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Abstract The airline industry is currently the world’s largest mode of transportation. It fo-
cuses on a service approach to attract customers, as providing excellent service is a means to earn
customer loyalty. The goal of this research is to find the best airline in terms of service quality,
which includes tangibility, trustworthiness, and sensitivity. Pythagorean fuzzy sets (PFSs) pro-
posed by Yager [55, 56] is a significant tool for displaying ambiguous and vague information.
The goal of this investigation is to broaden application of logarithmic similarity measures under
PFSs. Novel logarithmic similarity measures for PFSs are developed. Numerical computations
have been carried out to validate our proposed measures. Application of logarithmic similarity
measures have been applied to some real-life decision-making problems of customer satisfac-
tion to airlines in India using PFSs based on PFSs. Moreover, comparison of the result for the
proposed measures has been carried out with the existing analogous similarity measures to show
the efficacy.

1 Introduction

Transportation services have become a community’s basic requirement for both daily activity
and travel. Most individuals choose air transportation for long-distance travel since it is more
efficient and effective in terms of time. Air transport can reach regions that other forms of
transportation, such as land and sea, cannot, as well as move faster and have a straight, sensible
path (Setiani [43]). The intuitionistic fuzzy sets (IFSs) presented by Atanassov [1] which is an
augmentation of fuzzy set theory suggested by Zadeh (1965) where there is membership degree
(δ) and a non-membership degree (ζ) such that δ + ζ ≤ 1. By now, there have been remarkable
outcomes on IFSs in both hypothesis and practical (Garg [11]; Hung and Yang [18]; Hwang et
al. [20, 21]; Ngan et al. [32]; Nguyen and Nguyen [33]; Peng et al. [37]; Szmidt and Kacprzyk
[47]; Thao [50]; Thao, et al. [51]; Ye [59, 60]; Zhu and Li [71]). There are instances in IFSs
when δ+ ζ ≥ 1, Pythagorean fuzzy sets (PFSs) plays a vital role in eradicating this constraint by
improving the modelling capacity of δ + ζ ≤ 1 or δ + ζ ≥ 1 such that δ2 + ζ2 + η2 = 1, where
η is the degree of indeterminacy.

The possibility of PFSs proposed by Yager [56, 57] is another apparatus to manage ambiguity
considering the membership degree, δ and non-membership degree, ζ so that the amount of the
square of every one of the membership grades and the non-membership grade is not exactly or
equivalent to one, distinct in IFSs. The beginning of PFSs radiated from IFSs of second kind as
presented by Atanassov [2]. The idea of PFSs can be utilized to describe vague data more ade-
quately and precisely than IFSs. Garg [12] introduced an improved ranking order interval valued
PFSs using TOPSIS technique. Indeed, the hypothesis of PFSs has been widely considered, as
demonstrated by various researchers (Garg [13]; Liang and Xu [26]; Peng and Yang [36]). In
association with the uses of PFSs, Rahman et al. [40] worked on some aggregation operators on
interval valued PFSs and utilized it in the decision-making process. Rahman et al. [41] proposed
a few ways to deal with multi-attribute group decision making. Overall, the possibility of PFSs
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has pulled in incredible considerations of numerous researchers, and the idea has been applied
to a few application regions viz; aggregation operators, multicriteria decision-making, informa-
tion measures and many more (Gao and Wei [10]; Rahman and Abdullah [42]; Khan et al. [23];
Yager and Abbasov [58]; Du et al. [6]; Garg [11], Yager [57]; Zhang et al. [69], Ejegwa [8]).

