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Abstract We define a descending endomorphism of a group as an endomorphism that in-
duces a corresponding endomorphism in any homomorphic image of the group, such that the
composition of the descending endomorphism with the homomorphism equals the composition
of the homomorphism with the induced endomorphism. After proving that descending endomor-
phisms of a certain class of Abelian groups, including all finitely generated Abelian groups, are
universal power endomorphisms, we characterise the descending endomorphisms of direct prod-
ucts of groups, and thus obtain a procedure to determine all the descending endomorphisms of a
direct product using the descending endomorphisms of the direct factors. As a natural outcome
of this theory, we also obtain a characterisation of the direct products whose normal subgroups
are direct products of normal subgroups of the direct factors.

1 Introduction

One of the most fundamental and useful techniques in the study of groups, especially finite
groups, is to “descend” to a quotient group and to “lift” any results obtained back to the original
group. We encounter a problem when we attempt to apply this technique to study group endo-
morphisms – not all endomorphisms descend to quotients. That is, not every endomorphism of a
group may induce a corresponding endomorphism in a quotient group. In the language of cate-
gory theory, the map that carries groups to their endomorphism monoids is not a functor from the
category of groups and epimorphisms to the category of monoids. Motivated by this observation,
we propose a definition of descending endomorphisms in this paper, and study some of their ba-
sic properties. A natural first question is how to determine the descending endomorphisms of a
direct product in terms of the descending endomorphisms of its direct factors. We obtain a com-
plete answer to this question, and in doing so, also characterise the direct products all of whose
normal subgroups are themselves direct products of normal subgroups of the respective factors.
The same characterisation was previously obtained by Miller in [6], but the proof given there
depends on a result of Suzuki [12] regarding the direct decomposition of the lattice of subgroups
of a group. Our proof avoids this result and only uses the theory of descending endomorphisms
developed in this paper.

Literature Survey

Before proceeding to the main content, we will briefly survey some similar concepts in the
literature. Our definition of a descending endomorphism is in terms of a commutative diagram,
namely (2.1), involving two given groups and a given epimorphism between them. There are
three other variations of this idea, that can be obtained by a combination of reversing or retaining
the directions of the arrows and making them epic or monic.

If the arrows are made monic, without reversing them, then we obtain the definition of en-
domorphisms with the property that they extend to endomorphisms of any group into which
the original group is embedded. Schupp, in [10], has shown that inner automorphisms can be
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characterised as exactly those automorphisms that have this property. Pettet proved that this char-
acterisation remains valid even when the universe is restricted to certain classes of finite groups
[8]. Pettet also showed later in [9] that, interestingly, the dual of this condition characterises
inner automorphisms as well – i.e., that inner automorphisms are exactly those that can always
be lifted to groups of which the original group is a homomorphic image – which corresponds to
reversing the epic arrows in (2.1).

If we reverse the arrows in (2.1) and make them monic as well, then the endomorphism thus
defined must restrict to an endomorphism of every subgroup of the group. Such endomorphisms
are called power endomorphisms, and are well-studied [4, 1, 7]. Again, it is interesting to note
that in the case of Abelian groups, this notion coincides with that of descending endomorphisms.

In view of the characterisation of descending endomorphisms given in Lemma 2.4, another
closely related definition is that of a normal automorphism – i.e., an automorphism that bijec-
tively maps every normal subgroup to itself – first described by Lubotzky in [5]. A stronger
version of this definition has recently been studied in [11] by Stanojkovski, who defines an in-
tense automorphism as one that maps every subgroup bijectively to some conjugate of itself.

Organisation

The main content of this paper is organised into two sections. In Section 2, we define de-
scending endomorphisms of groups, establish some preliminary results showing that they are
“well-behaved”, characterise them in terms of normal subgroups, and finally characterise the
descending endomorphisms of a large class of Abelian groups. This characterisation is used
crucially in obtaining the main results of the paper.

