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Abstract In this paper we introduced the notion of an edge product number of a hypergraph.
The edge product number, EPn(H) of a hypergraphH is the smallest number r such thatH∪rK2
is an edge product hypergraph. Later we obtained the edge product number of a star hypergraph,
open chain hypergraph and closed chain hypergraph for different sizes.

1 Introduction

The idea of graph labeling was introduced by Rosa during 1960 in [7]. It is the concept of
assigning labels to vertices, edges or both subject to certain conditions. Traditionally, the set
of labels which we assign to vertices or edges is a subset of integers. Graph labelings provide
us useful models for many applications such as astronomy, radar X-ray crystallography, circuit
design, data base management, communication network addressing etc. Rosa in [7] introduced
three types of labelings called α, β and ρ-labeling. Following this,many different types of label-
ings were introduced by many others. For more details about graph labeling reader may refer to
an extensive dynamic survey of Gallian [4]. In labeling problems, we have to find the optimal
way of labeling vertices or edges or both with distinct integers, k-tuples of integers, or group
elements subject to certain conditions. Such problems often turn up in link with applications in
circuit layout, network addressing or code designs.

Harary [5] introduced the notion of sum graphs of a graph G. A graph G(V,E) is said to
be a sum graph if there exists a bijection labeling f from the vertex set V to a set S of positive
integers such that xy ∈ E if and only if f(x) + f(y) ∈ S. The product analogue of sum graphs
was first introduced by Thavamani in 2011. He introduced edge product graph and edge product
number of a graph in [8] and [9] respectively. A graph G is said to be an edge product graph if
the edges of G can be labeled with distinct positive integers such that the product of all the label
of the edges incident on a vertex is again an edge label of G and if the product of any collection
of edges is a label of an edge in G then they are incident on a vertex. For many applications, the
edges or vertices are given labels that are meaningful in the associated domain. An enormous
body of literature has grown around graph labeling in the last four decades. However much less
is known about labeling of hypergraph. Hypergraph is a generalization of a graph in which any
subset of a given set may be an edge rather than two element subsets. With graphs we are limited
to describe and model only pairwise interactions while hypergraphs model any type of groupwise
complex interactions. Hypergraphs have demonstrated their power as a tool for understanding
problems in a extensive variety of scientific fields.

In [6] Jadhav and Pawar introduced the notion of an edge function and using this edge func-
tion an edge product hypergraph is defined. This paper [6] addresses the problem of hypergraph
labeling, this labeling gives the notions of hypergraph called edge product hypergraph and unit
edge product hypergraph. The present paper deals with one parameter called edge product num-
ber of a hypergraph by which one can verify that the labeling applied to given problem is optimal
or not. We initiate to study this labeling on certain types of hypergraphs and proved some results
on the edge product number of that hypergraphs.
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2 Preliminaries and Edge Product Hypergraph

We begin with recalling some basic definitions from [1]-[2] and [6] required for our purpose. In
this paper, we consider a simple hypergraph (n,m) without isolated vertices and of size m > 1.

Definition 2.1. A hypergraph H is a pair H(V,E) where V is a finite nonempty set and E is a
collection of subsets of V . The elements of V are called vertices and the elements of E are called
edges or hyperedges. And ∪ei∈Eei = V and ei 6= φ are required, for all ei ∈ E. The number of
vertices in H is called the order of the hypergraph and is denoted by |V |. The number of edges
in H is called the size of H and is denoted by |E|. A hypergraph of order n and size m is called
a (n,m) hypergraph. The number |ei| is called the degree (cardinality) of the edges ei. The rank
of a hypergraph H is r(H) = maxei∈E |ei|.

Definition 2.2. For any vertex v in a hypergraphH(V,E), the setN [v] = {u ∈ V : u is adjacent to v}∪
{v} is called the closed neighborhood of v in H and each vertex in the set N [v] − {v} is called
neighbor of v. The open neighborhood of the vertex v is the set N [v] \ {v}. If S ⊆ V then
N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.

Definition 2.3. A simple hypergraph (or sperner family) is a hypergraph H(V,E) where E =
{e1, e2, · · · , em} such that ei ⊂ ej implies i = j.

Definition 2.4. For any hypergraph H(V,E) two vertices v and u are said to be adjacent if there
exists an edge e ∈ E that contains both v and u and non adjacent otherwise.

Definition 2.5. For any hypergraphH(V,E) two edges are said to be adjacent if their intersection
is nonempty. If a vertex vi ∈ V belongs to an edge ej ∈ E then we say that they are incident to
each other.