The description of similarity/distance measure between two objects is one of the most fasci-
nating issues in PFSs theory. A similarity measure is described to assess the information borne
by PFSs. Measures of similarity between PFSs is an essential device for decision making, pat-
tern recognition, machine learning, and image processing in recent times (Bustince et al. [3, 4];
Hung and Yang [19]; Li and Cheng [24]; Zhang and Xu [69]; Ejegwa [7]. Some formulae of
Pythagorean fuzzy information measures on similarity measures and corresponding transforma-
tion relationships were also developed (Peng et al. [37, 35]; Li et al. [25]). Similarity measures
for trigonometric function for FSs, IFSs and PFSs were also proposed (Taruna et al. [48]; Shi
and Ye [44]; Ye [60, 64]; Tian [49]; Rajarajeswari and Uma [39]; Wei and Wei [53]; Mohd and
Abdullah [29]; Immaculate et al. [22]; Mondal and Pramanik [30]). The similarity measures of
the IFSs and PFSs are widely used in various fields, comparable to the pattern recognition (Peng
and Garg [35]; Song et al. [46]; Gong [17]; Zhang et al. [70]), the clinical finding (Muthukumar
and Krishnan [31]; Son and Phong [45]; Wei et al. [52]; Hung and Wang [19]; Maoying [28]),
decision-making (Ye [61, 62, 63]; Chen et al. [5]; Xu [54]; Zhang [67]; Zhang et al. [68]; Ejegwa
[9]). However, Lu and Ye [27] offered similarity measure of IVFSs on log function.

In this article, we are exploring the resourcefulness of logarithmic similarity measures of
PFSs in the application in choose the best airline in India with respect to many crucial attributes
based on customer satisfaction. This paper is organized as follows: Section 2 introduces prelim-
inaries of FSs, IFSs and the PFSs. Section 3 comprises of the concept of proposed logarithmic
similarity measures of PFSs. We introduce logarithmic similarity measures and weighted sim-
ilarity measures of the PFSs and its numerical computations to validate our measures. Appli-
cation of the proposed measures in airline industry through PFSs is demonstrated in Section 4.
Section 5 compares the new logarithmic similarity measures with the existing similarity mea-
sure by an example. Finally, Section 6 summarizes the article and delivers directions for future
experiments.

2 Preliminaries

In this section, we bring in some basic theories related to fuzzy sets, intuitionistic fuzzy sets and
Pythagorean fuzzy sets used in the outcome.

Definition 2.1 (Zadeh [65]). A fuzzy setM in 0 is characterized by a membership function:

M = {〈u, δM(u) | u ∈ 0} (2.1)

where δM(u) : M → [0, 1] is a measure of belongingness of degree of participation of an
element u ∈ 0 inM.

Definition 2.2 (Atanassov [1]). An IFSM in 0 is given by

M = {〈u, δM(u), ζM(u)〉 | u ∈ 0}, (2.2)

where δM(u), ζM(u) :M→ [0, 1], and 0 ≤ δM(u) + ζM(u) ≤ 1, ∀ u ∈ 0. The number δM(u)
and ζM(u) represents, respectively, the participation and non-participation grade of the element
u to the set P . For each IFSM in 0, if

ηM(u) = 1− δM(u)− ζM(u), ∀ u ∈ 0. (2.3)

Then ηM(x) is the degree of indeterminacy of u to 0.

Definition 2.3 (Yager [56]). An IFSM in 0 is given by

M = {〈u, δM(u), ζM(u)〉 | u ∈ 0},

where δM(u), ζM(u) :M→ [0, 1], and with the condition

0 ≤ δ2
M(u) + ζ2

M(u) ≤ 1, ∀ u ∈ 0 (2.4)
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and the degree of indeterminacy for any PFSM and u ∈ 0 is given by

ηM(u) =
√

1− δ2
M(u)− ζ2

M(u) . (2.5)

3 Logarithmic Similarity Measures

Firstly, we recall the axiomatic preposition of similarity for Pythagorean fuzzy sets.

Proposition 3.1 (Ejegwa [7]). Let X be nonempty set and P , Q, R ∈ PFS(X). The similarity
measure Sim between P and Q is a function Sim : PFS× PFS→ [0, 1] satisfies
(P1) Boundedness: 0 ≤ Sim(P,Q) ≤ 1.
(P2) Separability: Sim(P,Q) = 1⇔ P = Q.
(P3) Symmetric: Sim(P,Q) = Sim(Q,P ).
(P4) Inequality: If R is a PFS in X and P ⊆ Q ⊆ R, then Sim(P,R) ≤ Sim(P,Q) and

Sim(P,R) ≤ Sim(Q,R).

