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Abstract A k-coupon coloring of a graph G without isolated vertices is an assignment of
colors from [k] = {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex
of G contains vertices of all colors from [k]. The maximum k for which a k-coupon coloring
exists is called the coupon coloring number of G. The Cayley graph Cay(G,C) of a group G is
a graph with vertex set G and edge set E(Cay(G,C)) = {gh : hg−1 ∈ C}, where C is a subset
of G that is closed under taking inverses and does not contain the identity. For a commutative
ring R with unity, Cay(R+, Z(R)∗) is denoted by CAY(R), where R+ is the additive group
and Z(R)∗ is the nonzero zero-divisors of R. In this paper, we have obtained bounds for the
coupon coloring number of CAY(Zn) and CAY(Zn × Zm), where Zn is the commutative ring
of integers modulo n and Zn × Zm is the Cartesian product of Zn and Zm. We also found that
in some cases these upper bounds are sharp. We have found the coupon coloring number of
Cay(Zn, C) when C = {1,−1, a = −a} and C = {1,−1, 2,−2}.

1 Introduction

The concept of coupon coloring number was introduced by Chen et al. in [5]. Let G = (V,E)
be a graph. The open neighborhood of a vertex v is {u ∈ V (G) : uv ∈ E(G)}. Let G be
a graph without isolated vertices. A k-coupon coloring of G is an assignment of colors from
[k] = {1, 2, . . . , k} to the vertices of G such that the open neighborhood of every vertex of G
contains vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists is
called the coupon coloring number of G and it is denoted by χc(G).

Let G = (V,E) be a graph. D ⊆ V is a dominating set if every vertex in V \D is adjacent to
at least one vertex in D. Let G = (V,E) be a graph without isolated vertices. D′ ⊆ V is a total
dominating set (TDS) if every vertex of G is adjacent to at least one vertex in D′. The minimum
cardinality among all the total dominating sets inG is called the total domination number, γt(G).
The coupon coloring number is also referred to as the total domatic number, introduced in [3],
which is the maximum number of disjoint total dominating sets. Coupon coloring is studied in
[6, 7, 8]. In [8] Y Shi et al. determined coupon coloring number of complete graphs, complete
k-partite graphs, wheels, cycles, unicyclic graphs and bicyclic graphs.

Coupon coloring is interesting, not only because of its theoretical value, but also for its ap-
plications in the network science and some other related fields. Imagine the colors as different
types of coupons. Then the coupon coloring demands that every vertex collect coupons of all
different types from its neighbors. If we imagine that a bit from a k-bit message is assigned to
the users v1, v2, . . . , vm and that every user has contact with at least one other user, then every
user can reconstruct the entire message from her contacts if and only if the graph of contacts
has a k-coupon coloring. The coupon coloring number of the graph of contacts determines the
maximum length of the message that can be transmitted. In addition, results on coupon colorings
have concrete applications in network science [2].

2 Preliminaries

All graphs considered in this paper are simple, finite and undirected. As usual Kn denotes
the complete graph with n vertices. For vertices x and y of a graph G, we define distance
d(x, y) to be the length of a shortest path from x to y. The minimum and maximum degrees of
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vertices in a graph G are denoted by δ(G) and ∆(G) respectively. The diameter of a graph G is
diam(G) = sup{d(x, y) : x and y are vertices of G}. Let G be a graph without isolated vertices.
A k-vertex coloring, or simply a k-coloring of G is a mapping c from the vertex set of G to
[k] = {1, 2, ..., k}. A vertex v is said to be a bad vertex in a k-coloring c, if its neighborhood
does not contain vertices of all colors from [k] and obviously, there are no bad vertices in a
coupon coloring. Clearly, coupon coloring is an improper coloring and χc(G) ≤ δ(G).

Let G be a group and let C be a subset of G that is closed under taking inverses and does not
contain the identity. Then the Cayley graph Cay(G,C) is a graph with vertex set G and edge set

E(Cay(G,C)) = {gh : hg−1 ∈ C}.

