Multipliers of Hankel type transformable generalized functions

B.B.Waphare
Communicated by Deshna Loonker

MSC 2010 Classifications:46F12.
Keywords and phrases: Hankel type transformation, generalized functions, multipliers, topological space.
Acknowledgment: Author is thankful to the Editor and referee for their valuable guidance and suggestions.
Abstract In this paper the Zemanian space of Hankel type transformable functions $H_{\alpha, \beta}$ is shown to be nuclear, Schwartz, montel and reflexive. The Space O is completely characterized as the set of multipliers of $H_{\alpha, \beta}$ and $H_{\alpha, \beta}^{\prime}$.
Finally certain topologies are considered on O and continuity properties of the multiplication operation with respect to those topologies are studied.

1 Introduction

Following Zemanian [8], we introduce the space $H_{\alpha, \beta}$ which consists of all those infinitely differentiable functions $\varphi=\varphi(x)$ defined on $I=(0, \infty)$ such that

$$
\rho_{m, k}^{\alpha, \beta}(\varphi)=\sup _{x \in I}\left|x^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)\right|<\infty, m, k \in \mathbb{N},(\alpha-\beta) \geq-\frac{1}{2}
$$

Endowed with the topology generated by the family of seminorms $\left\{\rho_{m, k}^{\alpha, \beta}\right\}_{(m, k) \in \mathbb{N} \times \mathbb{N}}, H_{\alpha, \beta}$ is a Frechet Space.
This topology of $H_{\alpha, \beta}$ can also be defined by means of seminorms

$$
\tau_{m, k}^{\alpha, \beta}(\varphi)=\sup _{x \in I}\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)\right|, m, k \in \mathbb{N}, \varphi \in H_{\alpha, \beta},(\alpha-\beta) \geq-\frac{1}{2}
$$

By following the technique used in Zemanian [8], one can show that the vector space O of all those $\theta \in C^{\infty}(I)$ such that for every $k \in \mathbb{N}$ there exist $n_{k} \in \mathbb{N}, A_{k}>0$ satisfying

$$
\left|\left(x^{-1} D\right)^{k} \theta(x)\right| \leq A_{k}\left(1+x^{2}\right)^{n_{k}}, x \in I
$$

is a space of multipliers for $H_{\alpha, \beta}$. In characterizing O as the space of multipliers for $H_{\alpha, \beta}^{\prime}$, we use the reflexivity of $H_{\alpha, \beta}$, which derives from the fact, previously established that $H_{\alpha, \beta}$ is nuclear.
One can easily note that most of the properties established here for $H_{\alpha, \beta}, H_{\alpha, \beta}^{\prime}$ and O are similar to the corresponding ones for the schwartz space \mathcal{S}, its dual \mathcal{S}^{\prime} (the space of tempered distributions) and their space of multipliers O_{M}.
In this paper author is motivated by the work done by Betancor and Marrero [2].

2 Multipliers of $\boldsymbol{H}_{\alpha, \beta}$.

A function $\theta=\theta(x)$ defined on I is said to be a multiplier for $H_{\alpha, \beta}$ if the map $\varphi \rightarrow \theta \varphi$ is continuous from $H_{\alpha, \beta}$ into $H_{\alpha, \beta}$. The main object of this section is to characterize the space of multipliers of $H_{\alpha, \beta}$.

Lemma 2.1. For every $r, s \in \mathbb{R}$ the holds

$$
\frac{1+r^{2}}{1+s^{2}} \leq 2\left(1+|r-s|^{2}\right)
$$

Lemma 2.2. Let $a \in D(I)$ be such that $0 \leq a \leq 1$, supp $a=[1 / 2,3 / 2]$ and $a(1)=1$. Also, let $\left\{x_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of real numbers satisfying $x_{0}>1$ and $x_{j+1}>x_{j}+1$.
Define

$$
\begin{equation*}
\varphi(x)=x^{2 \alpha} \sum_{j=0}^{\infty} \frac{a\left(x-x_{j}+1\right)}{\left(1+x_{j}^{2}\right)^{j}}, x \in I \tag{2.1}
\end{equation*}
$$

Then $\varphi \in H_{\alpha, \beta}$.
Proof. As the functions $a\left(x-x_{j}+1\right)$ have pairwise disjoint supports, we note that the sum on the right-hand side of (2.1) is finite. Indeed, if $m, k \in \mathbb{N}$ and $x_{j}-1 / 2 \leq x \leq x_{j}+1 / 2$, we may write

$$
\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)=\left(\frac{1+x^{2}}{1+x_{j}^{2}}\right)^{m} \frac{\left(x^{-1} D\right)^{k} x^{2 \alpha+2 \beta-1} a\left(x-x_{j}+1\right)}{\left(1+x_{j}^{2}\right)^{j-m}}
$$

Now by Lemma 2.1, we conclude that $\tau_{m, k}^{\alpha, \beta}(\varphi)<\infty$, thus it shows that $\varphi \in H_{\alpha, \beta}$ as required. Thus proof is completed.

Theorem 2.3. (Characterization of multipliers of $H_{\alpha, \beta}$):
The following statements are equivalent to each other.
i. The function $\theta=\theta(x) \in C^{\infty}(I)$, and for every $k \in \mathbb{N}$ there exists $n_{k} \in \mathbb{N}$ such that $\left(1+x^{2}\right)^{-\eta_{k}}\left(x^{-1} D\right)^{k} \theta(x)$ is bounded on I.
ii. The product $\theta \varphi$ lies in $H_{\alpha, \beta}$ whenever $\varphi \in H_{\alpha, \beta}$, and the map $\varphi \rightarrow \theta \varphi$ is a continuous endomorphism of $H_{\alpha, \beta}$.
iii. The function θ is infinitely differentiable on I, for every $k \in \mathbb{N}$ and every $\varphi \in H_{\alpha, \beta}$ the function $\varphi(x)\left(x^{-1} D\right)^{k} \theta(x) \in H_{\alpha, \beta}$, and the map $\varphi(x) \rightarrow \varphi(x)\left(x^{-1} D\right)^{k} \theta(x)$ is a continuous endomorphism of $H_{\alpha, \beta}$.

