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Abstract In this paper, we present a full generalization for the power GCDQ and LCMQ
matrices defined on q-ordered gcd-closed sets over Euclidean Domains. Structure theorems,
determinants, reciprocals, inverses, and p-norms are also presented. In addition, Some examples
are given in the Euclidean domain Z[i].

1 Introduction

Let T = {t1, t2, . . . , tm} be a well ordered set ofm distinct positive integers with t1 < t2 < · · · <
tm. If r is any real number, then the power GCD matrix defined on T is (T r)m×m = (ti, tj)r,
where (ti, tj) is the greatest common divisor of ti and tj , and the power LCM matrix on T is
[T r]m×m = [ti, tj ]

r, where [ti, tj ] is the least common multiple of ti and tj . Set T is said to be
factor-closed if t ∈ T for any divisor t of ti ∈ T , and it is gcd-closed if (ti, tj) ∈ T , for all ti
and tj in T . In 1876, Smith [20] showed that if T is factor-closed then det (T ) =

m

Π
i=1
φ(ti) and

det[T ] =
m

Π
i=1
φ(ti)π(ti), where φ is Euler’s totient function and π is a multiplicative function such

that π(pk) = −p. In 1988/92, Beslin and Ligh [3, 4, 5, 6, 19] factorized the GCD and LCM
matrices if T is gcd-closed set, and computed their determinants. Later, in 1992, Borque and
Ligh [7] conjectured that the LCM matrix on a gcd-closed set is invertible. In 1996, Chun [8]
introduced the concept of power GCD and LCM matrices and gave general formulas for their
structures, determinants and inverses over the domain of natural numbers. In 1998, Hong [15, 16]
showed inductively that if T is gcd-closed and m ≤ 3, then det (T ) divides det [T ]. Otherwise, if
m ≥ 4 then there exist a gcd-closed set such that det (T ) does not divide det [T ]. In 1990, Li [18]
gave a generalization of Smith’s determinant by obtaining the value of det (T ) if T is defined
on arbitrary ordered sets of distinct positive integers. In 2009, Hong et al. [17] generalized
the power GCD matrices defined on factor-closed sets over unique factorization domains. In
1996, Haukkanen and Sillanpaa [14] studied theGCD and LCM matrices defined on lcm-closed
and gcd-closed sets. In 1997, Haukkanen [13], in his famous paper ”On Smith’s Determinant”
gave a counter example for the conjecture of Bourque-Ligh that the least common multiple
matrix on any gcd-closed set is invertible. El-Kassar et al. [9, 10, 11, 12] extended many results
concerning GCD and LCM matrices defined on factor-closed sets to arbitrary principal ideal
domains. Recently, Awad et al. [2] gave a generalization for the powerGCD and LCM matrices
defined on gcd-closed sets over unique factorization domains, where all the obtained results in
the previously published articles are considered as a special case of the presented generalization
if the unique factorization domain R is taken to be the domain of natural integers Z. Now,
since there are no measures in unique factorization domains and the p-ordering process used in
[2] is somehow complicated, so it is better to use new measures in order to make the ordering
process more clear and sharper. Moreover, it is well-known that every Euclidean domain is
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a unique factorization domain but the converse is not true. In [1], Awad et al. generalized
the Reciprocal power GCDQ matrices and power LCMQ matrices defined on arbitrary and
factor-closed q-ordered sets are presented over any Euclidean domain S with measure q(x) for
every x ∈ S, where q (x) is the norm of x defined on S. In our paper, we generalize all the
obtained results in [2] to any Euclidean domain S by modifying the Jordan totient function over
Euclidean domains with measure function q (x). First, we generalize the power GCDQ and
LCMQ matrices defined on q-ordered gcd-closed sets over any Euclidean domain S. Then,
we present complete characterizations for their decompositions, determinants, reciprocals, and
inverses. In addition, some examples in the Euclidean domain Z[i] are given.