Let Zn denote the additive group of integers modulo n. If C is a subset of Zn\{0}, then construct
a directed graph Cay(Zn, C) as follows. The vertices of Cay(Zn, C) are elements of Zn and
(i, j) is an arc of Cay(Zn, C) if and only if j − i ∈ C. The graph Cay(Zn, C) is called a
circulant graph of order n, and C is called its connection set. If the set C is symmetric, that
is C = −C = {−x : x ∈ C}, then X will be an undirected graph. Let R be a commutative
ring with unity, Z(R) be the set of zero-divisors of R and Z(R)∗ be the set of nonzero zero-
divisors of R. Then the Cayley graph of R with respect to its nonzero zero-divisors is the graph
Cay(R+, Z(R)∗) denoted by CAY(R). This is the Cayley graph whose vertices are all elements
of the additive group R+ and in which two distinct vertices x and y are joined by an edge if and
only if x− y ∈ Z(R)∗.

Let φ(n) denote Euler’s phi-function. The Cartesian product R1 × R2 of two commutative
ringsR1 andR2 is also a commutative ring defined on the set consisting of all ordered pairs (a, b)
for which a ∈ R1 and b ∈ R2 with respect to componentwise operations.

The following results will be useful for the upcoming sections.

Theorem 2.1. [8]

(i) Let G be a complete graph with n vertices. Then χc(G) =
⌊
n
2

⌋
.

(ii) Let G = Kn1,n2,...,nk
be a complete k-partite graph where k ≥ 3 and n1 ≤ n2 ≤ · · · ≤ nk

such that s =
∑k−1

i=1 ni and n =
∑k

i=1 ni. Then

χc(G) =

{⌊
n
2

⌋
if s ≥ n

2 ,

s otherwise.

Theorem 2.2. [1] Let R be a ring. Then the following statements hold:

(i) CAY(R) has no edge if and only if R is an integral domain.

(ii) If (R,M) is an Artinian local ring, then CAY(R) is a disjoint union of | RM | copies of the
complete graph K|M |.

(iii) CAY(R) cannot be a complete graph.

(iv) CAY(R) is a regular graph of degree |Z(R)| − 1 with isomorphic components.

3 Coupon coloring of CAY(Zn)

By Theorem 2.2, CAY(R) has no edge if and only if R is an integral domain. So in this section
consider only Zn with n composite.

Theorem 3.1. If Z(Zn) is an ideal of Zn, χc(CAY(Zn)) =
⌊
|Z(Zn)|

2

⌋
.

Proof. Let Z(Zn) be an ideal of Zn. Then n = pk for some prime p and Z(Zn) is the maximal
ideal of Zn. By Theorem 2.2, CAY(Zn) is the disjoint union of

∣∣∣ Zn

Z(Zn)

∣∣∣ = p copies of the
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complete graph K|Z(Zn)| = Kpk−1 since, |Z(Zn)| = pk−1. Therefore, using Theorem 2.1

χc(CAY(Zn)) = χc(Kpk−1)

=

⌊
pk−1

2

⌋
=

⌊
|Z(Zn)|

2

⌋
.

The proof is complete. 2

The above theorem gives the coupon coloring number of CAY(Zn) when Z(Zn) is an ideal
of Zn. Next we consider the case that Z(Zn) is not an ideal of Zn. We found the exact value of
the coupon coloring number of CAY(Zn) in some cases when Z(Zn) is not an ideal of Zn.

Theorem 3.2. Suppose that Z(Zn) is not an ideal of Zn. Then χc(CAY(Zn)) ≥ n
p , where p is

the least prime divisor of n.

Proof. Z(Zn) is not an ideal of Zn, so there exists at least two prime divisors for n. Let
n = pr1

1 p
r2
2 . . . prmm , where p1 < p2 < · · · < pm and H = {0, p2, 2p2, . . . , (p1 − 1)p2}. Define

the set Di = ip1 + H, i = 1, 2, . . . , n
p1

. Clearly, D n
p1

= H . Di’s are disjoint, for, let x ∈
Di ∩Dj , i 6= j. Then x = ip1 + h1 = jp1 + h2, h1, h2 ∈ H . So, ip1 + sp2 = jp1 + tp2 where
i, j ∈ {1, 2, . . . , n

p1
} and s, t ∈ {1, 2, . . . , p1 − 1}. Since i 6= j, t 6= s and p1 divides t − s, a

contradiction. Hence,Di’s are disjoint and so
{
Di : i = 1, 2, . . . , n

p1

}
is a partition of Zn. Define

the coloring c : V (CAY(Zn))→
[

n
p1

]
by

c(x) = k, if x ∈ Dk.