In several circumstances, the weight of the elements xi ∈ X must be considered. For in-
stance, in decision making, the attributes usually have distinct significance, and thus ought to be
designated unique weights. As a result, we propose two weighted logarithmic similarity mea-
sures between P and Q, as follows:
Let P,Q ∈ PFS(X) such that X = {x1, x2 . . . , xn} then

SPFSL1(P,Q) =
1
n

n∑
i=1

log2

[{
2−

(|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|)
2

}]
(3.1)

SPFSL2 (P,Q)

=
1
n

n∑
i=1

log2

[{
2−

(|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|+ |η2
P (xi)− η2

Q(xi)|)
3

}]
(3.2)

SWPFSL1 (P,Q) =
1
n

n∑
i=1

ωi

[
log2

{
2−

(|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|)
2

}]
(3.3)

SWPFSL2 (P,Q)

=
1
n

n∑
i=1

ωi

[
log2

{
2−

(|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|+ |η2
P (xi)− η2

Q(xi)|)
3

}]
(3.4)

where ηP (xi) =
√

1− δ2
P (xi)− ζ2

P (xi) and ηQ(xi) =
√

1− δ2
Q(xi)− ζ2

Q(xi); ω = (ω1, ω2, . . . , ωn)
T

is the weight vector of xi (i = 1, 2, . . . , n), with ωk ∈ [0, 1], k = 1, 2, . . . , n,
∑n

k=1 ωk = 1. If
ω =

( 1
n ,

1
n , . . .

1
n

)T
, then the weighted logarithmic similarity measure reduces to proposed log-

arithmic similarity measures i.e., if we take ωk = 1, k = 1, 2, . . . , n, then SWPFSL1(P,Q) =
SPFSL1(P,Q). Similarly, it can be verified that SWPFSL2(P,Q) = SPFSL2(P,Q).

Theorem 3.2. The Pythagorean fuzzy similarity measures SPFSL1(P,Q) and SPFSL2(P,Q) de-
fined in equation (3.1)-(3.4) are valid measures of Pythagorean fuzzy similarity.

Proof. All the necessary four conditions to be a divergence measure are satisfied by the new
divergence measures as follows:

(P1) Boundedness: 0 ≤ SPFSL1(P,Q), SPFSL2(P,Q) ≤ 1
For SPFSL1(P,Q): As 0 ≤ |δ2

P (xi)− δ2
Q(xi)| ≤ 1 and 0 ≤ |ζ2

P (xi)− ζ2
Q(xi)| ≤ 1, therefore,

0 ≤ |δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)| ≤ 2
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⇒ 1 ≤ 2−
|δ2

P (xi)− δ2
Q(xi)|+ |ζ2

P (xi)− ζ2
Q(xi)|

2
≤ 2

⇒ 0 ≤ 1
n

n∑
i=1

log2

{
2−

|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|
2

}
≤ 1

Thus, 0 ≤ SPFSL1(P,Q) ≤ 1.
Measure SPFSL2(P,Q) can be proved similarly.

(P2) Separability: SPFSL1(P,Q), SPFSL2(P,Q) = 1⇔ P = Q.
For SPFST1(P,Q): For two PFSs P and Q in X = {x1, x2 . . . , xn}, if P = Q, then δ2

P (xi) =
δ2
Q(xi) and ζ2

P (xi) = ζ2
Q(xi). Thus, |δ2

P (xi)− δ2
Q(xi)| = 0 and |ζ2

P (xi)− ζ2
Q(xi)| = 0.

⇒ |δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)| = 0

⇒ log2 2 = 1

⇒ 1
n

n∑
i=1

log2 2 = 1

Therefore, SPFSL1(P,Q) = 1.
If SPFST1(P,Q) = 1, this implies,

1
n

n∑
i=1

log2

[{
2−

(|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|)
2

}]
= 1

⇒ log2

[{
2−

(|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|)
2

}]
= 1

⇒ 2−
(|δ2

P (xi)− δ2
Q(xi)|+ |ζ2

P (xi)− ζ2
Q(xi)|)

2
= 2

⇒
(|δ2

P (xi)− δ2
Q(xi)|+ |ζ2

P (xi)− ζ2
Q(xi)|)

2
= 0

Either |δ2
P (xi) − δ2

Q(xi)| = 0 or |ζ2
P (xi) − ζ2

Q(xi)| = 0. Therefore δ2
P (xi) = δ2

Q(xi) and
ζ2
P (xi) = ζ2

Q(xi). Hence P = Q.
Measure SPFSL2(P,Q) can be proved similarly.