In what follows, let S be an Euclidean domain of measure q with a complete prime residue
system P = {p1,p2, . . . , pm}, and T = {t1, t2, . . . , tm} be a set of non-zero non-associate ele-
ments in S with measure q. If {p1, p2, . . . , pi, . . .} is a well-ordered listing of all primes in P
of S that divide all the elements of T , the q-ordering <q on S is defined as follows: ti <q tj if
q(ti) < q(tj), which is a well-defined linear ordering on S. Hence, if the set T = {t1, t2, . . . , tm}
such that t1 <q t2 <q · · · <q tm, then we say that T is q-ordered. Through this paper, we denote
by E(t) to be complete set of distinct non associate divisors d of any t ∈ S, and by Jk,s (t)
on S − {0} to be the Jordan totient multiplicative function defined as follows: If x is a non-
zero element in S with the unique factorization, up to associates, x = upα1

1 pα2
2 . . . pαmm , where

αi are positive integers and u is a unit in S, then Jk,s(x) =
m∏
i=1

q[pi]k(αi−1)[q(pi)k − 1] and

q (x)
k
=

∑
d∈E(x)

Jk,s(d).

2 Preliminaries

A zero-divisor x is a non-zero element of a ring S such that there is a non-zero element y in S
with xy = 0. An integral domain is a commutative ring with unity and with no zero-divisors.
Two elements x and y of an integral domain S are said to be associates if x = uy, where u is a
unit in S.

Definition 2.1. An integral domain S is said to be an Euclidean Domain (ED), if there is an
arithmetic function d : S − {0} → N ∪ {0}, which satisfies that for every pair of non-zero
elements a and b of S

(i) d (a) ≤ d (ab)
(ii) b = aq + r, where either r = 0 or d(r) < d(a).

For example, if S = Z[i] is the ring of Gaussian integers and q : S −{0} → N ∪ {0} defined
by q (a+ bi) = a2 + b2, then S is an ED with measure q.

Definition 2.2. Let T = {t1, t2, ..., tm} be a set of non-zero non-associate elements in an ED S
with measure q, and let {p1, p2, ..., pi, ..} be an ordered listing of all primes in P of S that divide
all the elements of T . In addition, assume that {p1, p2, ..., pi, ..} has the order inherited from
the well ordering of P . The q-ordering on S is defined via the following scheme: ti <q tj if
q(ti) < q(tj).

We note that the relation <q is a well-defined linear ordering defined on S. Hence, if the set
T = {t1, t2, ..., tm} such that t1 <q t2 <q ... <q tm, then we say that T is q-ordered.

Definition 2.3. Let S be an ED of measure q, and let P = {p1, p2, ..., pm} be a complete prime
residue system of S. Define the Jordan totient multiplicative function Jk,s (t) on S − {0} as
follows: If x is a non-zero element in S with the unique factorization, up to associates, x =
upα1

1 pα2
2 ...pαmm , where pi are distinct and non associate elements in P , αi are positive integers,

and u is a unit in S, then

Jk,s(x) =
m∏
i=1

q[pi]
k(αi−1)[q(pi)

k − 1]

with Jk,s(u) = 1.
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Theorem 2.4. If S is an ED with measure q and prime residue system P , and E(x) is a complete
set of distinct non associate divisors d of x ∈ S, then

q (x)
k
=

∑
d∈E(x)

Jk,s(d).

Proof. Since Jk,s (x) is multiplicative, then f(x) =
∑

d∈E(x)

Jk,s(d) is also multiplicative, and

f(pαii ) =
∑

d∈E(p
αi
i )

Jk,s(d) = 1 + q (pi)
k(1−1)

[q(pi)
k − 1] + ...+ q (pi)

k(αi−1)
[q(pi)

k − 1]

= 1 + q (pi)
k − 1 + ...+ q (pi)

kαi − q (pi)k(αi−1)
= q (pi)

kαi = q (pαii )
k

3 Power GCDQ Matrices Defined on gcd-Closed Sets Over Euclidean
Domains

Definition 3.1. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is a q-ordered set of non-zero non-associate elements in S. Then, the rth power GCDQ matrix
defined on T is the m ×m matrix(T r)q whose ijth entries are (tij)r = q ((ti, tj))

r, where r is
any real number.

Example 3.2. T = {1, 1 + i, 2} is q-ordered set in Z[i] with the measure function q (a+ bi) =
a2 + b2. The 2nd power GCDQ matrix is

(T 2)q =

 1 1 1
1 4 4
1 4 16

 .

3.1 Factorizations of Power GCDQ Matrices Defined on gcd-Closed Sets Over
Euclidean Domains

In this section, we study the factorizations of rth power GCDQ matrices defined on gcd-closed
sets over EDs.

