(ζ))dζ, ς ∈ [ζk−1, ςk)

for all k = 1, 2, · · · p.
If the operator equations s(ς) = F1s(ς), s(ς) = F2ks(ς) and s(ς) = F3ks(ς) has unique solution
over the interval [0, ς1), [ςk, ζk) and [ζk, ςk+1) for all k = 1, 2, · · · , p respectively then there exists
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s1(ς), s2k(ς) and s3k(ς) such that s1(ς) = F1s(ς), s2k(ς) = F2ks(ς) and s3k(ς) = F3ks(ς), and
if we define

s(ς) =


s1(ς), [0, ς1)
s2k(ς), [ςk, ζk)

s3k(ς), [ζk, ςk+1)

then it is solution of operator equation s(ς) = Fs(ς).
For all ς ∈ [0, ς1) and u, v ∈ Br0 , and assuming (A1), (A2) and (A3) and using lemma-(3.3),

||F (n)
1 v(ς)−F (n)

1 s(ς)|| ≤
ςnλ1 Mn(f∗11 + f∗21p

∗
1)

n!(Γ(λ))n
||v − s|| ≤ c∗||v − s||.

If considering ς → ∞ over the interval [0, ς1), ||F (n)
1 v − F (n)

1 s|| ≤ c∗||v − s|| → 0 for fixed ς1.
then there exist m such that F (m)

1 is contraction on Br0 and by Banch fixed point theorem the
equation s(ς) = F1s(ς) has unique solution over the interval [0, ς1).

By assuming (A4) and for all k = 1, 2, · · · , p, ς ∈ [ςk, ζk) and v, s ∈ U .

||F2kv(ς)−F2ks(ς)|| = ||gk(ς, v(ς))− gk(ς, s(ς))|| ≤ g∗k||v − s||.

This implies, F2k is contraction and by theorem (2.2) the equation s(ς) = F2ks(ς) has unique
solution for the interval [ςk, ζk) for all k = 1, 2, · · · , p. That is for all k = 1, 2, · · · , p, s(ς) =
gk(ς, s(ς)) has unique solution for all ς ∈ [ςk, ζk). Since, gk is contraction therefore, it leads to
uniqueness of the solution at point ζk.

For all k = 1, 2, · · · , p, ς ∈ [ζk−1, ςk) and v, s ∈ Br0 and by assumptions (A1), (A2) and (A3)
and lemma (3.3),

||F (n)
3k v(ς)−F

(n)
3k s(ς)|| ≤

(ςk+1 − ζk)nλMn(f∗1k + f∗2kp
∗
k)

n!(Γ(λ))n
||v − s|| ≤ c∗||v − s||.

Clearly, ||F (n)
3k v − F

(n)
3k s| ≤ c∗||v − s|| → 0 as n → ∞ over interval [ζk−1, ςk) for all k =

1, 2, · · · , p + 1. Therefore there exist m such that F (m)
3k is contraction on Br0 . Thus by general

Banach contraction theorem the operator equation s(ς) = F3ks(ς) has unique solution over the
interval [ζk−1, ςk) for all k = 1, 2, · · · , p+ 1.
Hence, the operator equation s(ς) = Fs(ς) has unique solution over the interval [0, T ] which is
mild solution of the equation (3.1).

Example 3.5. The fractional order integro-differential equation:

cDλ
ς s(ς, η) = sηη(ς, η) + s(ς, η)sη(ς, η) +

∫ ς

0
e−s(ζ,η)dζ, ς ∈ [0,

1
3
)

cDλ
ς s(ς, η) = sηη(ς, η) + s(ς, η)sη(ς, η) ς ∈ [

2
3
, 1]

s(ς, η) =
s(ς, η)

2(1 + s(ς, η))
, ς ∈ [

1
3
,

2
3
)

(3.3)

over the interval [0, 1] with initial condition s(0, η) = s0(η) and boundary conditions s(ς, 0) =
s(ς, 1) = 0. The equation (3.3) can be reformulated as fractional order abstract equation in
U = L2([0, 1],R) as:

cDλz(ς) = Az(ς) + fk(ς, z(ς), Tkz(ς)), ς ∈ [0,
1
3
) ∪ [2

3
, 1]

z(ς) = g(ς, z(ς)) ς ∈ [
1
3
,

2
3
)