Let x ∈ Zn. Then x ∈ Dk = kp1 + H for some k ∈
{
Di : i = 1, 2, . . . , n

p1

}
. So, x =

kp1+tp2, t ∈ {0, 1, 2, . . . , p1 − 1}. Then x is adjacent to the vertices p1+tp2, 2p1+tp2, . . . , (k−
1)p1 + tp2, (k + 1)p1 + tp2, . . . ,

n
p1
p1 + tp2 with colors 1, 2, . . . , k − 1, k + 1, . . . , n

p1
. Also, x

is adjacent to kp1 + (t + 1)p2 with color k. Thus, c is a coupon coloring of CAY(Zn) and so
χc(CAY(Zn)) ≥ n

p . 2

Theorem 3.3. If n is even and Z(Zn) is not an ideal of Zn, then

χc(CAY(Zn)) =
n

2
.

Proof. Each color in a coupon coloring must appear at least twice and so there can be at most
bn2 c colors in a coupon coloring of CAY(Zn). Therefore, χc(CAY(Zn)) ≤ bn2 c =

n
2 , since n is

even.
Suppose that Z(Zn) is not an ideal of Zn. Since n is even, 2 is the smallest prime divisor of

n. So, by Theorem 3.2, χc(CAY(Zn)) ≥ n
2 . Hence, χc(CAY(Zn)) =

n
2 . 2

Theorem 3.4. Suppose that Z(Zn) is not an ideal of Zn. If n is odd and 3 ∈ Z(Zn), then

χc(CAY(Zn)) =
n

3
.

Proof. By Theorem 3.2, χc(CAY(Zn)) ≥ n
3 , since n is odd and 3 ∈ Z(Zn), the smallest prime

divisor of n is 3.
Note that 2 6∈ Z(Zn), since n is odd. Suppose that CAY(Zn) has a total dominating set D

with two vertices. Then D = {x, x + z} for some x ∈ Zn, z ∈ Z(Zn). But x + 2 ∈ Zn is
not adjacent to both x and x + z, since 2 6∈ Z(Zn). So D cannot be a total dominating set.
Thus, a total dominating set should contain at least 3 vertices. This implies that there are at
most n

3 disjoint total dominating sets. Hence, the total domatic number is at most n
3 . That is,

χc(CAY(Zn)) ≤ n
3 . 2
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4 Coupon coloring of CAY(Zn × Zm)

If R1 and R2 are two finite commutative rings, then Reg(R1 ×R2) = Reg(R1)×Reg(R2). So,
(a, b) ∈ Z(R1×R2) if and only if either a ∈ Z(R1) or b ∈ Z(R2). Therefore, in CAY(Zn×Zm),
(x, y) is adjacent to (a, b) if and only if either x− a ∈ Z(Zn) or y − b ∈ Z(Zm).

Theorem 4.1. CAY(Zn × Zm) is a (nm− φ(n)φ(m)− 1)-regular graph.

Proof. By Theorem 2.2, CAY(Zn × Zm) is an (|Z(Zn × Zm)| − 1)-regular graph. Here
|Z(Zn × Zm)| − 1 = (nm− φ(n)φ(m)− 1), so CAY(Zn × Zm) is an (nm− φ(n)φ(m)− 1)-
regular graph. 2

Lemma 4.2. Let (x, y) ∈ CAY(Zn × Zm). Then (x, y) is adjacent only to the vertices ⋃
x−i∈Z(Zn)

Hi

⋃ ⋃
x−i 6∈Z(Zn)

[(0, y) + Ji]

 \ {(x, y)}
where Hi = {(i, b) : b ∈ Zm}, Ji = {(i, z) : z ∈ Z(Zm)} and i ∈ Zn.

Proof. Let (x, y), (a, b) ∈ CAY(Zn × Zm) and (a, b) 6= (x, y). If (a, b) ∈
⋃

x−i∈Z(Zn)

Hi, then

(a, b) ∈ Hi for some i such that x − i ∈ Z(Zn). So, x − i = z, z ∈ Z(Zn) and this implies
that i = z + x. Thus, (a, b) ∈ Hz+x, since (a, b) ∈ Hi. Therefore, (a, b) = (z + x, s) for some
s ∈ Zm, z ∈ Z(Zn) and so (a, b) is adjacent to (x, y), since,

(x, y)− (a, b) = (x, y)− (z + x, s) = (−z, y − s) ∈ Z(Zn × Zm).