Proof. By following technique used in Zemanian [8, p. 134], one can easily prove that (i) implies (ii).

To show that (ii) implies (iii) : Let us consider the function $\varphi \in H_{\alpha, \beta}$ defined by

$$
\begin{equation*}
\varphi(x)=x^{2 \alpha} e^{-x^{2}} \tag{2.2}
\end{equation*}
$$

By (ii) above,

$$
\begin{equation*}
\psi(x)=x^{2 \alpha} \theta(x) e^{-x^{2}} \tag{2.3}
\end{equation*}
$$

lies in $H_{\alpha, \beta}$, and hence

$$
\begin{equation*}
\theta(x)=x^{2 \alpha} \psi(x) e^{-x^{2}} \tag{2.4}
\end{equation*}
$$

is infinitely differentiable on I.
Now, it is sufficient to show that $\left(x^{-1} D\right)^{k} \theta(x)$ is a multiplier of $H_{\alpha, \beta}$ whenever θ is . But this can be easily established by induction on k , taking into account the formula

$$
\begin{array}{r}
\varphi(x)\left(x^{-1} D\right) \theta(x)=x^{2 \alpha}\left(x^{-1} D\right) x^{2 \beta-1} \theta(x) \varphi(x)-\theta(x) x^{2 \alpha}\left(x^{-1} D\right) x^{2 \beta-1} \varphi(x) \\
\alpha+\beta=\frac{1}{2},(\alpha-\beta) \geq-\frac{1}{2}
\end{array}
$$

along with the fact that if $\varphi \in H_{\alpha, \beta}$ then so is $x^{2 \alpha}\left(x^{-1} D\right)^{k} \theta(x) \varphi(x)$.
Finally, let $\theta(x)$ be satisfy (iii). As (2.2) belongs to $H_{\alpha, \beta}$, so does (2.3). Thus $\theta(x)$ can be represented by (2.4), and in particular the $\operatorname{limit}_{\lim _{x \rightarrow 0^{+}} \theta(x) \text { exists. Now according to (iii), each }}$ $\left(x^{-1} D\right)^{k} \theta(x)$ is a multiplier of $H_{\alpha, \beta}$, and we conclude that $\lim _{x \rightarrow 0^{+}}\left(x^{-1} D\right)^{k} \theta(x)$ exists for all $k \in \mathbb{N}$.

Arguing by contradiction, let us assume that (i) is false. Then there exist $k \in \mathbb{N}$ and a sequence $\left\{x_{j}\right\}_{j \in \mathbb{N}}$ of real numbers, which by what has been just proved, may be chosen so that $x_{0}>1$ and $x_{j+1}>x_{j}+1$, such that:

$$
\left|\left(x^{-1} D\right)^{k} \theta(x)_{\mid x=x_{j}}\right|>\left(1+x_{j}^{2}\right)^{j}
$$

The function $\varphi \in H_{\alpha, \beta}$ constructed by means of $\left\{x_{j}\right\}_{j \in \mathbb{N}}$ as in Lemma 2.2 plainly satisfies

$$
\left|x_{j}^{2 \beta-1} \varphi\left(x_{j}\right)\left(x^{-1} D\right)^{k} \theta(x)_{\mid x=x_{j}}\right|>a(1)=1(j \in \mathbb{N}),(\alpha-\beta) \geq-\frac{1}{2}
$$

contradicting (iii). Thus proof is completed.

3 Topology and properties of the space of multipliers.

Following Zemanian [8], we denote by O the linear space of all those $\theta \in C^{\infty}(I)$ such that for every $k \in \mathbb{N}$ there exist $n_{k} \in \mathbb{N}, A_{k}>0$ satisfying

$$
\left|\left(x^{-1} D\right)^{k} \theta(x)\right| \leq A_{k}\left(1+x^{2}\right)^{n_{k}}, x \in I .
$$

The equivalence between the conditions (i) and (ii) in Theorem 2.3 above characterizes O as the space of multipliers of $H_{\alpha, \beta}$, with independence of the value of the real parameter $(\alpha-\beta)$. However, once $(\alpha-\beta)$ has been fixed, the condition (iii) suggests to introduce on O the family of seminorms

$$
\Gamma_{\alpha, \beta}=\left\{\eta_{\varphi, k}^{\alpha, \beta}: \varphi \in H_{\alpha, \beta}, k \in \mathbb{N}\right\},
$$

where

$$
\eta_{\varphi, k}^{\alpha, \beta}(\theta)=\sup _{x \in I}\left|x^{2 \beta-1} \varphi(x)\left(x^{-1} D\right)^{k} \theta(x)\right|
$$

As the map $\varphi(x) \rightarrow x^{\nu-\alpha+\beta} \varphi(x)=\psi(x)$ establishes an isomorphism between $H_{\alpha, \beta}$ and H_{ν} for any $\alpha-\beta, \nu \in \mathbb{R}$, the equality $\eta_{\varphi, k}^{\alpha, \beta}(\theta)=\eta_{\psi, k}^{\alpha, \beta}(\theta)$ holds whenever $k \in \mathbb{N}$ and $\theta \in O$. Therefore, all families $\Gamma_{\alpha, \beta}(\alpha-\beta \in \mathbb{R})$ define one and the same topology on O . In the sequel, unless otherwise stated, it will always be assumed that O is endowed with this topology, and ($\alpha-\beta$) will be any real number.