(3.4)

over the interval [0, 1] by defining z(ς) = u(ς, ·), operator Au = u′′ (second order derivative
with respect to η).
The functions f1, f2 and g over respected domains are defined as f1(ς, z(ς), P1z(ς)) =

(z2(ς))′

2 +
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∫ ς
0 e
−z(ζ)dζ, f2(ς, z(ς), P2z(ς)) =

(z2(ς))′

2 and g(ς, z(ς)) = z(ς)
2(1+z(ς)) respectively.

(1) The linear operator A over the domain D(A) =
{
s ∈ U ; s′′ exist and continuous with s(0) =

s(1) = 0
}

is self-adjoint, with compact resolvent and is the infinitesimal generator of C0 semi-
group S(ς) over the interval [0, 1] given byS(ς)u =

∑∞
n=1 exp(−n2π2ς) < s, φn > φn and

φn(ζ) =
√

2sin(nπζ) for all n = 1, 2, · · · is the orthogonal basis for the space U .
(2) The function T1, T2 : [0, 1]×[0, 1]×U → U are continuous with respect to ς and differentiable
with respect to z for all z and hence P1, P2 are Lipschitz continuous with respect to z. This means
there exist positive constant h∗1 and h∗2 = 0 such that ||Pk(ς, z1)− Pk(ς, z2)|| ≤ p∗k||z1 − z2|| for
k = 1, 2.
(3) The function f1, f2 : [0, 1] × U × U → U are continuous with respect to ς and is differential
with respect to argument z, P1z and P2z. Therefore there exist positive constants f∗11 and f∗2k
such that ||fk(ς, z1, Pkz1) − fk(ς, z2, Pkz2)|| ≤ f∗1k||z1 − z2||+ f∗2k||Pkz1 − Pkz2||, z1, z2 ∈ Br0

for some r0 and k = 1, 2.
(4) The impulse g is continuous with respect to ς and Lipchitz continuous with respect to z with
Lipschitz constant g∗ = 1

2 < 1.
Thus, by theorem-(3.4) the integro-differential equation (3.4) has unique solution over [0, 1].
Hence, the equation (3.3) has unique solution over the interval [0, 1].

4 Equation with Non-local Conditions

This section derived sufficient conditions for the existence of solution of following non-local
Cauchy Problem

cDλs(ς) = As(ς) + fk+1

(
ς, s(ς),

∫ ς

0
ak+1(ς, ζ, s(ζ))dζ

)
, ς ∈ [ζi, ςi+1), i = 1, 2, · · · , p

s(ς) = gi(ς, s(ς)), ς ∈ [ςi, ζi)

s(0) = s0 + h(s)

(4.1)

in the Banach space U .

Definition 4.1. The function s(ς) is called mild solution of the impulsive fractional integro-
differentia equation (3.1) over the interval [0, T ] if, s(ς) satisfies the integral equation

s(ς) =


U(ς)(s0 + h(s)) +

∫ ς

0
(ς − ζ)λ−1V (ς − ζ)f(ς, s(ζ), P1s(ζ))dζ, ς ∈ [0, ς1)

gk(ς, s(ς)), ς ∈ [ςk, ζk)

U(ς − ζk)gk(ζk, s(ζk)) +
∫ ς

ζk

(ς − ζ)λ−1V (ς − ζ)fk+1(ς, s(ζ), Pk+1s(ζ))dζ ς ∈ [ζk, ςk+1)

(4.2)
where,

Pks(ς) =

∫ ς

0
ak(ς, ζ, s(ζ))dζ, U(ς) =

∫ ∞
0

ζλ(θ)S(ς
λθ)dθ, V (ς) = λ

∫ ∞
0

θζλ(θ)S(ς
λθ)dθ

are the linear operators defined on U . Here, ζλ(θ) is probability density function over the interval
[0,∞) defined by

ζλ(θ) =
1
π

∞∑
n=1

(−1)n−1θ−λn−1 Γ(nλ+ 1)
n!

sin(nπλ)

and the operator S(ς) is semi-group generated by evolution operator A.