If (a, b) ∈
⋃

x−i6∈Z(Zn)

[(0, y)+Ji], then (a, b) ∈ (0, y)+Ji for some i such that x− i 6∈ Z(Zn).

In this case, (a, b) = (0, y) + (i, w), w ∈ Z(Zm). So,

(x, y)− (a, b) = (x, y)− [(0, y) + (i, w)] = (x− i,−w) ∈ Z(Zn × Zm).

Therefore, (a, b) is adjacent to (x, y). Thus (x, y) is adjacent to the vertices of
⋃

x−i∈Z(Zn)

Hi and⋃
x−i6∈Z(Zn)

[(0, y) + Ji] except (x, y). Clearly, all these [m − φ(m)]n + φ(m)[n − φ(n)] − 1 =

nm−φ(n)φ(m)−1 vertices are distinct and by Theorem 4.1 these are the only vertices adjacent
to (x, y). 2

Theorem 4.3. CAY(Zn × Zm) is a connected graph with diam(CAY(Zn × Zm)) = 2.

Proof. Any (a, b) ∈ Zn × Zm with either a = 0 or b = 0 is in Z(Zn × Zm). Let (a, b), (x, y) ∈
Zn × Zm = V (CAY(Zn × Zm)) such that (a, b) 6= (x, y). If a = x or b = y, then (a, b) is
adjacent to (x, y). Suppose that neither a = x nor b = y, then (a, b)− (a, y)− (x, y) is a path in
CAY(Zn × Zm), since

(a, b)− (a, y) = (0, b− y) ∈ Z(Zn × Zm)∗

(a, y)− (x, y) = (a− x, 0) ∈ Z(Zn × Zm)∗.

Moreover, there are non-adjacent vertices, (a, b), (a+ 1, b+ 1). 2

Theorem 4.4. χc(CAY(Zn × Zm)) ≥ nm
p , where p is the minimum of the least prime divisors

of n and m.

Proof. Let n = pr1
1 p

r2
2 . . . pruu and m = qs1

1 q
s2
2 . . . qsvv with p1 < p2 < · · · < pu and q1 <

q2 < · · · < qv. Without loss of generality assume that min{p1, q1} = p1 = p. Define for all
i = 1, . . . , np , j = 0, 1, . . . ,m− 1,

Di,j =

{(
[i− 1]p+ k, j

)
: k = 0, 1, . . . , p− 1

}
.
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Then
{
Di,j : i = 1, . . . , np , j = 0, 1, . . . ,m− 1

}
is a partition of elements of Zn × Zm with nm

p

parts. For, let (x, y) ∈ Di,j ∩Ds,t. Then

(x, y) =

(
[i− 1]p+ k1, j

)
=

(
[s− 1]p+ k2, t

)
.

So, [i − 1]p + k1 = [s − 1]p + k2 and j = t. [i − 1]p + k1 = [s − 1]p + k2 implies that(
[i− 1]− [s− 1]

)
p = k2 − k1. Since k1, k2 ∈ {0, 1, . . . , p− 1}, k2 − k1 ≤ p. Thus, k2 − k1 = 0

and so [i− 1]− [s− 1] = 0 that is i = s. Therefore, Di,j = Ds,t.
Define a coloring c by

c(x, y) = j
n

p
+ i, for (x, y) ∈ Di,j .

Let (x, y) ∈ Ds,t for some s ∈
{

1, . . . , np
}

and t ∈ {0, 1, . . . ,m−1}. Then (x, y) =

(
[s−1]p+

k, t

)
for some k ∈ {0, 1, . . . , p− 1} and so in CAY(Zn × Zm), (x, y) is adjacent to the nm

p − 1

vertices of the set{(
[i− 1]p+ k, j

)
: i = 1, . . . ,

n

p
, j = 0, 1, . . . ,m− 1

}
\ {(x, y)},

since

(x, y)−
(
[i− 1]p+ k, j

)
=

(
[s− 1]p+ k, t

)
−
(
[i− 1]p+ k, j

)
=

((
[s− 1]− [i− 1]

)
p, t− j

)
∈ Z(Zn × Zm)∗.