Theorem 3.3. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered set of non-zero non-associate elements in S. Then, the rth powerGCDQmatrix
is decomposed as (T r)q = EGrE

T .

Proof. Let D = {y1, y2, ..., yn} be the minimal gcd-closed set containing T in S, and E(x) be a
complete set of distinct non-associate divisors d of x in S. Define the n× n diagonal matrix Gr
as:

Gr = diag

 ∑
d∈E(y1),d/∈E(yu)

q(yu)<q(y1)

Jr,s(d),
∑

d∈E(y2),d/∈E(yu)

q(yu)<q(y2)

Jr,s(d), ...,
∑

d∈E(yn),d/∈E(yu)

q(yu)<q(yn)

Jr,s(d)
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and Em×n = (eij) such that eij = 1 if yj ∈ E(ti) and 0 otherwise. Then,

(EGrE
T )ij =

n∑
k=1

eik
∑

d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)ejk

=
∑

yk∈E(ti)

yk∈E(tj)

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)

=
∑

yk∈E((ti,tj))

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)

= [q(ti, tj)p]
r.

Example 3.4. Let T = {1, 1 + i, 2, 5} be a q-ordered gcd-closed set in Z[i]. Then,

EG2E
T =


1 0 0 0
1 1 0 0
1 1 1 0
1 0 0 1




1 0 0 0
0 3 0 0
0 0 12 0
0 0 0 624




1 1 1 1
0 1 1 0
0 0 1 0
0 0 0 1



=


1 1 1 1
1 4 4 1
1 4 16 1
1 1 1 625

 = (T 2)q.

Theorem 3.5. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered set of non-zero non-associate elements in S. Then, the rth powerGCDQmatrix
is decomposed into a product ofm×nmatrixGr andm×n incidence matrixBr for some positive
integer n ≥ m.

Proof. Let D = {y1, y2, ..., yn} be the minimal gcd-closed set containing T in S, and E(x) be a
complete set of distinct non-associate divisors d of x in S. Define the n× n diagonal matrix Gr
as in the above theorem, and let Br be defined as bij = 1 if gji 6= 0 and 0 otherwise. Then,

(GrBr)ij =
n∑
k=1

(gikbkj) =
∑

yk∈E(ti)

yk∈E(tj)

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)

=
∑

yk∈E((ti,tj)p)

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d) = [q(ti, tj)p]
r.

Example 3.6. Let T be defined as above, then

G2B2 =


1 0 0 0
1 3 0 0
1 3 12 0
1 0 0 624




1 1 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 =


1 1 1 1
1 4 4 1
1 4 16 1
1 1 1 625

 .
Theorem 3.7. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered set of non-zero non-associate elements in S. Then, the rth powerGCDQmatrix
is decomposed as a product of m× n matrix Gr and its corresponding transpose GTr .
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Proof. Let F be an extension of the field of fractions F of S in which Jr,s(t) has a root for every
t ∈ T , set D = {y1, y2, ..., yn} to be the smallest gcd-closed set containing T in S, and E(x) to
be a complete set of distinct non-associate divisors d of x in S. Define the m×n matrix Gr such
that gij =

√ ∑
d∈E(yj),d/∈E(yu),q(yu)<q(yj)

Jr,s(d) if yj ∈ E(ti) and 0 otherwise. Then,

(GrG
T
r )ij =

n∑
k=1

(gikgjk) =
∑

yk∈E(ti)

yk∈E(tj)

√√√√√
∑

d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)

√√√√√
∑

d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)

=
∑

yk∈E((ti,tj)p)

 ∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jr,s(d)

 = [q(ti, tj)p]
r.

Example 3.8. Let T be defined as above, then

G2G2 =


1 0 0 0
1
√

3 0 0
1
√

3
√

12 0
1 0 0

√
624




1 1 1 1
0
√

3
√

3 0
0 0

√
12 0

0 0 0
√

624

 =


1 1 1 1
1 4 4 1
1 4 16 1
1 1 1 625


3.2 Determinants of Power GCDQ Matrices Defined on gcd-Closed Sets Over

Euclidean Domains

Theorem 3.9. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered gcd-closed set of non-zero non-associate elements in S. Then, the determinant
of the rth power GCDQ defined on T in S is:

det(T r)q =
m∏
i=1

 ∑
d∈E(ti),d/∈E(tu),qtu<ti<q(ti)

Jr,s(d)

 .