(P3) Symmetric: SPFSL1(P,Q) = SPFSL1(Q,P ) and SPFSL2(P,Q) = SPFSL2(Q,P )
Proofs are self-explanatory and straight forward.

(P4) Inequality: If R is a PFS in X and P ⊆ Q ⊆ R, then SPFST1(P,R) ≤ SPFST1(P,Q);
SPFST2(P,R) ≤ SPFST2(Q,R) and SPFST2(P,R) ≤ SPFST2(P,Q); SPFST2(P,R) ≤ SPFST2(Q,R).
For SPFST1(P,Q): If P ⊆ Q ⊆ R, then for xi ∈ X , we have 0 ≤ δP (xi) ≤ δQ(xi) ≤ δR(xi) ≤
1 and 1 ≥ ζP (xi) ≥ ζQ(xi) ≥ ζR(xi) ≥ 0.
This implies that 0 ≤ δ2

P (xi) ≤ δ2
Q(xi) ≤ δ2

R(xi) ≤ 1 and 1 ≥ ζ2
P (xi) ≥ ζ2

Q(xi) ≥ ζ2
R(xi) ≥ 0.

This we have, |δ2
P (xi) − δ2

Q(xi)| ≤ |δ2
P (xi) − δ2

R(xi)|; |δ2
Q(xi) − δ2

R(xi)| ≤ |δ2
P (xi) − δ2

R(xi)|
and |ζ2

P (xi)− ζ2
Q(xi)| ≤ |ζ2

P (xi)− ζ2
R(xi)|; |ζ2

Q(xi)− ζ2
R(xi)| ≤ |ζ2

P (xi)− ζ2
R(xi)|.

From the above we can write,

|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ2

Q(xi)|
2

≤ |δ
2
P (xi)− δ2

R(xi)|+ |ζ2
P (xi)− ζ2

R(xi)|
2

⇒ 2−
|δ2

P (xi)− δ2
Q(xi)|+ |ζ2

P (xi)− ζ2
Q(xi)|

2
≥ 2− |δ

2
P (xi)− δ2

R(xi)|+ |ζ2
P (xi)− ζ2

R(xi)|
2

⇒ 1
n

n∑
i=1

log2

[{
2−
|δ2

P (xi)− δ2
Q(xi)|+ |ζ2

P (xi)− ζ2
Q(xi)|

2

}]

≥ 1
n

n∑
i=1

log2

[{
2− |δ

2
P (xi)− δ2

R(xi)|+ |ζ2
P (xi)− ζ2

R(xi)|
2

}]
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⇒ SPFSL1(P,R) ≤ SPFSL1(P,Q).

Similarly, SPFSL1(P,R) ≤ SPFSL1(Q,R).
Similar proofs can be made for SPFSL2(P,R) ≤ SPFSL2(P,Q) and SPFSL2(P,R) ≤ SPFSL2(Q,R).
Analogous to the proofs done above, we can also validate properties depicted in Proposition 3.1
for weighted similarity measures SWPFSL1(P,Q) and SWPFSL2(P,Q) accordingly.

3.1 Numerical Verification of the Similarity Measures

Based on the parameters suggested by Wei and Wei (2018), we verify whether proposed similar-
ity measures satisfy above four properties:

Example 3.3. Let P,Q,R ∈ PFS(X) for X = {x1, x2, x3}. Suppose
P = {〈x1, 0.6, 0.2〉, 〈x2, 0.4, 0.6〉, 〈x3, 0.5, 0.3〉},Q = {〈x1, 0.8, 0.2〉, 〈x2, 0.7, 0.3〉, 〈x3, 0.6, 0.3〉}
and R = {〈x1, 0.9, 0.1〉, 〈x2, 0.8, 0.2〉, 〈x3, 0.7, 0.1〉}.
Calculating the similarity using proposed similarity measures are as follows:

SPFSL1(P,Q) =
1
3

[
log2

{
2− (|0.62 − 0.82|+ |0.22 − 0.22|)