Assumption 4.2. Assumptions for the existence of the mild solution of fractional evolution equa-
tion with non-instantaneous impulses.
(B1) The evolution operator A generates C0 semigroup S(ς) for all ς ∈ [0, T ].
(B2) The function fk(ς, ·, ·) are continuous and fk(·, u, v) is measurable on [0, T ]. Also there
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exist β ∈ (0, λ) with mf ∈ L
1
β ([0, T ],R) such that |fk(ς, v, s)| ≤ mfk(ς) for all u, v ∈ U . Also

mf (ς) = supς∈[0,T ]{fkt(ς); k = 1, 2, · · · , k + 1} with M1 = ||mf ||1/βL .
(B3) The operator Pk : [0, T ] × U → U are continuous and there exist a constants h∗k such that
||Pkv − Pks|| ≤ p∗k||v − s|| and let p∗ be maximum of p∗k for all k = 1, 2, · · · , k + 1.
(B4) The operator h : U → U is Lipschiz continuous with respect to u with Lipschitz constant
0 < h∗ ≤ 1.
(B5) The functions gk : [ςk, ζk)× U are Lipchitz continuous positive constants 0 < g∗k < 1 such
that ||gk(ς, v(ς))− gk(ς, s(ς))|| ≤ g∗k||v − s||.

Theorem 4.3. (Existence Theorem) Under the assumptions (B1)-(B5), the nonlocal semi-linear
fractional order integro-differential equation (4.2) has mild solution provided Mh∗ < 1 and
Mg∗ < 1.

Proof. From the lemma-(3.3) ||U(ς)|| ≤M for all s ∈ Bk = {s ∈ U : ||s|| ≤ k} for any positive
constant k. Therefore,

|U(ς)(s0 + h(s))| ≤M(|s0|+ h∗||s||+ |h(0)|). (4.3)

According to (B2) f(·, v, s) is measurable on [0, T ] and one can easily shows that (ς − ζ)λ−1 ∈
L

1
1−β [0, ς] for all ς ∈ [0, T ] and β ∈ (0, λ). Let b = λ−1

1−β ∈ (−1, 0), M1 = ||mf ||
L

1
β

. By Holder’s
inequality and assumption (B2), for ς ∈ [0, T ],∫ ς

0
|(ς − ζ)λ−1V (ς − ζ)fk(ζ, s(ζ), Pks(ζ))|dζ ≤ M

Γ(λ)

(∫ ς

0
(ς − ζ)

λ−1
1−β dζ

)1−β

M1 ≤
MM1

Γ(λ)(1 + b)1−β T
(1+b)(1−β). (4.4)

For ς ∈ [0, ς1) and for positive r we define F1 and F2 on Br as, F1s(ς) = U(ς)(s0 + s(u)) and
F2s(ς) =

∫ ς
0 (ς − ζ)λ−1V (ς − ζ)f1(ς, s(ζ), P1s(ζ))dζ respectively then, s(ς) is mild solution

of the semilinear fractional integro-differential equation if and only if the operator equation
s = F1s+ F2s has solution for s ∈ Br for some r. Therefore the existence of a mild solution of
(3.1) over the interval [0, ς1) is equivalent to determining a positive constant r0, such that F1+F2
has a fixed point on Br0 .
Step:1 ||F1v + F2s|| ≤ r0 for some positive r0.
Let v, s ∈ Br0 , and choose

r0 =M
|s0|+ |h(z)|

1−Mh∗
+

MM1

(1−Mh∗)Γ(λ)(1 + b)1−β ς
(1+b)(1−β)
1 ,

and using inequalities (4.3) and (4.4)

|F1v(ς) + F2s(ς)| ≤M(|s0|+ h∗||v||+ |h(0)|) + MM1

Γ(λ)(1 + b)1−β ς
(1+b)(1−β)
1 ≤ r0 (since, Mh∗ < 1)