Definition 2.6. A star hypergraph is an intersecting family of edges having a common element
x. It is denoted by H(x) and the vertex x is called the center of H(x).

Definition 2.7. The vertex degree of a vertex v is the number of vertices adjacent to the vertex v
in H. It is denoted by d(v). The maximum (minimum) vertex degree of a hypergraph is denoted
by ∆(H)(δ(H)).

Definition 2.8. The edge degree of a vertex v is the number of edges containing the vertex v.
It is denoted by dE(v). The maximum (minimum) edge degree of a hypergraph is denoted by
∆E(H)(δE(H)). A vertex of a hypergraph which is incident to no edge is called an isolated
vertex. The edge degree (or vertex degree) of an isolated vertex is trivially 0. An edge of
cardinality one is called a singleton (loop), a vertex of edge degree one is called a pendant
vertex.

Definition 2.9. The hypergraph H(V,E) is called connected if for any pair of its vertices, there
is a path connecting them. If H is not connected then it consists of two or more connected
components, each of which is a connected hypergraph.

Definition 2.10. [6] LetH(V,E) be a simple and connected hypergraph. Let V (H) be the vertex
set of H and E(H) be the edge set of H. Let P be a set of positive integers such that |E| = |P |.
Then any bijection f : E → P is called an edge function of the hypergraph H .

Definition 2.11. [6] The function F (v) =
∏
{f(e)| edge e is incident to the vertex v} on V (H)

is called an edge product function of the edge function f .

Definition 2.12. [6] The hypergraph H(V,E) is said to be an edge product hypergraph if there
exists an edge function f : E → P such that the edge function f and the corresponding edge
product function F of f on V (H) have the following two conditions:

(i) F (v) ∈ P , for every v ∈ V .

(ii) If f(e1) × f(e2) × . . . × f(ep) ∈ P , for some edges e1, e2, . . . , ep ∈ E then the edges
e1, e2, . . . , ep are all incident to a vertex v ∈ V .
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Example 2.13. [6] LetH(V,E) be a hypergraph, where V = {v1, v2, . . . , v16} andE = {e1, e2, . . . , e7}.
In which the edges of H are defined as follows:

e1 = {v1, v5, v6, v13, v14} e2 = {v1, v2},
e3 = {v1, v3, v4} e4 = {v5, v6, v7, v8},
e5 = {v5, v6, v9} e6 = {v5, v6, v10, v11, v12},
e7 = {v15, v16}.

Now define the edge function f : E → P by

f(e1) = 11, f(e2) = 4, f(e3) = 30, f(e4) = 3,

f(e5) = 2, f(e6) = 20, f(e7) = 1320.

Then edge product function F of f will be as follows:

F (v1) = 1320, F (v2) = 4, F (v3) = F (v4) = 30,

F (v5) = F (v6) = 1320, F (v7) = F (v8) = 3, F (v9) = 2,

F (v10) = F (v11) = F (v12) = 20, F (v13) = F (v14) = 11, F (v15) = F (v16) = 1320.

Hence the given hypergraph is an edge product hypergraph.

3 Edge Product Number of a Hypergraph

In this section we introduced the notion of an edge product number of a hypergraph with suit-
able examples. Later we obtained the edge product number of a star hypergraph, open chain
hypergraphs and closed chain hypergraphs of different sizes.

Definition 3.1. The smallest number r such thatH∪rK2 is an edge product hypergraph is called
the edge product number of a hypergraph H. Which is denoted by EPn(H).

Example 3.2. Let H(V,E) be a hypergraph, where V (H) = {v1, v2, v3, v4, v5} and E(H) =
{e1, e2}. In which the edges of H are defined as follows: e1 = {v1, v2, v3, v4}, e2 = {v1, v2, v5}.
Now consider the hypergraph H ∪K2 with vertex set

V = {v1, v2, v3, v4, v5} ∪ {w1, w2}.

E = {e1, e2} ∪ {e3} where e1 = {v1, v2, v3, v4}, e2 = {v1, v2, v5}, e3 = {w1, w2}.
Define the edge function f : E → P by f(e1) = 2, f(e2) = 7, f(e3) = 14 The edge product

function F of f is defined by, F (v1) = 14, F (v2) = 14, F (v3) = F (v4) = 2, F (v5) = 7,
F (w1) = F (w2) = 14. Hence H ∪K2 is an edge product hypergraph and EPn(H) = 1.