Some Remarks:

i. If $\theta \in C^{\infty}(I)$ is such that $\eta_{\varphi, k}^{\alpha, \beta}(\theta)<\infty$ for every $\varphi \in H_{\alpha, \beta}$ and $k \in \mathbb{N}$, then $\theta \in O$. Indeed, fix $\varphi \in H_{\alpha, \beta}, m, k \in \mathbb{N}$ and for $0 \leq p \leq k$ define $\varphi_{p} \in H_{\alpha, \beta}$ by

$$
\varphi_{p}(x)=\left(1+x^{2}\right)^{m} x^{2 \alpha}\left(x^{-1} D\right)^{k-p} x^{2 \beta-1} \varphi(x), x \in I .
$$

As

$$
\left(1+x^{2}\right)^{m}\left(x^{-1} D\right) x^{2 \beta-1}(\theta \varphi)(x)=\sum_{p=0}^{k}\binom{k}{p} x^{2 \beta-1} \varphi_{p}(x)\left(x^{-1} D\right)^{p} \theta(x), x \in I,
$$

necessarily

$$
\begin{equation*}
\tau_{m, k}^{\alpha, \beta}(\theta \varphi) \leq \sum_{p=0}^{k}\binom{k}{p} \eta_{\varphi_{p}, p}^{\alpha, \beta}(\theta) \tag{3.1}
\end{equation*}
$$

In general

$$
\tau_{m, k}^{\alpha, \beta}\left(\varphi(x)\left(\frac{1}{x} D\right)^{k} \theta(x)\right) \leq \sum_{p=0}^{k}\binom{k}{p} \eta_{\varphi_{p}, p+n}^{\alpha, \beta}(\theta), n \in \mathbb{N} .
$$

Our assertion now follows as in the proof that (iii) implies (i) in Theorem 2.3.
ii. The topology of O may be also generated by means of the family of seminorms, $\left\{\eta_{m, k ; \varphi}^{\alpha, \beta}\right.$: $\left.(m, k) \in \mathbb{N} \times \mathbb{N}, \varphi \in H_{\alpha, \beta}\right\}$,
where

$$
\eta_{m, k ; \varphi}^{\alpha, \beta}(\theta)=\tau_{m, k}^{\alpha, \beta}(\theta \varphi), m, k \in \mathbb{N}, \varphi \in H_{\alpha, \beta} .
$$

Let $k \in \mathbb{N}$ and for every $\varphi \in H_{\alpha, \beta}$ and every $p \in \mathbb{N}$ with $0 \leq p \leq k$, define $\varphi_{p} \in H_{\alpha, \beta}$ by

$$
\varphi_{p}(x)=x^{2 \alpha}\left(x^{-1} D\right)^{p} x^{2 \beta-1} \varphi(x), x \in I .
$$

If $\varphi \in H_{\alpha, \beta}$ and $\theta \in O$, the equality

$$
x^{2 \beta-1} \varphi(x)\left(x^{-1} D\right)^{k} \theta(x)=\sum_{p=0}^{k}(-1)^{p}\binom{k}{p}\left(x^{-1} D\right)^{k-p} x^{2 \beta-1}\left(\theta \varphi_{p}\right)(x), x \in I
$$

then shows that

$$
\eta_{\varphi, k}^{\alpha, \beta}(\theta) \leq \sum_{p=0}^{k}\binom{k}{p} \eta_{0, k-p ; \varphi_{p}}^{\alpha, \beta}(\theta)
$$

By using (3.1) and this estimate, our assertion is proved.
Theorem 3.1. The identity map $O \rightarrow \varepsilon(I)$ is continuous.
Proof. It is sufficient to observe that

$$
D^{k} \theta(x)=\frac{1}{x^{2 \beta-1} \varphi(x)} \sum_{p=0}^{k} C_{p} x^{a(p)} x^{2 \beta-1} \varphi(x)\left(x^{-1} D\right)^{b(p)} \theta(x), x \in I
$$

for every $k \in \mathbb{N}$ and every $\theta \in O$, where $\varphi(x)=x^{2 \alpha} e^{-x^{2}}(x \in I) \in H_{\alpha, \beta}, C_{p}>0(0 \leq p \leq k)$ are suitable constants, and $a(p) \leq k, b(p) \leq k(0 \leq p \leq k)$ denote non-negative integers, with $C_{k}=1$ and $a(k)=b(k)=k$. This completes the proof

Theorem 3.2. The linear topological space O is locally convex, Housdorff, non-metrizable and complete.

Proof. It is enough to check the completeness property . Let $\left\{\theta_{l}\right\}_{l \in J}$ be a Cauchy net in O. As O injects continuously into $\varepsilon(I),\left\{\theta_{l}\right\}_{l \in J}$ is also a Cauchy net in $\varepsilon(I)$ being complete, $\left\{\theta_{l}\right\}_{l \in J}$ converges to some $\theta \in \varepsilon(I)$ in $\varepsilon(I)$. We must show that $\theta \in O$ and that $\left\{\theta_{l}\right\}_{l \in J}$ converges to θ in the topology of O . Fix $\varphi \in H_{\alpha, \beta}, k \in \mathbb{N}, \epsilon>0$. By assumption, there exists $l_{0}=l_{0}(\varphi, k, \epsilon) \in J$ such that

$$
\begin{equation*}
\eta_{\varphi, k}^{\alpha, \beta}\left(\theta_{l}-\theta_{l^{\prime}}\right)<\epsilon, l, l^{\prime} \geq l_{0} \tag{3.2}
\end{equation*}
$$