2

}

+ log2

{
2− (|0.42 − 0.72|+ |0.62 − 0.32|)

2

}

+ log2

{
2− (|0.52 − 0.62|+ |0.32 − 0.32|)

2

}]

SPFSL1(P,Q) =
1
3
[log2(2− 0.14) + log2(2− 0.3) + log2(2− 0.055)]

=
1
3
(2.620604) = 0.873534

SPFSL1(P,R) =
1
3

[
log2

{
2− (|0.62 − 0.92|+ |0.22 − 0.12|)

2

}

+ log2

{
2− (|0.42 − 0.82|+ |0.62 − 0.22|)

2

}

+ log2

{
2− (|0.52 − 0.72|+ |0.32 − 0.12|)

2

}]

SPFSL1(P,Q) =
1
3
[log2(2− 0.24) + log2(2− 0.4) + log2(2− 0.16)]

=
1
3
(2.373351) = 0.7911173

SPFSL1(Q,R) =
1
3

[
log2

{
2− (|0.82 − 0.92|+ |0.22 − 0.12|)

2

}

+ log2

{
2− (|0.72 − 0.82|+ |0.32 − 0.22|)

2

}

+ log2

{
2− (|0.62 − 0.72|+ |0.32 − 0.12|)

2

}]

SPFSL1(P,Q) =
1
3
[log2(2− 0.1) + log2(2− 0.1) + log2(2− 0.105)]

=
1
3
(2.774195) = 0.9247319.
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The detailed computation for the proposed measures can be summarized in the following table:

Table 1. Numerical illustration to validate proposed measures
Proposed Numerical Proposed Numerical Proposed Numerical Proposed Numerical
Measure 1 Values Measure 2 Values Measure 3 Values Measure 4 Values

SPFSL1(P,Q) 0.87353 SPFSL2(P,Q) 0.878876 SWPFSL1(P,Q) 0.289755 SWPFSL2(P,Q) 0.289369
SPFSL1(P,R) 0.79111 SPFSL2(P,R) 0.797901 SWPFSL1(P,R) 0.262383 SWPFSL2(P,R) 0.261082
SPFSL1(Q,R) 0.92473 SPFSL2(Q,R) 0.925976 SWPFSL1(Q,R) 0.308413 SWPFSL2(Q,R) 0.307646

Numerical Justification: From the above computations, it supports that
P1: 0 ≤ SPFSLj(P,Q); 0 ≤ SWPFSLj(P,Q) ≤ 1; j = 1, 2.
P2: SPFSLj(P,Q), SWPFSLj(P,Q) = 1⇔ P = Q; j = 1, 2.
P3: It follows that SPFSLj(P,Q) = SPFSLj(Q,P ) and SWPFSLj(P,Q) = SWPFSLj(Q,P ),

j = 1, 2 (because use of square and absolute value).
P4: SPFSLj(P,R) ≤ SPFSTj(P,Q) and SPFSLj(P,R) ≤ SPFSLj(Q,R).

Also, SWPFSLj(P,R)≤SWPFSLj(P,Q) and SWPFSLj(P,R)≤SWPFSLj(Q,R) ∀ j = 1, 2.

4 Application of Logarithmic Similarity Measure for Customer Preferences
in Airlines

To demonstrate the legitimacy of the logarithmic similarity measures for PFSs proposed in Sec-
tion 3, a numerical example is presented to illustrate the usage of proposed measures.

India is a rapidly expanding air transport market. Each year, the number of passengers flying
for both business and pleasure continues to rise. Flights are becoming more affordable, with
costs that are far from extravagant. As a result, there is fierce competition in the airline industry.
Airlines are always striving to improve their services, punctuality, and reach to gain a larger share
of the market.To know the best Airline in India, the civil aviation administration of India nomi-
nates four experts, Virat (E1), Rohit (E2), Jaspreet (E3) and Hardik (E4)to form a committee
to assess the six major domestic airlines. The five airlines are Airline_1(A1), Airline_2(A2),
Airline_3(A3), Airline_4(A4), Airline_5(A5) and Airline_6(A6). The alternatives are as-
sessed on Comfort(C1), On-Time performance(C2), Staff behaviour(C3), Price(C4), Fre-
quency of flights(C5) and booking and ticketing service (C6). Weight vector of the attributes is
ω = ( 0.20, 0.15, 0.18, 0.22, 0.13, 0.12). Experts are required to utilize a PFSs to express their
assessments for the above attributesCj of various airlinesAi.Thesix leading airlines are to be
evaluated by the decision-maker under the above six criteriain the following steps.