For any connected hypergraphH, EPn(H) ≥ 1. Let EPn(H) = r. An edge function f : E →
P and its corresponding edge product function F that makesH∪rK2 an edge product hypergraph
are called an optimal edge function and optimal edge product function of H respectively. It
should be noted that there can be many optimal functions for a given hypergraph. Let Vin and
Ein be the vertex set and edge set of H respectively and Vout and Eout be that of rK2. Then
the EPn(H)=Cardinality of the set {F (v)|v ∈ Vin and F (v) /∈ f(Ein)}. If F (Vin) ∩ f(Ein) is
empty then the function F is called an outer edge product function otherwise it is called an inner
edge product function. Therefore the range of F has at least r elements.

Theorem 3.3. The optimal edge product function F has exactly r elements if and only if it is
outer edge product function.

Observation: For a hypergraph H, if EPn(H \ v) ≤ EPn(H).

Theorem 3.4. For a hypergraphH, if EPn(H \ v) < EPn(H) then F (v)∩ f(e) is singleton, for
some e ∈ Eout.
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Proof. Let H be a hypergraph. Let EPn(H \ v) < EPn(H). Assume contrary that F (v) ∩ f(e)
is not singleton, for all e ∈ Eout Then for any e ∈ Eout, we have F (v) ∩ f(e) = {v1, v2, . . . vq},
q > 1. It follows, F (v1) = F (v2) = . . . = F (vq) = p ∈ P . Thus removing any vertex from
v1, v2, . . . , vq does not affect the edge product number of H . Hence we get, EPn(H \ v) =
EPn(H), for all v ∈ V , which is a contradiction. Therefore F (v) ∩ f(e) must be singleton, for
some e ∈ Eout.

Definition 3.5. A k-uniform connected hypergraph H is called a chain hypergraph if the edges
in H are interesting in such way that every edge in H is adjacent to at most two edges of H and
edge degree of each vertex is at most 2.

Definition 3.6. A chain hypergraph H(V,E) is called closed if every edge of H is adjacent to
exact two edges in H; otherwise it is open.

Example 3.7. LetH(V,E) be a hypergraph, where V = {v1, v2, v3, v4, v5, v6} andE = {e1, e2, e3, e4}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3}, e2 = {v2, v3, v4},
e3 = {v4, v5, v6}, e4 = {v5, v6, v1}.

H(V,E) is a chain hypergraph which is closed.

Theorem 3.8. The edge product number of a star hypergraph H(x) is one.

Proof. LetH(x) be a star hypergraph with center x and v1
i , v

2
i , . . . , v

si
i be the pendant vertices in

ei, for 1 ≤ i ≤ m, where si ∈ N denotes the number of pendant vertices in ei. Let p1× p2× p3×
. . .× pm = b. Consider the hypergraph H ∪K2 with vertex set

V = {x, v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
m, v

2
m, . . . , v

sm
m }

∪ {w1, w2}, si ∈ N, for i = 1, 2, . . . ,m.

and edge set
E = {e1, e2, . . . , em} ∪ {em+1}

where ei = {x, v1
i , v

2
i , . . . , v

si
i }, for 1 ≤ i ≤ m, em+1 = {w1, w2}. The set of all elements of P

are {p1, p2, . . . , pm, b}. Define the edge function f : E → P by f(ei) = pi, for 1 ≤ i ≤ m and
f(em+1) = b. Then the edge product function F of f will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = pi, for 1 ≤ i ≤ m,

si ∈ N and
F (x) = b

F (w1) = F (w2) = b.

Clearly, the range of F is P and if f(e1)×f(e2)×. . .×f(eq) ∈ P , for some edges e1, e2, . . . , eq ∈
E then all the edges e1, e2, . . . , eq are incident to a vertex x ∈ V . HenceH∪K2 is an edge product
hypergraph. Hence the proof.

Here we use the notation vi for the pendant vertex belonging to the edge ei and vi,j for the
non-pendant vertex belonging to the edge ei and ej .

Theorem 3.9. If H(V,E) is an open chain hypergraph of size 5. Then EPn(H) = 2.

Proof. Let H(V,E) be an open chain hypergraph of size 5. Let v1
i , v

2
i , . . . , v

si
i be the pendant

vertices in ei, for 1 ≤ i ≤ 5, where si ∈ N denotes the number of pendant vertices in ei and
v1
i,i+1, v

2
i,i+1, . . . , v

ri
i,i+1, for 1 ≤ i ≤ 4 be the non-pendant vertices in H, where ri ∈ N denotes

the number of non-pendant vertices in ei ∩ ei+1. Now we assume that EPn(H) = 1. Then the
hypergraph H ∪K2 is an edge product hypergraph with vertex set

V = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
5 , v

2
5 , . . . , v

s5
5 ,

v1
1,2, v

2
1,2, . . . v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3, . . . , v

1
4,5, v

2
4,5, . . . , v

r4
4,5} ∪ {w1, w2}
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and the edge set
E = {e1, e2, e3, e4, e5} ∪ {e6},

where e1 = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
1,2, v

2
1,2, . . . , v

r1
1,2},

ei = {v1
i , v

2
i , . . . , v

si
i , v

1
i−1,i, v

2
i−1,i, . . . , v

ri−1
i−1,i, v

1
i,i+1, v

2
i,i+1, . . . , v

ri
i,i+1}, for 1 ≤ i ≤ 4, e5 =

{v1
5 , v

2
5 , . . . , v

s5
5 , v

1
4,5, v

2
4,5, . . . , v

r4
4,5}, e6 = {w1, w2}. Let the elements of P are {p1, p2, p3, p4, p5, b}.

The mapping f : E → P is an optimal edge function and F is the optimal edge product function
of f . Let the optimal edge function f is defined by f(ei) = pi, for 1 ≤ i ≤ 5 and f(e6) = b.
Then the optimal edge product function F of f will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = pi, for 1 ≤ i ≤ 5

F (v1
i,i+1) = F (v2

i,i+1) = . . . = F (vrii,i+1) = pipi+1 = ti say , for 1 ≤ i ≤ 4

F (w1) = F (w2) = b.

Since pipi+1 6= pi+1pi+2. Hence we have, t1 6= t2, t2 6= t3, t3 6= t4. Now the edges e1 and e5 are
adjacent to only one edge inH. So t2 can be f(e1) = p1 and t3 can be f(e5) = p5. Also the range
of function F is in P , it follows t1 = t4 = b, t2 = p1 and t3 = p5. Therefore p1p2 = p4p5, t2 = p1
and t3 = p5 that is t2p2 = p4t3, p2p3p2 = p4p3p4 ⇒ p2 = p4. This contradicts the assumption
that the elements of P are distinct. Hence EPn(H) > 1. The edge function given in Example
3.10 shows that EPn(H) = 2.

Example 3.10. Let H(V,E) be an open chain hypergraph of size 5, Then H ∪ 2K2 is an edge
product hypergraph with the vertex set V = {v1, v2, . . . , v13}∪ {w1, w2, w3, w4} and the edge set
E = {e1, e2, e3, e4, e5} ∪ {e6, e7}. In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v2, v3, v4, v5}, e3 = {v5, v6, v7, v8},
e4 = {v6, v7, v9, v10}, e5 = {v10, v11, v12, v13}, e6 = {w1, w2}, e7 = {w3, w4}.

Define the edge function f : E → P by

f(e1) = 28, f(e2) = 22, f(e3) = 27, f(e4) = 23,

f(e5) = 26, f(e6) = 210, f(e7) = 29.

Example 3.11. Let H(V,E) be an open chain hypergraph of size 6, Then H ∪ K2 is an edge
product hypergraph.

Figure 1. Example: 3.11

Theorem 3.12. If H(V,E) is an open chain hypergraph of size m ≥ 7. Then EPn(H) = 2.
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Proof. Let H(V,E) be an open chain hypergraph of size m ≥ 7. Let v1
i , v

2
i , . . . , v

si
i be the

pendant vertices in ei, for i = 1, 2, . . . ,m, where the number si ∈ N denotes the number of
pendant vertices in ei and v1

i,i+1, v
2
i,i+1, . . . , v

ri
i,i+1, for i = 1, 2, . . . ,m − 1, be the non-pendant

vertices inH, where the number ri ∈ N denotes the number of non-pendant vertices in ei ∩ ei+1.
Now let us assume that EPn(H) = 1. Then the hypergraphH∪K2 is an edge product hypergraph
with the vertex set

V = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
m, v

2
m, . . . , v

sm
m ,

v1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3, . . . , v

1
m−1,m, v

2
m−1,m, . . . , v

rm−1
m−1,m} ∪ {w1, w2}

and edge set
E = {e1, e2, . . . , em} ∪ {em+1},

where e1 = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
1,2, v

2
1,2, . . . , v

r1
1,2},

ei = {v1
i , v

2
i , . . . , v

si
i , v

1
i−1,i, v

2
i−1,i, . . . , v

ri−1
i−1,i, v

1
i,i+1, v

2
i,i+1, . . . , v

ri
i,i+1}, for 2 ≤ i ≤ m− 1, em =

{v1
m, v

2
m, . . . , v

sm
m , v1

m−1,m, v
2
m−1,m, . . . , v

rm−1
m−1,m}, em+1 = {w1, w2}. The set of all elements of

P are {p1, p2, . . . , pm, b}. The mapping f : E → P is an optimal edge function and F is the
optimal edge product function of f . Let the optimal edge function f is defined by, f(ei) =
pi, 1 ≤ i ≤ m and f(em+1) = b. Then the optimal edge product function F of f will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = pi, 1 ≤ i ≤ m

F (v1
i,i+1) = F (v2

i,i+1) = . . . = F (vrii,i+1) = pipi+1 = ti say , 1 ≤ i ≤ m− 1

F (w1) = F (w2) = b.

