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Abstract In this paper we introduce and study a new sequence space which is defined by
lacunary almost convergent sequence . Further some inclusion relations, several topological
properties have been considered which fill up a gap in the existing literature.

1 Introduction

Let s be the set of all sequences real or complex. By /., and ¢, we denote the Banach spaces of
bounded and convergent sequences x = () normed by ||z|| = sup,, |zx|, respectively. Let D
be the shift operator on s. That is,

Dz = {x,}>°,, D’z = {Zn}ol, e

n=1>

and so on. It is evident that D is a bounded linear operator on /s onto itself and that || D¥|| = 1
for every k.

It may be recalled that Banach limit L is a non-negative linear functional on ¢, such that L
is invariant under the shift operator, that is, L (Dz) = L (z) V& € { and that L (e) = 1 where
e=(1,1,1,...),(see, Banach [1]).

A sequence x € {, is called almost convergent if all Banach Limits of x coincide. Various
types of limits, including Banach limits, are considered in Das [1], Simons [10] and Suche-
ston [11]. Subsequently almost convergent sequences have been discussed in Duran[3], Kig[5],
Nanda [8] and Schafere[9].

Let ¢ denote the set of all almost convergent sequences. Lorentz [4] prove that

é= {a: :limd,,, (x) exists uniformly in n}

where
Tp +Tpy1 + oo + Tnym

m+ 1

dmn () =

By a lacunary 6 = (k,.); r = 0, 1,2, ... where ky = 0, we shall mean an increasing sequence
of non-negative integers with k,. — k,._; as r — oo. The intervals determined by 6 will be denoted
by I, = (ky_1, k-] and h, = k. — k1.

Recently Das and Mishra[2] have introduced the space ¢y of lacunary almost convergent
sequences as follows:

A

Co = {9: :lim¢,, (x — L) exists uniformly in n}

where

1
trn (:C) = hf Z Tk+n

" keI,

Note that in the special case where § = 2", we have ¢y = ¢.

The aim of this paper is to study a new sequence Ny, which emerges naturally from the con-
cept of almost convergence and lacunary sequence. We also consider the spaces Ny (p), which
generalize Ny in the same way as [(p) generalize [ (see [10]). We discuss a related sequence
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space. Also some matrix transformation was characterized.

Let {p,} be bounded sequence of positive real numbers. We define

o) ={z: > e

Pr converges uniformly in n }

and
No(p) = {m : supz [t |Pm < oo}.

(Here ani afterwards summation without limits runs from O to co0). If p,. = p @r all r, we write
Eg and Wz in place of Ng(p) and Ng(p) respectively. If p = 1, we write Ny, Ny for Ng(p) and
Ny(p) respectively.

_ Itis now a natural question whether Ny(p) = Ny(p). We are only able to prove that Ny (p) C
Ny(p). We have
Theorem 1.1. N (p) C Ny (p).
Proof. Suppose x € Ng(p). Then there is a constant R such that
ST ftl <1 (1.1)
r>R+1

Hence it is enough to show that, for fixed r, |¢,,|P~ is bounded, or, equivalently, that ¢,., is
bounded. It follows from (1.1) that |¢,.,| < 1 forr > R+ 1 and all n. Butif r > 2,

(hr + l)trn - hrtr—l,n = Tk, +n- (1.2)
Applying (1.2) with any fixed r > R+ 1 we deduce that z;,_,, is bounded. Hence ¢,.,, is bounded
for all . Thus the theorem is proved. O

Write M = max(1,supp,.). For z € Ny(p) define
gp(x) = sup(}_ [tya[P7) 77 (1.3)
n r

this is exist because of Theorem 1.1. We write,

Theorem 1.2. (i) Ny(p) is a complete linear topological space parnormed by g,,.

(ii)Ng(p) C Ng(q) for p; < g

Proof. It can be proved by "standart" arguments that g,, is a paranorm on Ny(p) and also, with
the paranorm topology, the space Ny(p) is complete. As one step in the proof we shall only
show that for fixed z, A\x — 0 as A — 0. If x € Ny(p), then given € > O there is a R such that,
for all r

D el <. (1.4)
r>R
Soif 0 < A <1, then
D e A2)Pr <> Jten (@) <,
r>R r>R
and since, for fixed R,
R—1
> lten(Az)[Pr =0
r=0

as A — 0, this completes proof. If p, = p for all r, then g, is a norm for p > 1 and p-norm for
0 < p < 1. To prove (ii), let z € Ng(p). Then there is an integer R such that (1.1) holds. Hence
forr > R, |t,n| < L. So that

|trn‘qr S ‘trn|pr

and this completes the proof. O
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Theorem 1.3. (i) Let inf p,. > 0. Then No (p) is a complete linear topological space para-
normed by gy,.

(“) ﬁg(p) - ﬁ@(q)forpr S qr.