So, (x, y) is adjacent to the vertices of colors 1, 2, . . . , nmp except the color tnp + s = c(x, y).

But (x, y) is also adjacent to the vertex
(
[s − 1]p + k ± 1, t

)
which is distinct from the above

vertices and with color tnp + s. Thus c is a coupon coloring of CAY(Zn × Zm). Therefore,
χc(CAY(Zn × Zm)) ≥ nm

p . 2

Theorem 4.5. Assume that either n or m is even. Then

χc(CAY(Zn × Zm)) =
nm

2
.

Proof. Any color in a coupon coloring must appear at least twice. Here we have nm vertices
and so there can be at most bnm2 c colors in a coupon coloring of CAY(Zn × Zm). Therefore,
χc(CAY(Zn × Zm)) ≤ bnm2 c =

nm
2 , since n or m is even.

If n or m is even, then 2 will be the minimum of the smallest prime divisors of n and m. So
by Theorem 4.4, χc(CAY(Zn × Zm)) ≥ nm

2 . Hence, χc(CAY(Zn × Zm)) = nm
2 . 2

Lemma 4.6. Suppose that p and q are prime numbers with p ≤ q. Then a dominating set of
CAY(Zp × Zq) contains at least p vertices.

Proof. Suppose that D is a dominating set of CAY(Zp × Zq) with p − 1 vertices. Define
Hi = {(i, b) : b ∈ Zq} for all i ∈ Zp. Then {Hi : i ∈ Zp} is a partition of the vertices of
CAY(Zp × Zq). Since D contains only p− 1 vertices, there must exist at least one s ∈ Zp such
that no vertex of Hs is in D. Consider the vertices of Hs = {(s, 0), (s, 1), . . . , (s, q − 1)}. By
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Lemma 4.2, for all j ∈ Zq, (s, j) is adjacent only to the vertices ⋃
s−i∈Z(Zp)

Hi

⋃ ⋃
s−i6∈Z(Zp)

[(0, j) + {(i, 0)}]

 \ {(s, j)}
=

[ ⋃
s−i=0

Hi

]⋃ ⋃
s−i∈{1,2,...,p−1}

{(i, j)}

 \ {(s, j)}
= Hs \ {(s, j)} ∪ {(s− 1, j), (s− 2, j), . . . (s− (p− 1), j)}
= Hs \ {(s, j)} ∪

{
(s− k, j) : k ∈ {1, 2, . . . , p− 1}

}
.

Since D is a dominating set and no vertex of Hs is in D, there should exist k ∈ {1, 2, . . . , p− 1}
such that (s− k, j) ∈ D for all j ∈ Zq. That is,

{(s− k0, 0), (s− k1, 1), . . . , (s− kq−1, q − 1)} ⊆ D

where, kt ∈ {1, 2, . . . , p − 1}, t ∈ Zq. Then D should contain at least q vertices. But this is not
possible, since p ≤ q and D contains only p− 1 vertices. 2

Theorem 4.7. Suppose that p and q are prime numbers. Then

χc(CAY(Zp × Zq)) = max{p, q}.

Proof. Without loss of generality, assume that p ≤ q. By Theorem 4.4, χc(CAY(Zp×Zq)) ≥ q.
From Lemma 4.6, a dominating set of CAY(Zp × Zq) should contain at least p vertices. So any
total dominating set of CAY(Zp × Zq) contains at least p vertices. Hence, there can be at most
q disjoint total dominating sets. That is χc(CAY(Zp × Zq)) ≤ q. 2

5 Coupon coloring of some circulant graphs

Theorem 5.1. Let C = {1,−1, a = −a}. Then

χc(Cay(Zn, C)) =

{
3, if n ≡ 0 (mod 3)
2, otherwise.

Proof. Clearly Cay(Zn, C) is a 3-regular graph. Let a ∈ Zn and let a = −a. Then n must be
even, since 2a = a+ a = 0 = n.
Case 1: n ≡ 0 (mod 3) Define c : V (Cay(Zn, C))→ [3] by

c(i) =


1, if i ≡ 0(mod 3)
2, if i ≡ 1(mod 3)
3, if i ≡ 2(mod 3).