Let us consider $x \in I, \delta>0$. As $\left\{\theta_{l}\right\}_{l \in J}$ converges to θ in $\varepsilon(I)$, there holds

$$
\begin{equation*}
\mid x^{2 \beta-1} \varphi(x)\left(x^{-1} D\right)^{k}\left(\theta-\theta_{l^{\prime}}(x) \mid<\delta\right. \tag{3.3}
\end{equation*}
$$

for some $l^{\prime}=l^{\prime}(\varphi, x, \delta) \geq l_{0}$. The combination of (3.2) and (3.3) yields

$$
\mid x^{2 \beta-1} \varphi(x)\left(x^{-1} D\right)^{k}\left(\theta-\theta_{l}(x) \mid<\epsilon+\delta, l \geq l_{0}\right.
$$

and from the arbitrariness of x and δ, we infer that

$$
\eta_{\varphi, k}^{\alpha, \beta}\left(\theta-\theta_{l}\right)<\epsilon, l \geq l_{0}
$$

By the inequality

$$
\eta_{\varphi, k}^{\alpha, \beta}(\theta) \leq \eta_{\varphi, k}^{\alpha, \beta}\left(\theta-\theta_{l}\right)+\eta_{\varphi, k}^{\alpha, \beta}\left(\theta_{l}\right), l \geq l_{0}
$$

We finally prove that $\theta \in O$ and $\left\{\theta_{l}\right\}_{l \in J}$ converges to θ in O . Thus proof is completed.
Now in the next theorem, we state several continuity properties of certain operators on O .

Theorem 3.3. The following statements hold:

i. The bilinear map $O \times O \rightarrow O$, defined by $(\theta, \varphi) \rightarrow \theta \varphi$ is separately continuous.
ii. If $R(x)=P(x) / Q(x)$, where $P(x)$ and $Q(x)$ are polynomials and Q does not vanish in $[0, \infty)$, then the map $\theta(x) \rightarrow R\left(x^{2}\right) \theta(x)$ is continuous from O to O.
iii. For every $k \in \mathbb{N}$, the map $\theta(x) \rightarrow\left(x^{-1} D\right)^{k} \theta(x)$ is continuous from O to O.

Proof. Let $k \in \mathbb{N}$ and $\theta \in O$, and for $0 \leq p \leq k$, let $n_{p} \in \mathbb{N}, A_{p}>0$ be such that

$$
\left|\left(x^{-1} D\right)^{p} \theta(x)\right| \leq A_{p}\left(1+x^{2}\right)^{n_{p}}, x \in I
$$

Set

$$
\varphi_{p}(x)=\left(1+x^{2}\right)^{n_{p}} \varphi(x), x \in I, \varphi \in H_{\alpha, \beta}
$$

One can easily deduce that $\varphi_{p} \in H_{\alpha, \beta}$. Now the formula

$$
x^{2 \beta-1} \varphi(x)\left(x^{-1} D\right)^{k}(\theta \varphi)(x)=\sum_{p=0}^{k}\binom{k}{p} x^{2 \beta-1} \phi_{p}(x) \frac{\left(x^{-1} D\right)^{p} \theta(x)}{\left(1+x^{2}\right)^{n_{p}}}\left(x^{-1} D\right)^{k-p} \varphi(x),
$$

valid for all $x \in I$, leads to the inequality

$$
\eta_{\varphi, k}^{\alpha, \beta}(\theta \varphi) \leq \sum_{p=0}^{k}\binom{k}{p} A_{p} \eta_{\varphi_{p}, k-p}^{\alpha, \beta}(\varphi)
$$

Thus (i) is proved.
By using Lemma 5.3.1 of Zemanian [7] and (i) above, we can immediately prove(ii). As

$$
\eta_{\varphi, k}^{\alpha, \beta}\left(\left(x^{-1} D\right)^{k} \theta(x)\right)=\eta_{\varphi, k+p}^{\alpha, \beta}(\theta)
$$

proof of (iii) is clear. Thus proof of the theorem is completed.
Theorem 3.4. The bilinear map $O \times H_{\alpha, \beta} \rightarrow H_{\alpha, \beta}$ defined by $(\theta, \varphi) \rightarrow \theta \varphi$ is separately continuous.

Proof. Proof is clear from Theorem 2.3 and part (i) stated in some remarks preceding Theorem 3.1.

Theorem 3.5. The map $\varphi(x) \rightarrow x^{2 \beta-1} \varphi(x)$ is continuous from $H_{\alpha, \beta}$ into O.
Proof. Proof is immediate from the following:

$$
\eta_{\varphi, k}^{\alpha, \beta}\left(x^{2 \beta-1} \psi(x)\right) \leq \sup _{x \in \mathrm{I}}\left|x^{2 \beta-1} \varphi(x)\right| \lambda_{0, k}^{\alpha, \beta}(\psi), \psi, \varphi \in H_{\alpha, \beta}, k \in \mathbb{N} .
$$

Lemma 3.6. The test space $\mathcal{D}(I)$ is not dense in $x^{2 \beta-1} H_{\alpha, \beta}$ with respect to the topology of O.
Proof. Let $\psi \in H_{\alpha, \beta}$ and assume that $\left\{x^{2 \beta-1} a_{l}(x)\right\}_{l \in J}$ is a net in $\mathcal{D}(I)$ converging to $x^{2 \beta-1} \psi(x)$ in the topology of O . For $k \in \mathbb{N}, \epsilon>0$, there exists $l_{0}=l_{0}(k, \epsilon) \in J$, with

$$
\left|e^{-x^{2}}\left(x^{-1} D\right)^{k} x^{2 \beta-1}\left(a_{l_{0}}-\psi\right)(x)\right|<\epsilon / e, x \in I
$$

Now, for $x \in(0,1)$, we may write

$$
\left|\left(x^{-1} D\right)^{k} x^{2 \beta-1}\left(a_{l_{0}}-\psi\right)(x)\right|<e\left|e^{-x^{2}}\left(x^{-1} D\right)^{k} x^{2 \beta-1}\left(a_{l_{0}}-\psi\right)(x)\right|<\epsilon .
$$