Proof. (i) It can be proved by " standard " arguments. It may, however, be noted that there is an
essential difference between the proof of Theorem 1.3(7) and that of Theorem 1. 2(i). If we are

given thatr € ﬁg (p) we can not assert (1.4). We now use the assumption that in fp, > 0.
Let p = infp, > 0. Then for |\| < 1, |A[P" < |A|?, so that g,(Az) < |A|? g,(x). The result new
clearly follows.

(i1) The proof differs from that of Theorem 1. 2(ii), since we can not assert (1.1). If z € ﬁg (p),
then Y|t [P is bounded. So ¢, is bounded for all r, n; say |t,,| < S. We may suppose that

T
S > 1. Then
Z\tml‘“ < qur—pr|tm|pr < RMZHM‘M
s T T

Hence, the result follows.

2 Topological Results

In this section we discuss some topological results for Ny (p) and No (p) we now prove

Theorem 2.1. If a set B C No (p) is compact, then given ¢ > 0 there is some jo = jo(e) such
that for all n

Z'trn |Pr M<€V$EB.7>]0
r=j+1

Proof. Let e > 0 be given and for every x € No (p), let

Uz, §) = {y € L(p) : gply — 7) < §}.

Then {U(, $)},ex,(p) 1S @ open cover for B. Since B is compact, there is z',2%, .-,z € B
such that

BcC UU(#,%)

i=1

For each i, there is j; such that

Z |t7“n ‘pr ﬁ < gvforj ij
r=j+1

Let jo = mazx j;. Then
1<i<N
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(3 o)) < S for > o
r=j+1

Since x € B there is io(1 < ip < N) such that,

- _ .10 prﬁ E
(Z [trn(z —2)|P") <2'

r=j+1

Let j > jo. Then

Z Ity (2)]P) ﬁ Zmn x — z0)[Pr) M Z lton (27°)[P) ﬁ

r=j+1 r=j+1

l\)\m
IR

This completes the proof.

We now study local boundedness and 3- convexity for Ny (p). For 0 < 8 < 1, a nonvoid
subset U of a linear space is said to be absolutely 3- convex if 7,y € U and || + |u|? < 1
together imply that Ax + puy € U. A linear topological space X is said to be g-convex if every
neighbourhood of 0 € X contains an absolutely /- convex neigbourhood of 0 € X. A subset B
of X is said to be bounded if for each neigbourhood U of 0 € X there is a bounded neigbourhood
of 0 € X.

|

Theorem 2.2. Let 0 < p, < 1. Then (i) Ng(p) is locally bounded if infp, > 0, (ii) Ng(p) is j3-
convex for all B where 0 < 8 < liminf p,.

Proof. Letinfp, = 6 > 0. If x € Ny(p) there is a constant R > 0 such that for all n

Z |trn ()P < R.

For this R and given § > 0, choose an integer N > 1 such that
0~ R
N> <.
Since % < 1 and p, > 6 we have

1
Npr < N©?-
Therefore we have

R
Z|tm )P < < <0

Thus

{z:gp(x) <RC Nz : gy(x) < d}.

This completes the proof of (i). To prove (ii), let 8 € (0,liminfp, ). Then there is ny such
that 8 < p,. for r > ry. Define

o0

= sup Z |trn |B + Z |trn(x)|pr]'

r=ro+1
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Since p, < 1 and 3 < p, for r > 1, g is sub- additive and for r > 7
INPr < AP, O< A<D
and so

g(Az) <[\Pg(x), O<AI<1)

Therefore for 0 < § < 1,U = {z : g(z) < 6} is an absolutely 3- convex set and this completes
the proof.
]

3 Matrix Transformation

Let A=(a,) be an infinite matrix of complex numbers. Let X and Y be any two subsets of space
of all sequences of complex numbers. We write Ax = (A, (z)) if A, (z) =Y, anrxi converges
for each n.

If x € X implies that Ax € Y, then we say that A defines a matrix transformation from X
into Y and we denote it by A : X — Y. By (X,Y) we mean the class of matrices A such that
A: X — Y. Ifin X and Y there is some notion of limit or sum, the we write (X,Y,P) to denote
the subset of (X,Y) which preserves the limit or sum.

. . . . o=P
We now characterize some matrix transformations connecting V.

We write,
rn AJ; Z ATLth - Z CL(TL, kla T’),Ik
ZEI k
where
a(n,k,m) Z Anyi k-
ZEIT
‘We have

Theorem 3.1. Let 1 < p < co. Then A € (ll,ﬁz) if and only if

supZ|a n,k,r)|P < oo 3.1

n,k
—1
A€ (1, Ny, P) if and only if (3.1) with p=1 holds and

> aln,k,r) =1 (forall nk) (3.2)

T

—1 —1
(I1, Ny, P) is closed and convex in (11, N ).

The proof is omitted.
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