Proof. Since T is gcd-closed set in S, then T ≈ D and (T r)q = EGrE
T . Hence,

det(T r)q = det(EGrET ) = det(E) det(Gr) det(ET ) = 1× det(Gr)× 1

= det(Gr) =
m∏
i=1

 ∑
d∈E(ti),d/∈E(tu),q(tu)<ti<q(ti)

Jr,s(d)

 .

Example 3.10. Let T be defined as above, then

det[(T 2)]q =
∑

d∈E(1)
d/∈E(tu)

q(tu)<q(1)

Jr,s(d)
∑

d∈E(1+i)
d/∈E(tu)

q(tu)<q(1+i)

Jr,s(d)
∑

d∈E(2)
d/∈E(tu)

q(tu)<q(2)

Jr,s(d)
∑

d∈E(5)
d/∈E(tu)

q(tu)<q(5)

Jr,s(d)

= 1× 3× 12× 624 = 22464.

Remark 3.11. Note that we may prove the above theorem by using the factorization (T r)q =
GrBr or (T r)q = GrG

T
r .

Corollary 3.12. (Beslin-ligh result) If T = {t1, t2, ..., tm} is a gcd-closed set of positive integers,

then det(T ) =
m∏
i=1

∑
d|ti, d 6|tu, tu<ti

φ(d).
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Proof. By Theorem 65, det(T r)q =
m∏
i=1

( ∑
d∈E(ti),d/∈E(tu),q(tu)<ti<q(ti)

Jr,s(d)

)
. Let r = 1 and

S = Z with q = |.|, then J1,Z = φ, where φ is Euler’s totient function. Therefore, det(T 1)|.| =
m∏
i=1

( ∑
d∈E(ti),d/∈E(tu),qtu<ti<q(ti)

J1,Z(d)

)
=

m∏
i=1

( ∑
d|ti, d 6|tu, tu<ti

φ(d)

)
.

3.3 p-Norms of the Power GCDQ Matrices Defined on gcd-Closed Sets Over
Euclidean Domains

In the following, we investigate the lp norms of any rth power GCDQ matrix defined on gcd-
closed sets over EDs.

Definition 3.13. Let S be an mn-dimensional Euclidean space domain with measure q, and let
A ∈ Sm×n. If p ∈ N, define the p-Norm to be the function that maps A to a real number ‖A‖p
such that

‖A‖p =

 m∑
i=1

n∑
j=1

(q(aij))
p

 1
p

.

Theorem 3.14. Let S be an ED with a prime residue system P and measure q, and let T =
{t1, t2, . . . , tm} be a q-ordered gcd-closed set of non-zero non-associate elements in S. Then, for
any real number r and integer p, the lp norm of the rth power GCDQ matrix is equal to:

‖(T r)q‖p =


m∑
i=1

m∑
j=1

 ∑
yk∈E((ti,tj))

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jpr,s(d)




1
p

.

Proof. Let F be any extension field of the field of fractions F of S in which
∑

d∈E(ti)

d/∈E(tu)
tu<qti

Jpr,s(d) has

pth root. Then,

‖(T r)q‖p =

 m∑
i=1

 m∑
j=1

[q(ti, tj)
r]p

 1
p

=

 m∑
i=1

 m∑
j=1

[q(ti, tj)
pr]

 1
p

=


m∑
i=1

m∑
j=1

 ∑
yk∈E((ti,tj))

 ∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

Jpr,s(d)





1
p

.

Example 3.15. Since T = {1, 1 + i, 2 + i} is gcd-closed over S = Z [i], then

∥∥(T 2)q
∥∥

3 =


3∑
i=1

3∑
j=1

∑
d∈E(ti,tj)

 ∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

J6,s(d)




1
3

= (J6,s(1) + J6,s(1) + J6,s(1) + J6,s(1) + (J6,s(1) + J6,s(1 + i))

+ J6,s(1) + J6,s(1) + J6,s(1) + (J6,s(1) + J6,s(2 + i)))
1
3

= (1 + 1 + 1 + 1 + 1 + 63 + 1 + 1 + 1 + 1 + 15624)
1
3

=
3
√

15696.
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4 Reciprocals of Power GCDQ Matrices Defined on gcd-Closed Sets over
Euclidean Domains

Definition 4.1. If T = {t1, t2, ..., tm} be a q-ordered set of non-zero non-associate elements in
an ED S with measure q, then the Reciprocal rth power GCDQ matrix defined on T over S is

the matrix 1/(T r)q whose ijth entry is
1

[q(ti, tj)]
r .