Therefore, to every $k \in \mathbb{N}$ and every $n=1,2,3, \ldots$ there corresponds $l_{n} \in J, x_{n} \in(0,1 / n)$ such that
$\left|\left(x^{-1} D\right)^{k} x^{2 \beta-1} \psi(x)_{\left.\right|_{x=x_{n}}}\right| \leq\left|\left(x^{-1} D\right)^{k} x^{2 \beta-1}\left(\alpha_{l_{n}}-\psi\right)(x)_{\left.\right|_{x=x_{n}}}\right|+\left|\left(x^{-1} D\right)^{k} x^{2 \beta-1} a_{l_{n}}(x)_{\left.\right|_{x=x_{n}}}\right|<1 / n$, hence,

$$
\lim _{n \rightarrow \infty}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \psi(x)_{\left.\right|_{x=x_{n}}}=0
$$

However, the particularizations $\psi(x)=x^{2 \alpha} e^{-x^{2}}$ and $k=0$ lead to

$$
\lim _{x \rightarrow 0^{+}}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \psi(x)=1
$$

which is contradiction to the assumption. Thus proof is completed.

Theorem 3.7. Let $(\alpha-\beta) \geq-1 / 2$. Given $\theta \in O$, the function $x^{2 \alpha} \theta(x)$ defines an element in $H_{\alpha, \beta}^{\prime}$ by the formula

$$
\begin{equation*}
\left\langle x^{2 \alpha} \theta(x), \varphi(x)\right\rangle=\int_{0}^{\infty} x^{2 \alpha} \theta(x) \varphi(x) d x, \varphi \in H_{\alpha, \beta} \tag{3.4}
\end{equation*}
$$

and the map $\theta(x) \rightarrow x^{2 \alpha} \theta(x)$ is continuous from O into $H_{\alpha, \beta}^{\prime}$.
Proof. Let $\theta \in O, \varphi \in H_{\alpha, \beta}$ and choose $r \in \mathbb{N}, A_{r}>0$ satisfying

$$
|\theta(x)| \leq A_{r}\left(1+x^{2}\right)^{r}, x \in I
$$

Further, let $s \in \mathbb{N}, s>(3 \alpha+\beta)$ be such that

$$
C_{s}^{\alpha, \beta}=\int_{0}^{\infty} \frac{x^{4 \alpha}}{\left(1+x^{2}\right)^{s}} d x<\infty
$$

By multiplying and dividing the integrand in (3.4) By $x^{2 \beta-1}\left(1+x^{2}\right)^{s}$ we find that

$$
\left|\left\langle x^{2 \alpha} \theta(x), \varphi(x)\right\rangle\right| \leq A_{r} C_{s}^{\alpha, \beta} \tau_{r+s, 0}^{\alpha, \beta}(\varphi)
$$

and that

$$
\left|\left\langle x^{2 \alpha} \theta(x), \varphi(x)\right\rangle\right| \leq C_{s}^{\alpha, \beta} \eta_{\psi, 0}^{\alpha, \beta}(\theta)
$$

where $\psi(x)=\left(1+x^{2}\right)^{s} \varphi(x) \in H_{\alpha, \beta}$.
Thus proof is completed.

4 Multipliers of $\boldsymbol{H}_{\alpha, \beta^{\prime}}^{\prime}$.

In this section our aim is to characterize \mathbf{O} as the space of multipliers of $H_{\alpha, \beta}^{\prime}((\alpha-\beta) \in \mathbb{R})$. The reflexivity of $H_{\alpha, \beta}$ will be needed for that purpose. First we shall prove the following Lemma.

Lemma 4.1. Let $m, k \in \mathbb{N}$, and let $\varphi \in H_{\alpha, \beta}$. Then
$\sum_{k=0}^{m} \sup _{x \in I}\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \psi(x)\right| \leq(m+1) \sum_{k=0}^{m+1} \int_{0}^{\infty}\left|\left(1+t^{2}\right)^{m+1}\left(t^{-1} D\right)^{k} t^{2 \beta-1} \varphi(t)\right| d t$.
Proof. We have

$$
\begin{aligned}
\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)= & -\int_{x}^{\infty} D\left(\left(1+t^{2}\right)^{m}\left(t^{-1} D\right)^{k} t^{2 \beta-1} \varphi(t)\right) d t \\
= & -\int_{x}^{\infty} 2 m t\left(1+t^{2}\right)^{m-1}\left(t^{-1} D\right)^{k} t^{2 \beta-1} \varphi(t) d t \\
& -\int_{x}^{\infty} t\left(1+t^{2}\right)^{m}\left(t^{-1} D\right)^{k+1} t^{2 \beta-1} \varphi(t) d t, x \in I
\end{aligned}
$$

As $2 t \leq 1+t^{2},(t \in I)$, it follows that

$$
\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)\right| \leq \int_{0}^{\infty}\left|\left(1+t^{2}\right)^{m+1}\left(t^{-1} D\right)^{k+1} t^{2 \beta-1} \varphi(t)\right| d t, x \in I
$$

Thus proof is completed.
Theorem 4.2. The space $H_{\alpha, \beta}$ is nuclear.
Proof. Let $\varphi \in H_{\alpha, \beta}, m, k \in \mathbb{N}$. Now for $t \in I$ and $0 \leq k \leq m+2$ we define $u_{t, k} \in H_{\alpha, \beta}^{\prime}$ by the formula

$$
\left\langle u_{t, k}, \varphi\right\rangle=\left(1+t^{2}\right)^{m+2}\left(t^{-1} D\right)^{k} t^{2 \beta-1} \varphi(t)
$$

Let

$$
V=\left\{\varphi \in H_{\alpha, \beta}: \sum_{k=0}^{m+2} \sup _{t \in I}\left|\left(1+t^{2}\right)^{m+2}\left(t^{-1} D\right)^{k} t^{2 \beta-1} \varphi(t)\right|<1\right\} .
$$