In Section 3, we discuss the descending endomorphisms of direct products of a finite number
of groups, beginning with the observation that any descending endomorphism of the product
is a pointwise product of descending endomorphisms of the direct factors. The failure of the
converse to hold in general prompts the investigation leading to our main results (Theorems 3.6,
3.12, and 3.14), from which we obtain Miller’s result (Theorem 3.15).

2 Definitions and Preliminary Results

In this section, we define descending endomorphisms of groups and study their basic properties.

Definition 2.1. An endomorphism δ of a group G is a descending endomorphism if, for every
epimorphism ϕ : G � Q of G onto a group Q, there exists an endomorphism δ of Q such that
the diagram in (2.1) commutes.

G
δ
//

ϕ

����

G

ϕ

����

Q
δ

// Q

(2.1)

Then δ is unique and is said to be the descended endomorphism or descent of δ to Q along ϕ, or
the endomorphism induced by δ.

In other words, given a group homomorphism, any descending endomorphism of the domain
induces an endomorphism of the homomorphic image. The true usefulness of this property
comes from the fact that this induced endomorphism also inherits the descending property.

Theorem 2.2. Let G be a group, and ϕ : G� Q an epimorphism. If δ is a descending endomor-
phism of G, then its descent δ to Q is a descending endomorphism of Q.

Proof. Let ψ : Q� K be an epimorphism from Q onto any group K, and let δ be the descent of
δ to K along the epimorphism ψ ◦ ϕ. Then in the following diagram, the upper square and outer
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rectangle commute.

G
δ
//

ϕ

����

G

ϕ

����

Q
δ

//

ψ
����

Q

ψ
����

K
δ

// K

This implies that, as ϕ is surjective, the lower square also commutes, showing that δ is the
descent of δ to K along ψ. Thus, δ is a descending endomorphism of Q.

The set of all descending endomorphisms of G, which we shall denote as DesG, clearly
forms a submonoid of the endomorphism monoid EndG. When G is an Abelian group, EndG
forms a ring, and then DesG is a subring of EndG. In particular, the identity automorphism
and the trivial endomorphism (which maps every element to the identity element) are always
descending endomorphisms of any group.

The group AutG of all automorphisms of G is a subgroup of EndG. It is not hard to see that
DesG is invariant under conjugation by elements of AutG. That is, if α ∈ AutG and δ ∈ DesG,
then α ◦ δ ◦ α−1 ∈ DesG. This follows from the more general result given below.

Lemma 2.3. If G and H are isomorphic groups with an isomorphism f : G → H , and δ is a
descending endomorphism of G, then f ◦ δ ◦ f−1 is a descending endomorphism of H .

Proof. Note that f ◦ δ ◦ f−1 is an endomorphism of H , and denote it by η. As f is surjective and
η ◦ f = f ◦ δ, η is the descent of δ along f , and by Theorem 2.2, is descending.

We shall call a subgroup H of a group G invariant under an endomorphism ε of G if ε(H) ≤
H . Now, if N is a normal subgroup of G (hereafter written as N � G), and δ is a descending
endomorphism of G, then observe that δ descends to the quotient G/N (along the canonical
projection from G to G/N ) if and only if it leaves N invariant. In fact, by the First Isomorphism
Theorem, if ϕ : G � Q is an epimorphism, then Q ∼= G/ kerϕ. This gives us a characterisation
of descending endomorphisms in terms of normal subgroups.

Lemma 2.4. An endomorphism δ of a group G is a descending endomorphism of G if and only
if for every normal subgroup N of G, δ(N) ≤ N . Then the descent of δ to any quotient G/N
along the canonical projection is defined by δ(xN) = δ(x)N for all xN ∈ G/N .