Since pipi+1 6= pi+1pi+2, hence we have t1 6= t2, t2 6= t3, . . . , tm−2 6= tm−1. Further according to
the definition, the range of F is in P , so t2 can be f(e1) = p1 and tm−2 can be f(em) = pm. But
we obtain t3 = t4 for some m ≥ 7, which is a contradiction. Hence EPn(H) ≥ 2, for m ≥ 7.
Now consider the hypergraph H ∪ 2K2 with the vertex set

V = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
m, v

2
m, . . . , v

sm
m ,

v1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3, . . . , v

1
m−1,m, v

2
m−1,m, . . . , v

rm−1
m−1,m} ∪ {w1, w2, w3, w4}

and the edge set
E = {e1, e2, . . . , em} ∪ {em+1, em+2}.

Then there may arise two cases

Case-1: m is odd: Consider, m = 2c+ 1, for all c ≥ 3. Let A = c2 + 1 + c(c+1)
2 and the elements

of P = {2c+j : 1 ≤ j ≤ c} ∪ {2A+k : 0 ≤ k ≤ c} ∪ {2A+2c, 2A+2c+1}. We define the
edge function f : E → P as follows: f(e1) = 2A+c, f(e2i) = 2c+i, for 1 ≤ i ≤ c,
f(e2i+1) = 2A+c−i, for 1 ≤ i ≤ c, f(em+1) = 2A+2c, f(em+2) = 2A+2c+1. Then edge
product function F of f is

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = f(ei), for 1 ≤ i ≤ m

F (v1
2i−1,2i) = F (v2

2i−1,2i) = . . . = F (v
r2i−1
2i−1,2i) = f(e2i−1)× f(e2i)

= 2A+c−i+1 × 2c+i = 2A+2c+1 = f(em+2), for 1 ≤ i ≤ c

F (v1
2i,2i+1) = F (v2

2i,2i+1) = . . . = F (vr2i
2i,2i+1) = f(e2i)× f(e2i+1)

= 2c+i × 2A+c−i = 2A+2c = f(em+1), for 1 ≤ i ≤ c

F (w1) = F (w2) = 2A+2c

F (w3) = F (w4) = 2A+2c+1.

Clearly the F (v) = P . Now the set P of labels which we have chosen is the union of
three sets namely P1 = {2c+1, 2c+2, . . . , 2c+c}, P2 = {2A, 2A+1, . . . , 2A+c} and P3 =
{2A+2c, 2A+2c+1} such that P = P1 ∪ P2 ∪ P3 and we observe following properties:
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a. 2c+1 × 2c+2 = 22c+3 > 22c

b. product of all elements of P1 = 2c+1 × 2c+2 × . . .× 22c = 2c2+ c(c+1)
2 < 2A < 2A+2c <

2A+2c+1

c. 2c+1 × 2A > 2A+c.

d. 2c+1 × 2c+2 × 2A > 2A+2c+1 that is product of two smallest elements of P1 and the
smallest element of P2 is greater than largest element of P3

e. 2A×2A+1 > 2A+2c+1 that is the product of two smallest elements of P2 is greater than
largest element of P3

f. 2c+1× 2A+2c > 2A+2c+1 that is product of the smallest element of P1 and the smallest
element of P3 is greater than the largest element of P3.

Hence from above we conclude that, If the product of a collection of more than one element
of P is in P then the collection consists of exactly two elements with one from P1 and other
from P2 with the product being in P3. And for that collection of two elements, we have
the corresponding edges incident to a vertex v ∈ V . Hence H ∪ 2K2 is an edge product
hypergraph and its edge product number is 2.