Step 1: We construct a relation between Experts and their attributes in the form of PFSs, which
is presented in Table 2.

Table 2. The relation between Experts and their attributes
Relation 1 Comfort On-time Staff Price Frequency Booking

(C1) performance behaviour (C4) of flights and ticketing
(C2) (C3) (C5) service (C6)

Virat(E1) 〈0.8, 0.1〉 〈0.6, 0.1〉 〈0.2, 0.8〉 〈0.6, 0.1〉 〈0.1, 0.6〉 〈0.5, 0.3〉
Rohit(E2) 〈0.0, 0.8〉 〈0.4, 0.4〉 〈0.6, 0.1〉 〈0.1, 0.7〉 〈0.1, 0.8〉 〈0.6, 0.2〉

Jaspreet(E3) 〈0.6, 0.1〉 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.7, 0.2〉 〈0.3, 0.4〉 〈0.1, 0.4〉
Hardik(E4) 〈0.7, 0.2〉 〈0.4, 0.3〉 〈0.6, 0.2〉 〈0.8, 0.1〉 〈0.2, 0.5〉 〈0.2, 0.6〉

Weights 0.20 0.15 0.18 0.22 0.13 0.12

Step 2: A relation between customers preferences on attributes and the leading airlines in the
form of PFSs is presented in Table 3.

Step 3: Determine the degree of similarity between A and B using tangent similarity measures
(equations 22-25). The obtained measure values are presented in Table 3-Table 6.
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Table 3. The relation between Customer preferences and the Airlines
Relation 2 Airline_1 (A1) Airline_2(A2) Airline_3(A3) Airline_4 (A4) Airline_5 (A5) Airline_6 (A6)

(C1) 〈0.4, 0.0〉 〈0.3, 0.5〉 〈0.1, 0.7〉 〈0.4, 0.3〉 〈0.1, 0.6〉 〈0.5, 0.3〉
(C2) 〈0.7, 0.1〉 〈0.2, 0.6〉 〈0.0, 0.9〉 〈0.1, 0.8〉 〈0.1, 0.8〉 〈0.6, 0.2〉
(C3) 〈0.3, 0.3〉 〈0.6, 0.1〉 〈0.2, 0.7〉 〈0.2, 0.6〉 〈0.3, 0.4〉 〈0.1, 0.4〉
(C4) 〈0.1, 0.8〉 〈0.2, 0.4〉 〈0.8, 0.0〉 〈0.2, 0.7〉 〈0.2, 0.5〉 〈0.2, 0.6〉
(C5) 〈0.3, 0.4〉 〈0.2, 0.3〉 〈0.7, 0.4〉 〈0.1, 0.5〉 〈0.5, 0.4〉 〈0.2, 0.7〉
(C6) 〈0.6, 0.2〉 〈0.8, 0.3〉 〈0.4, 0.5〉 〈0.4, 0.6〉 〈0.0., 0.3〉 〈0.1, 0.4〉

Table 4. The relation between experts’ similarity with the Airlines for SPFSL1(P ,Q)
Logarithmic Airline_1 (A1) Airline_2 (A2) Airline_3 (A3) Airline_4 (A4) Airline_5 (A5) Airline_6 (A6)

Similarity
Measure

Virat(E1) 0.826716138 0.764349501 0.751885315 0.795673374 0.750868194 0.862047255
Rohit(E2) 0.848135135 0.868166006 0.711143103 0.807763917 0.823497109 0.843246621

Jaspreet(E3) 0.852393758 0.82398362 0.806876887 0.847994985 0.847994985 0.89378884
Hardik(E4) 0.789149522 0.815021967 0.77550736 0.803013497 0.780601235 0.842014066

Table 5. The relation between experts’ similarity with the Airlines for SPFSL2(P ,Q)
Logarithmic Airline_1 (A1) Airline_2 (A2) Airline_3 (A3) Airline_4 (A4) Airline_5 (A5) Airline_6 (A6)