Theorem 4.2. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered any set (not necessary gcd-closed) of non-zero non-associate elements in S.
Then, the rth power ReciprocalGCDQmatrix (1/ (T r)q) is decomposed as 1/(T )q = E (1/Gr)ET .

Proof. Let D = {y1, y2, ..., yn} be the minimal gcd-closed set containing T in S, and let E(x)
be a complete set of distinct non associate divisors d of x in S. Define the n×n diagonal matrix
(1/Gr) as follows:

(1/Gr) = diag

 ∑
d∈E(y1),d/∈E(yu)

q(yu)<q(y1)

1
Jr,s(d)

,
∑

d∈E(y2),d/∈E(yu)

q(yu)<q(y2)

1
Jr,s(d)

, ...,
∑

d∈E(yn),d/∈E(yu)

q(yu)<q(yn)

1
Jr,s(d)


and E is m× n such that eij = 1 if yj ∈ E(ti) and 0 otherwise. Then,

(E (1/Gr)ET )ij =
n∑
k=1

eik
∑

d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)

ejk

=
∑

yk∈E(ti),yk∈E(tj)

∑
d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)

=
∑

yk∈E((ti,tj))

∑
d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)

= 1/ [q(ti, tj)]
r .

Example 4.3. Let T be defined as above, then

1/(T 2)q =


1 1 1 1
1 1

4
1
4 1

1 1
4

1
16 1

1 1 1 1
625



and E (1/G2)q E
T =


1 0 0 0
1 1 0 0
1 1 1 0
1 0 0 1




1 0 0 0
0 − 3

4 0 0
0 0 − 3

16 0
0 0 0 − 624

625




1 1 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 .
Theorem 4.4. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered any set (not necessary gcd-closed) of non zero non-associate elements in S.
Then, the rth power ReciprocalGCDQmatrix (1/ (T r)q) is decomposed into a product ofm×n
matrix (1/Gr) and m× n incidence matrix (1/Br) for some positive integer n ≥ m.

Proof. Let D = {y1, y2, ..., yn} be the smallest gcd-closed set containing T in S, and E(x) be a
complete set of distinct non associate divisors d of x in S. Define the m× n matrix (1/Gr) such
that gij =

∑
d∈E(yj),d/∈E(yu),q(yu)<q(yj)

1
Jr,s(d)

if yj ∈ E(ti), and 0 otherwise. Let (1/Br) be defined
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as bij = 1 if gji 6= 0 and 0 otherwise.

((1/Gr) (1/Br))ij =
n∑
k=1

(aikbkj) =
∑

yk∈E(ti),yk∈E(tj)

∑
d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)

=
∑

yk∈E((ti,tj)p)

∑
d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)

=
1

[q(ti, tj)]r
.

Example 4.5. Let T be defined as above, then

(1/G2) (1/B2) =


1 0 0 0
1 − 3

4 0 0
1 − 3

4 − 3
16 0

1 0 0 − 624
625




1 1 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 =


1 1 1 1
1 1

4
1
4 1

1 1
4

1
16 1

1 1 1 1
625

 .
Theorem 4.6. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered any set (not necessary gcd-closed) of non zero non-associate elements in S.
Then, the rth power ReciprocalGCDQmatrix (1/ (T r)q) is decomposed into a product ofm×n
matrix (1/Gr) and its corresponding transpose (1/Gr)

T .

Proof. Let F be an extension of the field of fractions F of S in which gij , defined above, has a
root for every t ∈ T and D = {y1, y2, ..., yn} be the smallest gcd-closed set containing T in S
and E(x) be a complete set of distinct non associate divisors d of x in S. Then,

((1/Gr) (1/Gr)
T
)ij =

n∑
k=1

(gikgjk)

=
∑

yk∈E(ti),yk∈E(tj)

√√√√ ∑
d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)


2

=
∑

yk∈E((ti,tj)p)

∑
d∈E(yk),d/∈E(yu),q(yu)<q(yk)

1
Jr,s(d)

=
1

[q(ti, tj)]r
.