Case-2: m is even:
consider m = 2c, for all c ≥ 4. Let A = c2 + c(c+1)

2 .
The elements of P = {2c−1+j : 1 ≤ j ≤ c} ∪ {2A+j : 1 ≤ j ≤ c} ∪ {2A+2c−1, 2A+2c}.
Define the edge function f : E → P by, f(e2i) = 2c−1+i, for 1 ≤ i ≤ c, f(e2i−1) =
2A+c+1−i, for 1 ≤ i ≤ c. f(em+1) = 2A+2c−1, f(em+2) = 2A+2c. Then edge product
function F of f will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = f(ei), for 1 ≤ i ≤ m

F (v1
2i−1,2i) = F (v2

2i−1,2i) = . . . = F (v
r2i−1
2i−1,2i) = f(e2i−1)× f(e2i)

= 2A+c+1−i × 2c−1+i = 2A+2c = f(em+2), for 1 ≤ i ≤ c

F (v1
2i,2i+1) = F (v2

2i,2i+1) = . . . = F (vr2i
2i,2i+1) = f(e2i)× f(e2i+1)

= 2c−1+i × 2A+c−i = 2A+2c−1 = f(em+1), for 1 ≤ i ≤ c

F (w1) = F (w2) = f(em+1) = 2A+2c−1

F (w3) = F (w4) = f(em+2) = 2A+2c.

Clearly the range of an edge product function F is the elements of P and the rest of the
proof is similar to the previous case.

Example 3.13. Let H(V,E) is an open chain hypergraph of size 7. Then H ∪ 2K2 is an edge
product hypergraph.

Theorem 3.14. If H(V,E) is a closed chain hypergraph. Then EPn(H) ≥ 2.

Proof. Without loss of generality, let us consider the closed chain hypergraph of smallest size.
LetH(V,E) be a closed chain hypergraph of size 3. Suppose EPn(H) = 1. Then the hypergraph
H ∪K2 is an edge product hypergraph with vertex set

V = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , v

1
3 , v

2
3 , . . . , v

s3
3 ,

v1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3 . . . , v

r2
2,3, v

1
3,1, v

2
3,1, . . . , v

r3
3,1} ∪ {w1, w2}

and the edge set
E = {e1, e2, e3} ∪ {e4}
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Figure 2. Example: 3.13

where

e1 = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
3,1, v

2
3,1, . . . , v

r3
3,1},

e2 = {v1
2 , v

2
2 , . . . , v

s2
2 , v

1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3},

e3 = {v1
3 , v

2
3 , . . . , v

s3
3 , v

1
2,3, v

2
2,3, . . . , v

r2
2,3, v

1
3,1, v

2
3,1, . . . , v

r3
3,1},

e4 = {w1, w2}.

Let the optimal edge function f : E → P defined by f(ei) = pi, for 1 ≤ i ≤ 3 and f(e4) = b.
where P = {p1, p2, p3, b}. Then optimal edge product function F of f will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = pi, for 1 ≤ i ≤ 3

F (v1
i,i+1) = F (v2

i,i+1) = . . . = F (vrii,i+1) = pipi+1 = ti say, for 1 ≤ i ≤ 2

F (v1
3,1) = F (v2

3,1) = . . . = F (vr3
3,1) = p3p1 = t3,

F (w1) = F (w2) = b.

Since pipi+1 6= pi+1pi+2, we have t1 6= t2, t2 6= t3. Now t1 can be f(e3) = p3. Since range of F
is in P , it follows t1 = p3, t2 = t3 = b, a contradiction. Hence EPn(H) ≥ 2.

Example 3.15. Let H(V,E) be a closed chain hypergraph of size 3. Then EPn(H) = 2.

Theorem 3.16. If H(V,E) is a closed chain hypergraph of size m ≥ 4. Then EPn(H) = 3.

Proof. Let H(V,E) be a closed chain hypergraph of size m ≥ 4. By Theorem 3.14, EPn(H) ≥
2. Now let us assume that EPn(H) = 2. Then the hypergraph H ∪ 2K2 is an edge product
hypergraph. Consider the hypergraph H ∪ 2K2 with vertex set

V = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
m, v

2
m, . . . , v

sm
m ,

v1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3, . . . , v

1
m−1,m, v

2
m−1,m, . . . ,

v
rm−1
m−1,m, v

1
m,1, v

2
m,1, . . . , v

rm
m,1} ∪ {w1, w2, w3, w4}

and edge set
E = {e1, e2, . . . , em} ∪ {em+1, em+2},

where e1 = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
m,1, v

2
m,1, . . . , v

rm
m,1},

ei = {v1
i , v

2
i , . . . , v

si
i , v

1
i−1,i, v

2
i−1,i, . . . , v

ri−1
i−1,i, v

1
i,i+1, v

2
i,i+1, . . . , v

ri
i,i+1}, for 2 ≤ i ≤ m− 1,

em = {v1
m, v

2
m, . . . , v

sm
m , v1

m−1,m, v
2
m−1,m, . . . , v

rm−1
m−1,m, v

1
m,1, v

2
m,1, . . . , v

rm
m,1},

em+1 = {w1, w2}, em+3 = {w3, w4}.We prove two cases of theorem separately.
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Figure 3. Example: 3.15