Then c is a coupon coloring onCay(Zn, C). For, let i ∈ V (Cay(Zn, C)) such that i ≡ 0 (mod 3).
Then c(i) = 1 and the neighbors of i are i − 1, i + 1 and i + a. Since i ≡ 0 (mod 3) and
a = n

2 ≡ 0 (mod 3), i+ a ≡ a ≡ 0 (mod 3) , i − 1 ≡ −1 ≡ 2 (mod 3) and i+ 1 ≡ 1 (mod 3).
So c(i+ a) = 1, c(i− 1) = 3 and c(i+ 1) = 2. All other possibilities can be proved similarly.
Case 2: n ≡ 1 (mod 3)

Suppose that Cay(Zn, C) has a 3-coupon coloring. Then at least one color should be given
to at most bn3 c vertices. This color class D must be a total dominating set. But bn3 c =

n−1
3 and

Cay(Zn, C) is a 3-regular graph. So, D an dominate at most n − 1 vertices and D cannot be a
TDS.

So χc(Cay(Zn, C)) ≤ 2. Now define c : V (Cay(Zn, C))→ [2] by

c(i) =

{
1, if i ≡ 0 (mod 2)
2, if i ≡ 1 (mod 2).
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Then clearly c is a 2-coupon coloring of Cay(Zn, C), and so χc(Cay(Zn, C)) ≥ 2. Hence
χc(Cay(Zn, C)) = 2.
Case 3: n ≡ 2 (mod 3)

Proof is similar as in Case 2. 2

Theorem 5.2. Let Cay(Zn, C) be the circulant graph with C = {1,−1, 2,−2}, 2 6= −2. Then
χc(Cay(Zn, C)) ≤ 3 and equality holds if n ≡ 0 (mod 6).

Proof. Since 2 6= −2, Cay(Zn, C) is a 4-regular graph. Let a be any vertex of Cay(Zn, C). Then
neighbors of a are a−1, a−2, a+1 and a+2. Since (a+1)− (a−1) = 2 ∈ C, there is an edge
between a − 1 and a+ 1. Similarly, (a − 1) − (a − 2) = 1 ∈ C; (a+ 1) − (a+ 2) = −1 ∈ C
and so a− 1 and a− 2 are adjacent; a+ 1 and a+ 2 are adjacent.

If c is a 4-coupon coloring of Cay(Zn, C), then without loss of generality we may assume
that c(a− 1) = 1, c(a+ 1) = 2, c(a− 2) = 3 and c(a+ 2) = 4. Then c(a) cannot be 1,2,3 or 4.

(i) If c(a) = 1, then the vertex a+1 will have two neighbors with color 1. Since ∆(Cay(Zn, C)) =
4, this will make the vertex a+ 1, a bad vertex.

(ii) If c(a) = 2, then the vertex a− 1 will have two neighbors with color 2 and so a− 1 is a bad
vertex.

(iii) If c(a) = 3, then the vertex a− 1 will have two neighbors with color 3 and a− 1 will be a
bad vertex.

(iv) If c(a) = 4, then the vertex a+1 will have two neighbors with color 4 and so a+1 is a bad
vertex.

Hence 4-coupon coloring is not possible and so χc(Cay(Zn, C)) ≤ 3.
Claim : χc(Cay(Zn, C)) = 3 if n ≡ 0 (mod 6)

Define c : V (Cay(Zn, C))→ [3] by

c(i) =


1, if i ≡ 0, 1 (mod 6)
2, if i ≡ 2, 3 (mod 6)
3, if i ≡ 4, 5 (mod 6).

Then c is a coupon coloring of Cay(Zn, C). For, let i ∈ V (Cay(Zn, C)) such that i ≡ 0 (mod 6).
Then neighbors of i are i− 1, i− 2, i+ 1 and i+ 2.

Since i − 1 ≡ −1 ≡ 5 (mod 6), so c(i − 1) = 3. Similarly since i − 2 ≡ −2 ≡ 4 (mod 6),
so c(i − 2) = 3, since i + 1 ≡ 1 (mod 6), so c(i + 1) = 1 and since i + 2 ≡ 2 (mod 6), so
c(i + 2) = 2. Therefore, the four neighbors of i colored with all the three colors. Other cases
can be proved similarly. Hence the claim holds. 2
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