Therefore, ||F1v + F2s|| ≤ r0 for every pairs v, s ∈ Br0 .
Step: 2 F1 is contraction on Br0 .
For any v, s ∈ Br0 and ς ∈ [0, ς1), we have |F1v(ς)−F1s(ς)| ≤Mh∗||v− s||. Taking supremum
over [0, ς1), ||F1v − F1s|| ≤Mh∗||v − s||. Since, Mh∗ < 1, F1 is contraction.
Step: 3 F2 is completely continuous operator on Br0 .
Let {sn} be the sequence in Br0 converging to s ∈ Br0 then,

|F2sn(ς)− F2s(ς)| ≤
∫ ς

0
(ς − ζ)λ−1|V (ς − ζ)||f1(ζ, sn(ζ), P1sn(ζ))− f1(ζ, s(ζ), P1s(ζ))|dζ

≤
Mtλ1

Γ(λ+ 1)
sup

ζ∈[0,ς1)

|f1(ζ, sn(ζ), P1sn(ζ))− f1(ζ, s(ζ), P1s(ζ))|

Continuity of f and K leads to ||F2sn − F2s|| → 0 as n→∞. Thus, F2 is continuous.
To show {F2s(ς), s ∈ Br0} is relatively compact it is sufficient to show that the family of
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functions {F2s, s ∈ Br0} is uniformly bounded and equi-continuous, and for any ς ∈ [0, ς1),
{F2s(ς), s ∈ Br0} is relatively compact in U .
Clearly for any s ∈ Br0 , ||F2s|| ≤ r0, which means that the family {F2s(ς), u ∈ Br0} is uni-
formly bounded.

For any u ∈ Br0 and 0 ≤ τ1 < τ2 < ς1,

|F2s(τ2)− F2s(τ1)|

≤
∣∣∣∣ ∫ τ2

τ1

(τ2 − ζ)λ−1V (τ2 − ζ)f1(ζ, s(ζ), P1s(ζ))dζ

∣∣∣∣+ ∣∣∣∣ ∫ τ1

0

[
(τ2 − ζ)λ−1 − (τ1 − ζ)λ−1]V (τ2 − ζ)

f1(ζ, s(ζ), P1s(ζ))dζ

∣∣∣∣+ ∣∣∣∣ ∫ τ1

0
(τ1 − ζ)λ−1[V (τ2 − ζ)− V (τ1 − ζ)

]
f(ζ, s(ζ),Kw(ζ))dζ

∣∣∣∣
≤ I1 + I2 + I3

and assuming (B1), (B2), (B3) and Holder inequality the integrals I1 ≤ MM1
Γ(λ)(1+b)1−β (τ2 −

τ1)(1+b)(1−β), I2 ≤ MM1
Γ(λ)(1+b)1−β (τ2−τ1)(1+b)(1−β) and I3 ≤ M1

(1+b)1−β ς
(1+b)(1−β) supζ∈[τ1,τ2]

|V (τ2−
ζ)− V (τ1 − ζ)|.
The integrals I1 and I2 are vanishes if τ1 → τ2 as they contain term (τ2 − τ1). By assumption
(B1), the integral I3 also vanishes as τ1 → τ2. Therefore |F2s(τ2) − F2s(τ1)| tends to zero as
τ1 → τ2 for independent choice of s ∈ Br0 . Hence, the family {F2s, s ∈ Br0} is equicontinuous.
Consider X (ς) = {F2s(ς), s ∈ Br0} for all ς ∈ [0, ς1) It is obvious that X (0) is relatively com-
pact.
Let ς ∈ [0, ς1) be fixed and for each ε ∈ [0, ς1), define an operator Fε on Br0 by formula
Fεs(ς) =

∫ ς−ε
0 (ς − ζ)λ−1V (ς − ζ)f1(ς, s(ζ), P1s(ζ))dζ. Compactness of the operator V (ς)

leads to relative compactness of the set Xε(ς) = Fεs(ς), s ∈ Br0 in U .
Moreover, from inequality (4.4)

|F2s(ς)− Fεs(ς)| ≤
∫ ς

ε

|(ς − ζ)λ−1V (ς − ζ)f1(ς, s(ζ), P1s(ζ))|dζ ≤
MM1

Γ(λ)(1 + b)1−β (ς − ε)
(1+b)(1−β)

Therefore, X (ς) is relatively compact as it is very closed to relatively compact set Xε(ς). Thus,
by Ascoli-Arzela theorem the operator F2 is completely continuous on Br0 . Hence,by theorem
(2.3), F1+F2 has fixed point on Br0 which is mild solution of the equation (4.1) over the interval
[0, ς1).