Lemma 2.4 shows that in particular, all inner automorphisms and power endomorphisms are
descending endomorphisms. A power endomorphism is one that leaves all subgroups invariant
[1]. Equivalently, it is one that maps every element to an integer power of itself. A power
endomorphism is universal if it maps every element to the same power – i.e., if there exists an
integer k such that the endomorphism maps every element x of the group to xk. As all subgroups
of any Abelian group A are normal, DesA must be the set of all power endomorphisms of A. In
fact, a stronger statement holds in the case of a large class of Abelian groups.

Theorem 2.5. If A is an Abelian group satisfying any one of the following properties, then the
descending endomorphisms of A are exactly its universal power endomorphisms.

(i) A is a direct product of cyclic groups.

(ii) A has finite exponent.

(iii) A has an element of infinite order.

Proof. In each of the following cases, let δ be any descending endomorphism of A.
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(i) Let A =
∏
i∈I〈gi〉, considered as an internal direct product, and define x =

∏
i∈I gi. As A

is Abelian, there exists ni ∈ Z such that δ(gi) = gni
i , for each i ∈ I , and there exists n ∈ Z

such that δ(x) = xn. Then δ(x) =
∏
i∈I δ(gi) implies that gni

i = gni , for each i ∈ I . As all
elements of A are products of gi, i ∈ I , this implies that δ is a universal endomorphism of
A that maps every element to its nth power.

(ii) Let A have finite exponent m. Since an Abelian group of finite exponent can be expressed
as the direct sum of cyclic groups [3, Theorem 6], let A =

⊕
i∈I〈gi〉, considered as an

internal direct sum. Let j, k ∈ I , and define x =
∏
i∈I xi, where xi = gi for i = j, k,

and xi = 1 for i ∈ I \ {j, k}. As A is Abelian and has exponent m, for each i ∈ I ,
δ(gi) = gni

i , for some ni ∈ {0, . . . ,m − 1}, and δ(x) = xn, for some n ∈ {0, . . . ,m − 1}.
Then δ(x) =

∏
i∈I δ(xi) implies that nj = n = nk. Since this is true if we fix j and vary k,

we have ni = nj for all i ∈ I , and hence δ is a universal power endomorphism.

(iii) Let A be an Abelian group and x an element of infinite order in A. Then δ(x) = xn, for
some n ∈ Z. Now, for any y ∈ A, consider the restriction of δ to the subgroup 〈x, y〉. From
(i), this restriction must be a universal power endomorphism of 〈x, y〉, which implies that
δ(y) = yn. As y is arbitrary, δ is a universal power endomorphism.

We note that Theorem 2.5 implies Theorem 3.4.1 of [1], which states that any power endo-
morphism of an Abelian group is universal on every finitely generated subgroup. As mentioned
in the paragraph preceding Theorem 2.5, the statement does not hold for all Abelian groups.
Example 2.6 describes such a case.

Example 2.6. Let p be any prime and Zp∞ the Prüfer p-group, written additively. Define a map
δ on Zp∞ that maps each element x to the element x + px + p2x + · · · . Note that this is well
defined, since each x has finite order pk for some k, making pkx and later terms zero. Then δ
is an endomorphism of Zp∞ , and since it is a power map (written as a multiplication because of
additive notation), it is descending. However, it is not a universal power endomorphism.

Before concluding this section, we give an example of a descending endomorphism that is
not an inner automorphism or a power endomorphism.

Example 2.7. Consider the symmetric group S3 generated by the permutations r = (123) and
s = (12). Let δ be the endomorphism of S3 that maps r to 1 and fixes s. Then δ is neither an
inner automorphism nor a power endomorphism. The only proper, non-trivial normal subgroup
of S3 is 〈r〉, and δ(〈r〉) = 1 ≤ 〈r〉. Hence, δ ∈ DesS3.

3 Descending Endomorphisms of Direct Products of Groups

Direct products are, arguably, the simplest way of constructing larger groups from given groups,
and conversely, the simplest way of decomposing a given group into smaller groups. Given
such a decomposition, we wish to obtain information about the group by studying its direct
factors. The existing literature contains a number of results that serve this purpose. For instance,
Goursat’s lemma [2] completely determines all subgroups of a direct product of two groups in
terms of subgroups of its direct factors, and Miller gives a procedure to construct all normal
subgroups of a direct product of groups in terms of normal subgroups of its direct factors [6].