One can easily note that V is a neighbourhood of the origin in $H_{\alpha, \beta}$, and that each $u_{t, k}(t \in$ $I, 0 \leq k \leq m+2$) belongs to V^{0}, the polar set of V . Thus a positive Radon measure σ may be defined on V^{0} by the relation

$$
\langle\sigma, \psi\rangle=\int_{V^{0}} \psi d \sigma=(m+1) \sum_{k=0}^{m+2} \int_{0}^{\infty} \psi\left(u_{t, k}\right)\left(1+t^{2}\right)^{-1} d t, \psi \in C\left(V^{0}\right)
$$

Now by using Lemma 4.1, we can infer that

$$
\begin{aligned}
\sum_{k=0}^{m} \sup _{x \in I}\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)\right| & \leq(m+1) \sum_{k=0}^{m+2} \int_{0}^{\infty}\left|\left(1+t^{2}\right)^{m+1}\left(t^{-1} D\right)^{k} t^{2 \beta-1} \varphi(t)\right| d t \\
& =(m+1) \sum_{k=0}^{m+2}\left|\left\langle u_{t, k}, \varphi\right\rangle\right|\left(1+t^{2}\right)^{-1} d t \\
& =\int_{V^{0}}|\langle u, \varphi\rangle| d \sigma(u), \varphi \in H_{\alpha, \beta} .
\end{aligned}
$$

Because the sets

$$
V(m, \epsilon)=\left\{\varphi \in H_{\alpha, \beta}: \sum_{k=0}^{m} \sup _{x \in I}\left|\left(1+x^{2}\right)^{m}\left(x^{-1} D\right)^{k} x^{2 \beta-1} \varphi(x)\right|<\epsilon\right\}, m \in \mathbb{N}, \epsilon>0 .
$$

form a basis of neighbourhoods of the origin in $H_{\alpha, \beta}^{\prime}$, the nuclearity of this space follows from Pietsch [4, Proposition 4.1.5].
This finishes the proof of the theorem.
Now as applications of the Theorem 4.2, we have following corollaries.
Corollary 4.3. The space $H_{\alpha, \beta}^{\prime}$ is nuclear with respect to its strong topology.
Proof. Proof is clear from Treves[5, proposition III. 50.6].
Corollary 4.4. $H_{\alpha, \beta}$ (with its usual topology) and $H_{\alpha, \beta}^{\prime}$ (with the strong topology) are Schwartz spaces.

Proof. Following the technique used in Wong [6, Proposition 3.2.5], we can complete the proof.

Corollary 4.5. The space $H_{\alpha, \beta}$ is Montel and hence reflexive.
Proof. By Horvath [3, corollary to Proposition 3.15.4], Frechet Schwartz spaces are Montel and by Horvath[3, corollary to proposition 3.9.1], Motel spaces are reflexive. Thus proof is completed.

Definition 4.6. For $\theta \in O$ and $T \in H_{\alpha, \beta}^{\prime}, \theta T$ is defined by transposition

$$
\langle\theta T, \varphi\rangle=\langle T, \theta \varphi\rangle, \varphi \in H_{\alpha, \beta} .
$$

Theorem 3.4 guarantees that $\theta T \in H_{\alpha, \beta}^{\prime}$ and that each map $T \rightarrow \theta T$ is continuous from $H_{\alpha, \beta}^{\prime}$ to $H_{\alpha, \beta}^{\prime}$. By applying the universal property of initial topologies, we also find that the map $\theta \rightarrow \theta T$ is continuous from O in to $H_{\alpha, \beta}^{\prime}$ if the latter is equipped with its weak topology. Thus we have the following

Theorem 4.7. The bilinear map

$$
\begin{gathered}
O \times H_{\alpha, \beta}^{\prime} \rightarrow H_{\alpha, \beta}^{\prime} \quad \text { defined by } \\
(\theta, T) \rightarrow \theta T
\end{gathered}
$$

is separately continuous when $H_{\alpha, \beta}^{\prime}$ is endowed with its weak* topology.

Given $a>0$ and $(\alpha-\beta) \in \mathbb{R}, B_{\alpha, \beta, a}$ (see [6]) is the subspace of $H_{\alpha, \beta}$ formed by all those functions $\psi=\psi(x)$ infinitely differentiable on I such that $\psi(x)=0(x \geq a)$, for which the quantities

$$
\rho_{k}^{\alpha, \beta}(\psi)=\sup _{x \in I}\left|\left(x^{-1} D\right)^{k} x^{2 \beta-1} \psi(x)\right|<\infty, k \in \mathbb{N} .
$$

When equipped with the topology generated by the family of seminorms $\left\{\rho_{k}^{\alpha, \beta}\right\}_{k \in \mathbb{N}}, B_{\alpha, \beta, a}$ becomes a Frechet space. It is easy to see that $B_{\alpha, \beta, a} \subset B_{\alpha, \beta, b}$ if $0<a<b$ and that $B_{\alpha, \beta, a}$ inherits from $B_{\alpha, \beta, a}$ its own topology. These facts allow us to define $B_{\alpha, \beta}=\cup_{a>0} B_{\alpha, \beta, a}$ as the inductive limit of the family $\left\{B_{\alpha, \beta, a}\right\}_{a>0}$. The space $B_{\alpha, \beta}$ turns out to be dense in $H_{\alpha, \beta}$.