Similarity
Measure

Virat(E1) 0.815521371 0.781511654 0.777749802 0.804256103 0.776625956 0.856239172
Rohit(E2) 0.837350117 0.845187561 0.770974553 0.816528096 0.819131044 0.852071825

Jaspreet(E3) 0.873341386 0.83162419 0.804548506 0.869493356 0.869493356 0.907605193
Hardik(E4) 0.82652795 0.82001004 0.803315224 0.830274273 0.789372855 0.840650183

Table 6. The relation between experts’ similarity with the Airlines for SWPFSL1(P ,Q)
Logarithmic Airline_1 (A1) Airline_2 (A2) Airline_3 (A3) Airline_4 (A4) Airline_5 (A5) Airline_6 (A6)

Similarity
Measure

Virat (E1) 0.133843879 0.125728966 0.125360829 0.130739503 0.123380201 0.141179759
Rohit(E2) 0.140625672 0.145141757 0.117808357 0.135530784 0.139044335 0.139943691

Jaspreet(E3) 0.139354649 0.136770814 0.13431608 0.13886007 0.13886007 0.146885452
Hardik(E4) 0.12833178 0.135346996 0.12935157 0.129619796 0.127323377 0.13732312

Table 7. The relation between experts’ similarity with the Airlines for SWPFSL2(P ,Q)
Logarithmic Airline_1 (A1) Airline_2 (A2) Airline_3 (A3) Airline_4 (A4) Airline_5 (A5) Airline_6 (A6)

Similarity
Measure

Virat(E1) 0.132023713 0.129317789 0.129709841 0.132427479 0.128199029 0.140861244
Rohit (E2) 0.138679202 0.141623646 0.127832887 0.137130386 0.138035203 0.141543632

Jaspreet(E3) 0.14376411 0.138757403 0.134838473 0.143322367 0.143322367 0.149988348
Hardik (E4) 0.135375632 0.135992636 0.134915288 0.13558011 0.129676076 0.138087427
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Observations:

(a) Taking into an account of numerical computations of above tables, it is being determined
that for the logarithmic similarity measures SPFSL1(P,Q), SWPFSL1(P,Q), and SWPFSL2(P,Q),
Virat (E1), Jaspreet (E3) and Hardik (E4) opted Airline_6; however, Rohit (E2) prefers
Airline_2 (Table 4, 6 and 7).

(b) For the measure SPFSL2(P,Q), it is being noticed that all of them opted for Airline_6
(Table 5).

This analysis is done on the grounds that higher value of the candidates against every simi-
larity measure demonstrates the greater likelihood of having the option to choose the branch.

5 Comparative Study

To demonstrate the dominance of the proposed logarithmic similarity measures, a comparison
between the proposed similarity measures and the existing similarity measures is conducted
based on the numerical cases suggested. We first demonstratesome existing similarity measures
for the sake of comparison as defined in Table 8.

Table 8. Similarity measures proposed by various authors
Authors Similarity Measures

Peng et al. [37] Sim1 (P ,Q) = 1− 1
2n

n∑
i=1

[
|δ2
P (xi)− δ2

Q (xi) |∨ |ζ2
P (xi)− ζ2

Q (xi) |
]

Wei and Wei [53] Sim2 (P ,Q) =
1
n

n∑
i=1

cos
[π

2

(
|δ2
P (xi)− δ2

Q (xi) |∨ |ζ2
P (xi)− ζ2

Q (xi) |
)]

Sim3 (P ,Q) =
1
n

n∑
i=1

cos
[π

4

(
|δ2
P (xi)− δ2

Q (xi) |+ |ζ2
P (xi)− ζ2

Q (xi) |
)]

Sim4(P ,Q) =
1
n

n∑
i=1

wicos
[π

2

(
|δ2
P (xi)− δ2

Q(xi)|∨ |ζ2
P (xi)− ζ

2
Q(xi)|

∨|η2
P (xi)− η

2
Q(xi)|

)]
Sim5 (P ,Q) =

1
n

n∑
i=1

wicos
[π

4

(
|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ

2
Q(xi)|

+|η2
P (xi)− η2

Q(xi)|
)]