Example 4.7. Let T be defined as above, then

(1/G2) (1/G2)
T
=


1 0 0 0

1
√
− 3

4 0 0

1
√
− 3

4

√
− 3

16 0

1 0 0
√
− 624

625




1 1 1 1

0
√
− 3

4

√
− 3

4 0

0 0
√
− 3

16 0

0 0 0
√
− 624

625



=


1 1 1 1
1 1

4
1
4 1

1 1
4

1
16 1

1 1 1 1
625

 .

4.1 Determinants of Reciprocal Power GCDQ Matrices on gcd-Closed Sets over
Euclidean Domains

Theorem 4.8. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered gcd-closed set of non-zero non-associate elements in S. Then, the determinant
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of the rth power Reciprocal GCDQ matrix 1/ (T r)q defined on T in S is equal to the product of

det(1/ (T r)q) =
m∏
i=1

 ∑
d∈E(ti),d/∈E(tu),q(tu)<q(ti)

1
Jr,s(d)

 .

Proof. Let T be a q-ordered set in S. Since T is gcd-closed set, then T ≈ D. Hence, by Theorem
4.2 we have (1/T r)q = E (1/Gr)ET , where E is a lower triangular matrix with diagonal entries
eij = 1. Therefore,

det(1/T r)q = det(E (1/Gr)ET ) = det(E) det (1/Gr) det(ET ) = det (1/Gr)

=
m∏
i=1

 ∑
d∈E(ti),d/∈E(tu),q(tu)<q(ti)

1
Jr,s(d)

 .

Example 4.9. Let T be defined as above, then

det[(T−2)]q = −
351
2500

,

and

det(1/T 2)q =
4∏
i=1

 ∑
d∈E(ti),d/∈E(tu),q(tu)<q(ti)

1
J2,s(d)


= 1×

(
−3

4

)(
− 3

16

)(
−624

625

)
= − 351

2500
.

Note that we may prove the above theorem by using the factorizations 1/ (T r)q = (1/Gr) (1/Gr)
T

and 1/ (T r)q = (1/Gr) (1/Br).

4.2 p-Norms of the Reciprocal Power GCDQ Matrices Defined on gcd-Closed Sets
Over Euclidean Domains

Theorem 4.10. Let S be an ED with a prime residue system P and measure q, and let T =
{t1, t2, . . . , tm} be a q-ordered gcd-closed set of non-zero non-associate elements in S. Then,
for any real number r and integer p, the lp norm of the rth power Reciprocal GCDQ matrix is
equal to:

‖(1/T r)q‖p =


m∑
i=1

m∑
j=1

 ∑
yk∈E((ti,tj))

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

1
Jpr,s(d)




1
p

.

Proof. Similar to the proof of Theorem 3.14.

5 Inverses of Power GCDQ Matrices on gcd-Closed Sets over Euclidean
Domains

Theorem 5.1. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered gcd-closed set of non-zero non-associate elements in S. Then, the inverse of the
rth power GCDQ matrix is (T r)−1

q = tij such that

tij =
∑

ti∈E(tk),tj∈E(tk)

 µp

(
tk
ti

)
µp

(
tk
tj

)
∑

d∈E(tk),d/∈E(tu),q(tu)<q(tk)

Jr,s(d)

 .
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Proof. Let T = {t1, t2, ..., tm} be a q-ordered gcd-closed set of non zero non associate elements
in S, then the rth power GCDQ matrix (T r)q = EGrE

T . Thus,

((T r)−1
q )ij = (EGrE

T )−1
ij =

(
(ET )−1(Gr)

−1(E)−1)
ij
=
(
(E−1)T (Gr)

−1(E)−1)
ij

=
(
UT (Gr)

−1U
)
ij
=

m∑
k=1

uki
1
gkk

ukj

=
∑

ti∈E(tk),tj∈E(tk)

µp

(
tk
ti

)
1∑

d∈E(tk),d/∈E(tu),q(tu)<q(tk)

Jr,s(d)
µp

(
tk
tj

)
.

Example 5.2. let T = {1, 1 + i, 2} be a q-ordered gcd-closed set Z [i]. Then,

(T 2)−1
q =


4
3 − 1

3 0
− 1

3
5
12 − 1

12
0 − 1

12
1
12

 .