In a similar vein, we now proceed to describe all descending endomorphisms of the direct
product of two arbitrary groups. As an immediate application of the theory so developed, we ob-
tain an alternative proof of Miller’s characterisation of direct products whose normal subgroups
are themselves direct products of the respective direct factors [6].

We first define some notation that will be employed throughout this section. LetG = G1×G2
be the direct product of two groupsG1 andG2. In each statement that follows, consider the index
i as taking the values 1 and 2. Denote by πi, the canonical projection from G onto Gi. For any
δ ∈ DesG, let δ|Gi be its restriction toGi. As any normal subgroup of a direct factor is normal in
G, it follows from Lemma 2.4 that δ|Gi

is always a descending endomorphism ofGi. Thus, every
δ ∈ DesG can be written as a pointwise product of descending endomorphisms δ1 ∈ DesG1 and
δ2 ∈ DesG2, where δi = δ|Gi

.
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Definition 3.1. If δi ∈ DesGi, i = 1, 2, then the pointwise product of δ1 and δ2, denoted by
δ1×δ2, is the endomorphism of G1×G2 defined by (δ1×δ2)(x1, x2) = (δ1(x1), δ2(x2)), for each
(x1, x2) ∈ G1 ×G2.

Thus, in general, DesG1 ×G2 is a submonoid of DesG1 ×DesG2, the Cartesian product of
DesG1 and DesG2.

Let N be a fixed normal subgroup of G, and let Ni = πi(N) be its projection into Gi. Then
[G1, N1]× [G2, N2] ≤ N ≤ N1 ×N2, and all three of these subgroups are normal in G. There is
a bijection between the subgroups of G containing [G1, N1]× [G2, N2], and the subgroups of the
quotient G/([G1, N1]× [G2, N2]).

IfH is any subgroup ofG that contains [G1, N1]×[G2, N2], then with respect toN , we denote
by H the unique subgroup of G/([G1, N1] × [G2, N2]) corresponding to H under the bijection
defined by the correspondence theorem.

Explicitly, H = H/([G1, N1] × [G2, N2]), and in particular, G = G/([G1, N1] × [G2, N2]).
Moreover, H � G if and only if H � G. As N1 ×N2 is central in G, every subgroup H of G
lying between [G1, N1]× [G2, N2] and N1 ×N2 will be normal in G.

Now, G ∼= G1 × G2 via a canonical isomorphism (where Gi = Gi/[Gi, Ni]). By abuse of
notation, we may identify these two groups. Let δi be a fixed descending endomorphism of Gi.
Then the pointwise product δ1 × δ2 is an endomorphism of G, but is not necessarily descending.
However, δi descends to δi ∈ DesGi along the canonical epimorphism from Gi to Gi, and
δ1 × δ2 ∈ EndG1 × G2. Again, by abuse of notation, we identify this pointwise product with a
corresponding endomorphism of G. Thus, δ1×δ2 maps each element (x, y)[G1, N1]× [G2, N2] ∈
G to (δ1(x), δ2(y))[G1, N1]× [G2, N2].

Proposition 3.2. If δi ∈ DesGi, i = 1, 2, then δ1 × δ2 descends to any quotient of G = G1 ×G2
of the form G/(M1 ×M2) where Mi �Gi.

Proof. G/(M1×M2) ∼= (G1/M1)× (G2/M2), on which the pointwise product of the descents of
δ1 and δ2 acts as an endomorphism, and this induces a corresponding endomorphism ofG/(M1×
M2).

Remark 3.3. In Proposition 3.2, the pointwise product δ1×δ2 may not be a descending endomor-
phism of G. However, it is guaranteed to descend to quotients of the particular form mentioned.