Definition 4.8. Let $\theta \in C^{\infty}(I)$ be such that $\left(x^{-1} D\right)^{k} \theta(x)$ is bounded in a neighbourhood of zero for every $k \in \mathbb{N}$.If $T \in H_{\alpha, \beta}^{\prime}$ then T lies in $B_{\alpha, \beta}^{\prime}$, the dual space of $B_{\alpha, \beta}$, and $\theta T \in B_{\alpha, \beta}^{\prime}$ may be consistently defined by the formula

$$
\langle\theta T, \psi\rangle=\langle T, \theta \psi\rangle, \psi \in B_{\alpha, \beta}
$$

Now at this stage we are ready to prove that the space of multipliers of $H_{\alpha, \beta}^{\prime}$ is precisely O .
Theorem 4.9. Assume that $\theta \in C^{\infty}(I)$ is such that $\left(x^{-1} D\right)^{k} \theta(x), k \in \mathbb{N}$ is bounded in a neighbourhood of zero. If for every $T \in H_{\alpha, \beta}^{\prime}$, the functional $\theta T \in B_{\alpha, \beta}^{\prime}$ extended up to $H_{\alpha, \beta}$ as a member of $H_{\alpha, \beta}^{\prime}$ in such a way that the map $\theta \rightarrow \theta T$ is continuous from $H_{\alpha, \beta}^{\prime}$ into itself, then $\theta \in O$.

Proof. If $\varphi \in H_{\alpha, \beta}$ then our hypothesis imply that the linear functional $T \rightarrow\langle\theta T, \varphi\rangle$ is continuous on $H_{\alpha, \beta}^{\prime}$. By the reflexivity of $H_{\alpha, \beta}$, there exists $\psi \in H_{\alpha, \beta}$ satisfying

$$
\langle\theta T, \varphi\rangle=\langle T, \psi\rangle, T \in H_{\alpha, \beta}^{\prime} .
$$

In particular,

$$
\langle\theta \varphi, v\rangle=\langle\theta v, \varphi\rangle=\langle v, \psi\rangle=\langle\psi, v\rangle, v \in B_{\alpha, \beta}
$$

Hence, $\theta \varphi=\psi \in H_{\alpha, \beta}$. As space of multipliers of $H_{\alpha, \beta}$ is O , we conclude tnat $\theta \in O$. Thus proof is completed

5 Another topology on 0.

Let $(\alpha-\beta)$ be any real number, and let $\mathfrak{B}_{\alpha, \beta}$ denote the family of all bounded subsets of $H_{\alpha, \beta}$. Throughout this section we shall assume that O is endowed with the topology generated by the family of seminorms

$$
\begin{equation*}
\eta_{B, k}^{\alpha, \beta}=\sup \left\{\eta_{\varphi, k}^{\alpha, \beta}: \varphi \in B\right\}, B \in \mathfrak{B}_{\alpha, \beta}, k \in \mathbb{N} \tag{5.1}
\end{equation*}
$$

Theorem 5.1. The topological vector space O is locally convex, Hausdorff, nonmetrizable and complete.

Proof. It is enough to check the completeness property. For, let $\left\{\theta_{l}\right\}_{l \in J}$ be a Cauchy net in \mathbf{O}. As $\left\{\theta_{l}\right\}_{l \in J}$ is also Cauchy with respect to the topology considered on O in section 3 above, there exists $\theta \in O$ such that $\left\{\theta_{l}\right\}_{l \in J}$ converges to θ in that topology.
Let $B \in \mathfrak{B}_{\alpha, \beta}, k \in \mathbb{N}, \epsilon>0$. By hypothesis there exists $l_{0}=l_{0}(B, k, \epsilon) \in J$ such that

$$
\eta_{B, k}^{\alpha, \beta}\left(\theta_{l}-\theta_{l^{\prime}}\right)<\epsilon / 2 \quad l, l^{\prime} \geq l_{0}
$$

Thus to every $\varphi \in B$ there corresponds $l^{\prime}=l^{\prime}(\varphi, k, \epsilon) \geq l_{0}$ satisfying

$$
\eta_{\varphi, k}^{\alpha, \beta}\left(\theta_{l^{\prime}}-\theta\right)<\epsilon / 2
$$

If we combine the last two inequalities, it shows that

$$
\eta_{B, k}^{\alpha, \beta}\left(\theta_{l}-\theta\right)<\epsilon, l \geq l_{0}
$$

Hence, $\left\{\theta_{l}\right\}_{l \in J}$ converges to θ in O .
This completes the proof.

Theorem 5.2. The bilinear map

$$
\begin{gather*}
O \times H_{\alpha, \beta} \rightarrow H_{\alpha, \beta} \text { defined by } \\
(\theta, \varphi) \rightarrow \theta \varphi \tag{5.2}
\end{gather*}
$$

is hypocontinuous.
Proof. First we note that the topology defined on O is finer than that introduced in section 3. Any two spaces $H_{\alpha, \beta}$ and $H_{a, b}$ being isomorphic, this topology does not depend on the parameter $(\alpha-\beta)$. Now by Theorem 3.4 the bilinear map defined by (5.2) above is continuous. As $H_{\alpha, \beta}$ is a Frechet space, the uniform boundedness principle grantees the hypocontinuity with respect to the bounded subsets of O . On the otherside, we take $m, k \in \mathbb{N}$ and for every $\varphi \in H_{\alpha, \beta}$ and every $p \in \mathbb{N}, 0 \leq p \leq k$, define $\varphi_{p} \in H_{\alpha, \beta}$ by

$$
\varphi_{p}(x)=\left(1+x^{2}\right)^{m} x^{2 \alpha}\left(x^{-1} D\right)^{k-p} x^{2 \beta-1} \varphi(x), x \in I
$$

The $\operatorname{map} \varphi \rightarrow \varphi_{p}$ is continuous from $H_{\alpha, \beta}$ into $H_{\alpha, \beta}$ by Leibnitz's rule. Denoting by $B_{p} \in \mathfrak{B}_{\alpha, \beta}$ the image of $B \in \mathfrak{B}_{\alpha, \beta}$ through this map, it can be proved as in the part (i) of the remark preceding Theorem 3.1 that

$$
\begin{equation*}
\tau_{m, k}^{\alpha, \beta}(\theta \varphi) \leq \sum_{p=0}^{k}\binom{k}{p} \eta_{B_{p}, p}^{\alpha, \beta}(\theta), \theta \in O, \varphi \in B \tag{5.3}
\end{equation*}
$$