Ejegwa [7] Sim6 (P ,Q) = 1− 1
2n

n∑
i=1

[
|δP (xi)− δQ(xi)|+ |ζP (xi)− ζQ(xi)|

+|ηP (xi)− ηQ(xi)|
]

Sim7(P ,Q) = 1−
(

1
2n

n∑
i=1

[
(δP (xi)− δQ(xi))2 + (ζP (xi)− ζQ(xi))

2

+(ηP (xi)− ηQ(xi))2]) 1
2

Sim8(P ,Q) = 1− 1
2n

n∑
i=1

[|δ2
P (xi)− δ2

Q(xi)|+ |ζ2
P (xi)− ζ

2
Q(xi)|

+|η2
P (xi)− η2

Q(xi)|]

Zhang et al. [68] Sim9 (P ,Q) =
1
n

n∑
i=1

[
21−(|δ2

P (xi)−δ2
Q(xi)|∨|ζ2

P (xi)−ζ2
Q(xi)|) − 1

]
Sim10 (P ,Q) =

1
n

n∑
i=1

[
21− 1

2 (|δ
2
P (xi)−δ2

Q(xi)|+|ζ2
P (xi)−ζ2

Q(xi)|) − 1
]

Sim11 (P ,Q) =
1
n

n∑
i=1

[
21−(|δ2

P (xi)−δ2
Q(xi)|∨|ζ2

P (xi)−ζ2
Q(xi)|∨|η2

P (xi)−η2
Q(xi)|) − 1

]
Sim12 (P ,Q) =

1
n

n∑
i=1

[
21− 1

2 (|δ
2
P (xi)−δ2

Q(xi)|+|ζ2
P (xi)−ζ2

Q(xi)|+|η2
P (xi)−η2

Q(xi)|) − 1
]

Table 9 represents a comprehensive evaluation of the logarithmic similarity measures for
PFSs on some common data sets displayed in table 2 and table 3. From the numerical results
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presented in the Tables 9, comparison has been done between the similarity measures proposed
by authors shown in table 8 and the results attained using our proposed similarity measures for
PFSs. It has been noticed that the results obtained by using our proposed similarity measures are
analogous with the existing measures.

Table 9. Comparison of existing measures with the proposed similarity measures
Comparison Virat (E1) Rohit (E2) Jaspreet (E3) Hardik (E4)

Sim1 (P,Q) Airline_6 Airline_6 Airline_6 Airline_6
Sim2 (P,Q) Airline_6 Airline_6 Airline_6 Airline_6
Sim3 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
Sim4 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
Sim5 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
Sim6 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
Sim7 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
Sim8 (P,Q) Airline_6 Airline_6 Airline_6 Airline_6
Sim9 (P,Q) Airline_6 Airline_6 Airline_6 Airline_6
Sim10 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
Sim11 (P,Q) Airline_6 Airline_6 Airline_6 Airline_6
Sim12 (P,Q) Airline_6 Airline_6 Airline_6 Airline_6
SPFSL1(P,Q) Airline_6 Airline_2 Airline_6 Airline_6
SPFSL2(P,Q) Airline_6 Airline_6 Airline_6 Airline_6
SWPFSL1 (P,Q) Airline_6 Airline_2 Airline_6 Airline_6
SWPFSL2(P,Q) Airline_6 Airline_2 Airline_6 Airline_6

6 Conclusion

In recent times, numerous similarity measures have been established for measuring the level of
similarity between PFSs. Nevertheless, it appears that there have been no examinations on simi-
larity measures based of logarithmic function for PFSs. In this paper, we have offered some new
logarithmic similarity measures and weighted similarity measures which comply with the con-
ventional parameters of PFSs. We confirmed the credibility of the proposed similarity measures
through numerical computations as well. Further, we employed these similarity measures for the
application to DM problems. Also, comparative analysis of the investigated similarity measures
was performed to determine the effectiveness of the proposed measures. Recommended PFSs
for similarity measure is a significant device to address the vulnerabilities in the data in a more
productive way when contrasted with the other existing sets. These intended measures can be
applied to medical diagnosis, complex decision making and risk analysis in the future course of
action.
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