6 Power LCMQ Matrices on gcd-Closed Sets over Euclidean Domains

6.1 Structurs of Power LCMQ Matrices on gcd-Closed Sets over Euclidean Domains

Theorem 6.1. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered gcd-closed set of non-zero non-associate elements in S. Then, the rth power
LCMQ matrix [T r]q can be decomposed, up to associates, as [T r]q = DrE (1/G)ETDr.

Proof. Let D = {y1, y2, ..., yn} be the smallest gcd-closed set containing T in S, and E(x) be
a complete set of distinct non associate divisors d of x in S. Define the n × n diagonal matrix
(1/Gr) as follows:

(1/Gr) = diag(
∑

d∈E(t1)

d/∈E(tu)

q(tu)<q(t1)

1
Jr,s(y1)

,
∑

d∈E(t2)

d/∈E(tu)

q(tu)<q(t2)

1
Jr,s(y2)

, ...,
∑

d∈E(tn)

d/∈E(tu)

q(tu)<q(tn)

1
Jr,s(yn)

).

andEm×n = (eij) such that eij = 1 if yj ∈ E(ti) and 0 otherwise. LetDr bem×m diagonal
matrix whose diagonal entries are of the form dii = q (ti)

r. Then,

(DrE (1/Gr)ETDr)ij = (Dr(1/T r)qDr) = q (ti)
r
(1/T r)ij q (tj)

r

=
q (ti)

r
q (tj)

r

[q(ti, tj)]r
= q

[
tri t

r
j

(ti, tj)r

]
= [q[ti, tj ]p]

r.

Example 6.2. let T = {1, 1 + i, 2} be a q-ordered gcd-closed set Z [i]. Then,

D2
(
1/T 2)

q
D2 =


1 0 0 0
0 4 0 0
0 0 16 0
0 0 0 625




1 1 1 1
1 1

4
1
4 1

1 1
4

1
16 1

1 1 1 1
625




1 0 0 0
0 4 0 0
0 0 16 0
0 0 0 625



=


1 4 16 625
4 4 16 2500
16 16 16 10000

625 2500 10000 625

 = [T 2]q.



40 Yahia AWAD1∗, Ragheb MGHAMES2 and Haissam CHEHADE3

6.2 Determinants of Power LCMQ Matrices on gcd-Closed Sets over Euclidean
Domains

Theorem 6.3. Let S be an ED with prime residue system P and measure q. If T = {t1, t2, ..., tm}
is any q-ordered gcd-closed set of non-zero non-associate elements in S. Then, the determinant
of the rth power LCMQ matrix [T r]q is equal to

det [T r]q =
m∏
i=1

 ∑
d∈E(yi),d/∈E(yu),q(yu)<q(yi)

1
Jr,s(ti)

 q(ti)
2r.

Proof. Let T be a q-ordered set in S. Since T is gcd- closed set, then T ≈ D. But, [T r]q =
DrE (1/Gr)ETDr and E is lower triangular matrix with diagonal entry eii = 1. Therefore,

det [T r]q = det(DrE (1/Gr)ETDr)

=
m

Π
i=1
q(ti)

r × det (1/Gr)×
m

Π
i=1
q(ti)

r

=
m∏
i=1

 ∑
d∈E(yi),d/∈E(yu),q(yu)<q(yi)

1
Jr,s(ti)

 q(ti)
2r.

Example 6.4. let T = {1, 1 + i, 2, 5} be a q-ordered gcd-closed set in Z[i].

det[T 2]q =
4∏
i=1

 ∑
d∈E(yi),d/∈E(yu),q(yu)<q(yi)

1
J2,s(ti)

 q(ti)
2×2

= (1× 1)× (−3
4
× 16)× (− 3

16
× 256)× (−624

625
× 390625)

= −224640000.

6.3 p-Norms of the Power LCMQ Matrices Defined on gcd-Closed Sets Over
Euclidean Domains

Theorem 6.5. Let S be an ED with a prime residue system P and measure q, and let T =
{t1, t2, . . . , tm} be a q-ordered gcd-closed set of non-zero non-associate elements in S. Then,
for any real number r and integer p, the lp norm of the rth power Reciprocal GCDQ matrix is
equal to:

‖[T r]q‖p =


m∑
i=1

m∑
j=1

 ∑
yk∈E((ti,tj))

∑
d∈E(yk),d/∈E(yu)

q(yu)<q(yk)

(
q (ti) q (tj)

q(ti, tj)

)pr


1
p

.

Proof. Similar to the proof of Theorem 3.14.
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