Example 3.4. Let G = {1, h, k, hk} be the Klein 4-group. G can be written as the direct product
G = H × K where H = {1, h} and K = {1, k}. Let δ1 be the identity automorphism of H ,
and δ2 the trivial endomorphism of K. Then their pointwise product δ1× δ2 is an endomorphism
of G, and (δ1 × δ2)(hk) = δ1(h)δ2(k) = h. Both δ1 and δ2 are descending endomorphisms
of the two respective direct factors, but δ1 × δ2 is not a descending endomorphism of G, since
N = {1, hk} � G but (δ1 × δ2)(N) = {1, h} 6≤ N . However, δ1 × δ2 does descend to all the
quotients of the form G/(M1 ×M2). For example, it descends to the identity automorphism of
G/(1×K) and to the trivial endomorphism of G/(H × 1).

As a first step in simplifying the problem of determining whether a given pointwise product
of descending endomorphisms is a descending endomorphism of the direct product, we derive
the following result dealing with invariance of a given normal subgroup under such a pointwise
product.

Lemma 3.5. Let G = G1 × G2. For δ1 ∈ DesG1 and δ2 ∈ DesG2, the endomorphism δ1 × δ2
leaves N �G invariant if and only if δ1 × δ2 ∈ EndG leaves N �N1 ×N2 invariant.

Proof. Consider the following diagram, in which each epimorphism is a canonical projection.

G
δ1×δ2

//

����

G

����

G
δ1×δ2

//

����

G

����

G/N
δ1×δ2

// G/N
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From Proposition 3.2, we know that δ1 × δ2 induces the endomorphism δ1 × δ2 in G. It is
obvious (see proof of Theorem 2.2) that the outer rectangle commutes if and only if the lower
square commutes – i.e., if and only if δ1 × δ2 leaves N invariant. However, since G/N ∼= G/N
canonically, the outer rectangle commutes if and only if δ1 × δ2 leaves N invariant.

Now to determine whether δ1 × δ2 is descending – i.e., leaves all normal subgroups of G =
G1 × G2 invariant, we need to apply Lemma 3.5 to all normal subgroups of G. The first main
result of this paper shows that this can be further simplified.

Theorem 3.6. For any δ1 ∈ DesG1, δ2 ∈ DesG2, the pointwise product δ1 × δ2 is a descending
endomorphism of G1 × G2 if and only if for all Ni � Gi, (δ1 × δ2)|N1×N2

is a descending
endomorphism of N1 ×N2.

Proof. Lemma 3.5 implies that it is sufficient to check whether, for each N � G, the descent
δ1 × δ2 to G1 × G2 ∼= G/([G1, N1] × [G2, N2]) leaves N/([G1, N1] × [G2, N2]) invariant. But
each pair N1 � G1 and N2 � G2 corresponds, in general, to several N � G (namely all N with
πi(N) = Ni, i = 1, 2). For each such pair N1 and N2, the corresponding δ1 × δ2 leaves all
N � N1 × N2 invariant exactly when the restriction of δ1 × δ2 to N1 × N2 is a descending
endomorphism of N1 ×N2.

SinceN1 andN2 are Abelian, so is their direct product, and therefore (δ1×δ2)|N1×N2
being a

power endomorphism of N1×N2 is a necessary and sufficient condition for it to be descending.
When N1 and N2 are torsion, we get another equivalent condition in terms of the orders of their
elements.

Theorem 3.7. Let A = A1 ×A2 be the direct product of torsion Abelian groups A1 and A2, and
let δi ∈ DesAi, i = 1, 2. Then

(i) for each ai ∈ Ai there exists mi ∈ Z such that , δi(ai) = ami
i , i = 1, 2, and

(ii) the pointwise product δ1 × δ2 is a descending endomorphism of A if and only if for all
a1 ∈ A1, a2 ∈ A2, m1 ≡ m2 mod gcd (|a1|, |a2|).