On the interval [ςk, ζk) for all k = 1, 2, · · · , p and for positive r we define F1 and F2 on Br
as, F1s(ς) = gk(ς, s(ς)) and F2s(ς) = 0 then, s(ς) is mild solution of the semilinear fractional
integro-differential equation if and only if the operator equation s = F1s+ F2s has solution for
u ∈ Br for some r. Therefore the existence of a mild solution of (3.1) over the interval [ςk, ζk)
is equivalent to determining a positive constant r0, such that F1 +F2 has a fixed point on Br0 . In
fact, it is obvious due to assumption (B5).

On the interval [ζk, ςk+1) for all k = 1, 2, · · · , p and for positive r we define F1 and F2 on Br
as, F1s(ς) = U(ς−ζk)gk(ζk, s(ζk)) and F2s(ς) =

∫ ς
ζk
(ς−ζ)λ−1V (ς−ζ)fk+1(ς, s(ζ), Pk+1s(ζ))dζ

respectively then, s(ς) is mild solution of the semi-linear fractional integro-differential equation
if and only if the operator equation s = F1s+F2s has solution for u ∈ Br for some r. Therefore
the existence of a mild solution of (3.1) over the interval [ζk, ςk+1) is equivalent to determining
a positive constant r0, such that F1 + F2 has a fixed point on Br0 .
Selecting,

r0 =M
|s0|+ |g(·, z)|

1−Mg∗
+

MM1

(1−Mg∗)Γ(λ)(1 + b)1−β (ς − ζk)
(1+b)(1−β)

and using similar arguments for interval [0, ς1) and by theorem (2.3), F1 + F2 has fixed point on
Br0 which is mild solution of the equation (4.1) over the interval [ζk, ςk+1).
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Example 4.4. Fractional partial integro-differential system with nonlocal conditions:

cD
1
2 s(ς, η) = sηη(ς, η) +

1
50

∫ ς

0
e−s(ζ,η)dζ, ς ∈ [0,

1
3
)

cD
1
2 s(ς, η) = sηη(ς, η) +

1
60

∫ ς

0
e−s(ζ,η)dζ, ς ∈ [

2
3
, 1]

s(ς, η) =
s(ς, η)

10(1 + s(ς, η))
, ς ∈ [

1
3
,

2
3
)

(4.5)

over the interval [0, 1] with initial condition s(0, η) = s0(η) +
∑2
i=1

1
3i s(1/i, η) and boundary

conditions s(ς, 0) = s(ς, 1) = 0.
The equation (4.5) can be reformulated as fractional order abstract equation in U = L2([0, 1],R)
as:

cDλz(ς) = Az(ς) + fk(ς, z(ς), Pkz(ς)), ς ∈ [0,
1
3
) ∪ [2

3
, 1]

z(ς) = g(ς, z(ς)) ς ∈ [
1
3
,

2
3
)

(4.6)

over the interval [0, 1] by defining z(ς) = s(ς, ·), operator As = s′′ (second order derivative with
respect to η).
The functions f1, f2 and g over respected domains are defined as f1(ς, z(ς), P1z(ς)) =

1
50

∫ ς
0 e
−z(ζ)dζ,

f2(ς, z(ς), P2z(ς)) =
1
60

∫ ς
0 e
−z(ζ)dζ and g(ς, z(ς)) = z(ς)

10(1+z(ς)) respectively.
The equation (4.6) satisfies the conditions (B1-B5) of the hypothesis with Mh∗ < 1 and Mg∗ <
1. Hence the equation (4.6) has a mild solution over the interval [0, 1].

5 Conclusion

In this work, we have derived sufficient conditions for the existence of generalized non-instantaneous
semilinear Cauchy problem. Sufficient conditions for the existence of mild solution for gen-
eralized non-instantaneous semilinear fractional evolution Cauchy problem with classical and
non-local conditions derived using Banach fixed point theorem and Krasnoselskii’s fixed point
theorem respectively are weaker conditions.
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