Therefore, (5.2) is $\mathfrak{B}_{\alpha, \beta}$ - hypocontinuous.
Thus proof is completed.
It must be observed that the topology generated on O by the seminorms(5.1) is compatible with the family

$$
\eta_{m, k ; B}^{\alpha, \beta}(\theta)=\sup \left\{\tau_{m, k}^{\alpha, \beta}(\theta \varphi): \varphi \in B\right\}, m, k \in \mathbb{N}, B \in \mathfrak{B}_{\alpha, \beta}
$$

Indeed, let $k \in \mathbb{N}$. For each $p \in \mathbb{N}$ with $0 \leq p \leq k$, the map $\varphi \rightarrow \varphi_{p}$ defined from $H_{\alpha, \beta}$ by the formula

$$
\varphi_{p}=x^{2 \alpha}\left(x^{-1} D\right)^{p} x^{2 \beta-1} \varphi(x), x \in I,(\alpha-\beta) \geq-\frac{1}{2}
$$

is continuous. As before we denote by $B_{p} \in \mathfrak{B}_{\alpha, \beta}$ the image of $B \in \mathfrak{B}_{\alpha, \beta}$ through this map. Now, the argument in the part (ii) of the remark preceding Theorem 3.1 shows that

$$
\eta_{B, k}^{\alpha, \beta}(\theta) \leq \sum_{p=0}^{k}\binom{k}{p} \eta_{0, k-p ; B_{p}}^{\alpha, \beta}(\theta), B \in \mathfrak{B}_{\alpha, \beta}, k \in \mathbb{N}, \theta \in O
$$

Along with (5.3) this estimate proves our assertion.
Theorem 5.3. The bilinear map

$$
\begin{gathered}
O \times H_{\alpha, \beta}^{\prime} \rightarrow H_{\alpha, \beta}^{\prime} \text { defined by } \\
(\theta, \varphi) \rightarrow \theta \varphi
\end{gathered}
$$

is separately continuous when $H_{\alpha, \beta}^{\prime}$ is endowed either with its weak* or with its strong topology.
Proof. By following [5, Propositions II. 19.5 and II. 35.8], continuity in the second variable can be proved.
Let $T \in H_{\alpha, \beta}^{\prime}, \theta \in O, B \in \mathfrak{B}_{\alpha, \beta}$. There exist $r \in \mathbb{N}$ and a constant $C>0$ such that

$$
|\langle T, \varphi\rangle| \leq C \max _{0 \leq m, k \leq r} \tau_{m, k}^{\alpha, \beta}(\psi), \psi \in H_{\alpha, \beta}
$$

Thus

$$
|\langle\theta T, \varphi\rangle|=|\langle T, \theta \varphi\rangle| \leq C \max _{0 \leq m, k \leq r} \tau_{m, k}^{\alpha, \beta}(\theta \varphi), \varphi \in B,
$$

which leads to the inequality

$$
\sup \{|\langle\theta T, \varphi\rangle|: \varphi \in B\} \leq C \max _{0 \leq m, k \leq r} \eta_{m, k ; B}^{\alpha, \beta}(\theta)
$$

Thus proof is completed.

Theorem 5.4. The bilinear map

$$
\begin{gathered}
O \times O \rightarrow O \text { defined by } \\
\quad(\theta, v) \rightarrow \theta v
\end{gathered}
$$

is hypocontinuous.
Proof. Let \mathfrak{B} denote the family of all bounded subsets of O . If $A \in B$ and $B \in \mathfrak{B}_{\alpha, \beta}$, a fortiori $A B \in \mathfrak{B}_{\alpha, \beta}$ (Theorem 5.2 and [3, Proposition 4.7.2]). Fix $m, k \in \mathbb{N}, \theta \in A, v \in O, \varphi \in B$, then

$$
\eta_{m, k ; B}^{\alpha, \beta}(\theta v) \leq \eta_{m, k ; A B}^{\alpha, \beta}(v)
$$

This completes the proof.

Special cases:

(i) If we take $\alpha=\frac{1}{4}+\frac{\mu}{2}, \beta=\frac{1}{4}-\frac{\mu}{2}$ throughout this paper, then all the results studied in this paper reduce to the results studied in [2].
(ii) Author claims that, our results are stronger than that of [2].

References

[1] Barros-Neto J., An Introduction to the Theory of Distributions, R. E. Krieger Publishing Company, Malabar, Florida, 1981.
[2] J.J. Betancor, I. Marrero, Multipliersn of Hankel transformable functions, Comment math.Univ. Carolin. 33,3(1992), 389-401.
[3] Horvath J., Topological Vector Spaces and Distributions, Vol.1, Addison-Wesley, Reading, Massachusetts, 1966.
[4] Pietsch A., Nuclear locally convez spaces, springer verlag, Berlin, 1972.
[5] Treves F., Topological Vector Spaces, Distributions and Kernels, Academic press, New York, 1967.
[6] Wong Y. ch., Schwartz Spaces, Nuclear Spaces, and Tensor Products, Lecture Notes in Math. 726, Springer- Verlag, Berlin, 1979.
[7] Zemanian A.H., The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math. 14(1966), 678-690.
[8] A.H.Zemanian, Generalized Integral Transformations, InterScience, New York, 1968.

Author information Author information

B.B.Waphare, Mathematics Department, MAEER's MIT Arts, Commerce and Science College, Alandi, Pune-412105, Maharashtra, India.
E-mail: balasahebwaphare@gmail.com
Received: September 16th, 2021
Accepted: January 4th, 2022