Proof. The claim in (i) follows from the fact that A1 and A2 are Abelian. Now, for all (a1, a2) ∈
A1 × A2, (δ1 × δ2)(a1, a2) = (am1

1 , am2
2 ). But, since A1 × A2 is also Abelian, its descending

endomorphisms are exactly its power endomorphisms, and therefore, δ1 × δ2 is descending if
and only if there exists an integer m such that

m ≡ m1 mod |a1|
m ≡ m2 mod |a2|.

By a well-known generalisation of the Chinese remainder theorem, such an integer m exists if
and only if m1 ≡ m2 mod gcd (|a1|, |a2|).

The generalisations of Theorems 3.6 and 3.7 to direct products of any finite number of groups
follow by straightforward application of mathematical induction.

Theorem 3.8. Let G =
∏k
i=1 Gi be the direct product of k groups G1, . . . , Gk. Let δi ∈ DesGi,

i = 1, . . . , k, and let δ =
∏k
i=1 δi denote their pointwise product. Then δ is a descending

endomorphism ofG if and only if for allNi�Gi, i = 1, . . . , k, the restriction δ|N is a descending
endomorphism of N , where N =

∏k
i=1 (Ni/[Gi, Ni]) and δ =

∏k
i=1 δi.

Theorem 3.9. Let A =
∏k
i=1 Ai be the direct product of k torsion Abelian groups A1, . . . , Ak. If

δi ∈ DesAi, i = 1, . . . , k, then

(i) for each ai ∈ Ai there exists mi ∈ Z such that δi(ai) = ami
i , i = 1, . . . , k, and

(ii) the pointwise product δ1×· · ·×δk is a descending endomorphism ofA if and only if for every
pair i, j ∈ {1, . . . , k}, and for all ai ∈ Ai and aj ∈ Aj , mi ≡ mj mod gcd (|ai|, |aj |).

Remark 3.10. In Theorem 3.9, whenever Ai has finite exponent ni, we may replace |ai| in (ii)
by ni, thus making the condition independent of individual elements ai ∈ Ai.
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In the beginning of this section, we made the observation that DesG1 × G2 ⊆ DesG1 ×
DesG2, and Theorems 3.6 and 3.7 tell us exactly which elements of the latter are present in the
former. Now we characterise all the direct products for which this inclusion becomes an equality.

Definition 3.11 ([6]). A group G is super-perfect if [G,N ] = N for all N �G.

We note that this definition of the term super-perfect is as given in [6], and is unrelated to the
more familiar notion of superperfection appearing in group homology.

Theorem 3.12. DesG1 ×G2 = DesG1 ×DesG2 if and only if one of the following holds.

(i) G1 or G2 is super-perfect.

(ii) For all N1 �G1 and N2 �G2, N1 and N2 are torsion groups, and the order of any element
of N1 is relatively prime to that of any element of N2.

Proof. Let δi ∈ DesGi, i = 1, 2, and let N � G1 × G2. If the condition in (i) holds, then
either N1 = 1 and δ1 is the identity map, or similarly, δ2 is the identity map. In either case,
δ1 × δ2 ∈ DesN1 × DesN2, and therefore by Theorem 3.6, δ1 × δ2 ∈ DesG1 × G2. If, on the
other hand, the condition in (ii) holds, then Theorem 3.7 implies that δ1×δ2 ∈ DesN1×DesN2.

Conversely, assume that DesG1 × G2 = DesG1 × DesG2, and suppose that neither G1 nor
G2 is super-perfect.

First, observe that N1 must be a torsion group. For otherwise, by Theorem 2.5, every de-
scending endomorphism of N1 × N2 must be a universal power endomorphism. But on taking
δ1 ∈ DesG1 to be the trivial endomorphism and δ2 ∈ DesG2 to be the identity endomorphism,
we find that δ1 × δ2 ∈ EndN1 ×N2 is not a universal power endomorphism, which implies (by
Theorem 3.6) that δ1× δ2 /∈ DesG1×G2, contradicting our assumption. Similarly, N2 must also
be torsion.