Case-1 m is even: Consider m = 2c, for all c ≥ 2. Let the optimal edge function is defined by,
f(ei) = pi, for 1 ≤ i ≤ m and f(em+1) = b1, f(em+3) = b2, where P = {p1, p2, p3 . . . , pm, b1, b2}.
Then the optimal edge product function will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = pi, for1 ≤ i ≤ m

F (v1
i,i+1) = F (v2

i,i+1) = . . . = F (vrii,i+1) = pipi+1 = ti say, for 1 ≤ i ≤ m− 1

F (v1
2c,1) = F (v2

2c,1) = . . . = F (vr2c
2c,1) = p2c × p1 = t2c

F (w1) = F (w2) = b1

F (w3) = F (w4) = b2.

Since pipi+1 6= pi+1pi+2, we have ti 6= ti+1, for 1 = 1, 2, . . . ,m−1 and t2c 6= t1. It follows,

t2c = t2 = t4 = . . . = t2c−2

and
t1 = t3 = t5 = . . . = t2c−1

that is
p2c × p1 = p2 × p3 = p4 × p5 = . . . = p2c−2 × p2c−1,

p1 × p2 = p3 × p4 = p5 × p6 = . . . = p2c−1 × p2c

p2c

p2
=
p2

p4
=
p4

p6
= . . . =

p2c−2

p2c
.

Suppose the last term p2c−1
p2c

> 20, then we get,

p2c > p2 > p4 . . . > p2c−2 > p2c,

a contradiction. Hence the hypergraph H∪ 2K2 is not an edge product hypergraph. There-
fore EPn(H) ≥ 3.

Now consider the hypergraph H ∪ 3K2. Let

V = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
m, v

2
m, . . . , v

sm
m ,

v1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3, . . . ,

v1
m−1,m, v

2
m−1,m, . . . , v

rm−1
m−1,m, v

1
m,1, v

2
m,1, . . . , v

rm
m,1} ∪ {w1, w2, w3, w4, w5, w6}
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and E = {e1, e2, . . . , em, } ∪ {em+1, em+2, em+3}.
Let A = c2 + c(c+1)

2 . The elements of

P = {2c+i : 1 ≤ i ≤ c} ∪ {2A+i : 1 ≤ i ≤ c} ∪ {2A+c+2, 2A+2c+1, 2A+2c+2}

Define the edge function f : E → P by

f(e2i−1) = 2c+i, for 1 ≤ i ≤ c,

f(e2i) = 2A+c+1−i, for 1 ≤ i ≤ c− 1.

f(e2c) = 2A+1,

f(em+1) = 2A+c+2,

f(em+2) = 2A+2c+1,

f(em+3) = 2A+2c+2.

Then the edge product function F of f will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = f(ei), for 1 ≤ i ≤ m

F (v1
2i,2i+1) = F (v2

2i,2i+1) = . . . = F (vr2i
2i,2i+1) = f(e2i)× f(e2i+1)

= 2A+c+1−i × 2c+i+1 = 2A+2c+2 = f(em+2), for 1 ≤ i ≤ c− 1

F (v1
2i−1,2i) = F (v2

2i−1,2i) = . . . = F (v
r2i−1
2i−1,2i) = f(e2i−1)× f(e2i)

= 2c+i × 2A+c+1−i = 2A+2c+1 = f(em+2), for 1 ≤ i ≤ c− 1

F (v1
2c,1) = F (v2

2c,1) = . . . = F (vr2c
2c,1) = f(e2c)× f(e1)

= 2A+1 × 2c+1 = 2A+c+2 = f(em+1)

F (v1
2c−1,2c) = F (v2

2c−1,2i) = . . . = F (vr2c
2c−1,2i) = f(e2c−1)× f(e2c)

= 22c × 2A+1 = 2A+2c+1 = f(em+2)

F (w1) = F (w2) = f(em+1) = 2A+c+2

F (w3) = F (w4) = f(em+2) = 2A+2c+1

F (w5) = F (w6) = f(em+3) = 2A+2c+2.