Now, since N1 and N2 are torsion Abelian groups, let ai ∈ Ni and let ni = |ai|, i = 1, 2.
We must show that n1 and n2 are relatively prime. Again, take δ1 and δ2 to be, respectively, the
trivial and identity endomorphisms of G1 and G2. Then from Theorem 2.5, δi(ai) = ami

i , for
some mi ∈ Z. Clearly,

m1 ≡ 0 mod n1 (3.1)

m2 ≡ 1 mod n2. (3.2)

By Theorem 3.6, δ1 × δ2 ∈ DesG1 ×G2 implies that δ1 × δ2 ∈ DesN1 ×N2, which implies (by
Theorem 3.7) that

m1 ≡ m2 mod gcd(n1, n2). (3.3)

From (3.1), (3.2), and (3.3), gcd(n1, n2) = 1.

As descending endomorphisms are those that leave all normal subgroups invariant, it is nat-
ural to seek an alternative characterisation of direct products G1 ×G2 such that DesG1 ×G2 =
DesG1 × DesG2 in terms of normal subgroups, without involving quotient groups. There in-
deed exists a simple and elegant characterisation of this kind, in terms of decomposable normal
subgroups, defined below.

Definition 3.13 ([6]). A normal subgroupN ofG1×G2 isG1-G2 decomposable ifN = N1×N2,
where Ni �Gi, i = 1, 2.

Observe that Ni in this definition is necessarily the projection of N onto the direct factor Gi.

Theorem 3.14. DesG1×G2 = DesG1×DesG2 if and only if every normal subgroup ofG1×G2
is G1-G2 decomposable.

Proof. Let N �G1 ×G2, and let Ni = πi(N), be the projection of N onto Gi, i = 1, 2. Let idi
be the identity automorphism and εi the trivial endomorphism of Gi, i = 1, 2.

If DesG1 × G2 = DesG1 × DesG2, then id1×ε2 ∈ DesG1 × DesG2, and therefore,
(id1×ε2)(N) = N1 × 1 ≤ N . Similarly, (ε1 × id2)(N) = 1 ×N2 ≤ N . Hence, N1 ×N2 ≤ N ,
which implies that N = N1 ×N2, showing that N is G1-G2 decomposable.

On the other hand, if N = N1 × N2, then for all δi ∈ DesGi, i = 1, 2, δ1 × δ2 leaves N
invariant, since (δ1 × δ2)(N) = δ1(N1)× δ2(N2) ≤ N1 ×N2 = N .
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Now, Miller’s result follows immediately from Theorems 3.12 and 3.14.

Corollary 3.15 ([6, Theorem 1]). Every normal subgroup of G1 ×G2 is G1-G2 decomposable if
and only if one of the following holds:

(i) G1 or G2 is super-perfect.

(ii) For all N1 �G1 and N2 �G2, N1 and N2 are torsion groups, and the order of any element
of N1 is relatively prime to that of any element of N2.

The following generalisation of the preceding results can be proved in an analogous manner.

Theorem 3.16. Let G =
∏k
i=1 Gi be the direct product of k groups G1, . . . , Gk. Then the follow-

ing are equivalent:

(i) DesG =
∏k
i=1 DesGi.

(ii) Either there exists at most one i ∈ {1, . . . , k} such that Gi is not super-perfect, or for all
i = 1, . . . , k and all Ni �Gi, Ni/[Gi, Ni] is torsion and the order of each of its elements is
relatively prime to that of every element of Nj/[Gj , Nj ] for all Nj �Gj whenever i 6= j =
1, . . . , k.

(iii) Every normal subgroup N � G is a direct product N =
∏k
i=1 Ni of normal subgroups

Ni �Gi, i = 1, . . . , k.
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