Clearly, the range of F is P . Now the set P of labels which we have chosen is the
union of three sets namely P1 = {2c+1, 2c+2, . . . , 2c+c}, P2 = {2A+1, 2A+2, . . . , 2A+c} and
P3 = {2A+c+2, 2A+2c+1, 2A+2c+2} such that P = P1 ∪ P2 ∪ P3 and we have the following
observations:

a. 2c+1 × 2c+2 > 22c

b. 2c+1 × 2c+2 × . . .× 2c+c < 2A+1

c. 2c+1 × 2A+1 = 2A+c+2.

d. 2c+1 × 2c+2 × 2A+1 > 2A+2c+2 that is product of two smallest elements of P1 and one
smallest element of P2 is greater than largest element of P3.

e. 2A+1 × 2A+2 > 2A+2c+2 that is the product of two smallest elements of P2 is greater
than largest element of P3.

f. 2c+1 × 2A+c+2 > 2A+2c+2 that is product of smallest element of P1 and the smallest
element of P3 is greater than the largest element of P3.

g. 2c+1 × 2A+c = 2A+2c+1.



On Edge Product Number of Hypergraph 283

Hence from above observations and after verifying all the possibilities of product of two or
more labels of edges is in P , we conclude that, if the product of a collection of more than
one element of P is in P then the collection consists of exactly two elements with one from
P1 and other from P2 with the product being in P3 . And for that collection of two elements,
we have the corresponding edges incident to a vertex v ∈ V . Hence H ∪ 3K2 is an edge
product hypergraph and EPn(H) = 3

Case-2 m is odd: Consider m = 2c+ 1 , for all c ≥ 2.
Consider the hypergraph H ∪ 2K2. Let the optimal edge function f is defined by, f(ei) =
pi, 1 ≤ i ≤ m and f(em+1) = b1, f(em+3) = b2, where P = {p1, p2, . . . , pm, b1, b2}. Then
the optimal edge product function will be

F (v1
i ) = F (v2

i ) = . . . = F (vsii ) = pi, for 1 ≤ i ≤ m

F (v1
i,i+1) = F (v2

i,i+1) = . . . = F (vrii,i+1) = pipi+1 = ti say, for 1 ≤ i ≤ m− 1

F (v1
2c+1,1) = F (v2

2c+1,1) = . . . = F (vr2c+1
2c+1,1) = p2c+1 × p1 = t2c+1

F (w1) = F (w2) = b1.

F (w3) = F (w4) = b2.

Since pipi+1 6= pi+1pi+2, we get ti 6= ti+1, for 1 = 1, 2, . . .m − 1 and t2c+1 6= t1. It
follows,

t1 = t3 = t5 = . . . = t2c+1

t2 = t4 = t6 = . . . = t2c.

But t2c+1 = t1 ⇒ p2c+1 × p1 = p1 × p2, which is a contradiction. Thus the hypergraph
H ∪ 2K2 is not an edge product hypergraph. Hence EPn(H) ≥ 3. Now we consider the
hypergraph H ∪ 3K2. Let

V (H) = {v1
1 , v

2
1 , . . . , v

s1
1 , v

1
2 , v

2
2 , . . . , v

s2
2 , . . . , v

1
m, v

2
m, . . . , v

sm
m ,

v1
1,2, v

2
1,2, . . . , v

r1
1,2, v

1
2,3, v

2
2,3, . . . , v

r2
2,3, . . . , v

1
m−1,m, v

2
m−1,m, . . . ,

v
rm−1
m−1,m, v

1
m,1, v

2
m,1, . . . , v

rm
m,1} ∪ {w1, w2, w3, w4, w5, w6}

and E(H) = {e1, e2, . . . , em} ∪ {em+1, em+2, em+3}. The set of all elements of

P = {2a−1+i : 1 ≤ i ≤ c} ∪ {2b+c−1−i : 1 ≤ i ≤ c− 1}∪

{2 a+b
2 , 2

a+b
2 +c−1} ∪ {2a+ a+b

2 +c−1, 2a+b+c−2, 2a+b+c−1},

where a = c+ 2, b = 3c2 + 8c+ 8. Define the edge function f : E → P by

f(e2i−1) = 2a−1+i, for 1 ≤ i ≤ c,

f(e2i) = 2b+c−1−i, for 1 ≤ i ≤ c− 1,

f(e2c) = 2
a+b

2 ,

f(e2c+1) = 2
a+b

2 +c−1,

f(em+1) = 2a+ a+b
2 +c−1,

f(em+2) = 2a+b+c−2,

f(em+3) = 2a+b+c−1.

The rest of the proof is similar to the previous case. Hence H ∪ 3K2 is an edge product
hypergraph and EPn(H) = 3 for all m ≥ 3.

Example 3.17. Let H(V,E) be a closed chain hypergraph of size 6. Then EPn(H) = 3.
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Figure 4. Example: 3.17
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