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Abstract In this paper the Zemanian space of Hankel type transformable functions Hα,β is
shown to be nuclear, Schwartz, montel and reflexive. The Space O is completely character-
ized as the set of multipliers of Hα,β and H ′α,β .
Finally certain topologies are considered on O and continuity properties of the multiplication
operation with respect to those topologies are studied.

1 Introduction

Following Zemanian [8], we introduce the space Hα,β which consists of all those infinitely
differentiable functions ϕ = ϕ(x) defined on I = (0,∞) such that

ρα,βm,k(ϕ) = sup
x∈I
|xm(x−1D)kx2β−1ϕ(x)| <∞,m, k ∈ N, (α− β) ≥ −1

2
.

Endowed with the topology generated by the family of seminorms {ρα,βm,k}(m,k)∈N×N, Hα,β is a
Frechet Space.
This topology of Hα,β can also be defined by means of seminorms

τα,βm,k(ϕ) = sup
x∈I
|(1 + x2)m(x−1D)kx2β−1ϕ(x)|,m, k ∈ N, ϕ ∈ Hα,β , (α− β) ≥ −

1
2
.

By following the technique used in Zemanian [8], one can show that the vector space O of all
those θ ∈ C∞(I) such that for every k ∈ N there exist nk ∈ N, Ak > 0 satisfying

|(x−1D)kθ(x)| ≤ Ak(1 + x2)nk , x ∈ I

is a space of multipliers for Hα,β . In characterizing O as the space of multipliers for H ′α,β , we
use the reflexivity of Hα,β , which derives from the fact, previously established that Hα,β is nu-
clear.
One can easily note that most of the properties established here for Hα,β , H ′α,β and O are similar
to the corresponding ones for the schwartz space S, its dual S ′ (the space of tempered distribu-
tions) and their space of multipliers OM .
In this paper author is motivated by the work done by Betancor and Marrero [2].

2 Multipliers of Hα,β.

A function θ = θ(x) defined on I is said to be a multiplier for Hα,β if the map ϕ → θϕ is
continuous from Hα,β into Hα,β . The main object of this section is to characterize the space of
multipliers of Hα,β .

Lemma 2.1. For every r, s ∈ R the holds

1 + r2

1 + s2 ≤ 2(1 + |r − s|2).
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Lemma 2.2. Let a ∈ D(I) be such that 0 ≤ a ≤ 1, supp a = [1/2, 3/2] and a(1) = 1. Also, let
{xj}j∈N be a sequence of real numbers satisfying x0 > 1 and xj+1 > xj + 1.
Define

ϕ(x) = x2α
∞∑
j=0

a(x− xj + 1)
(1 + x2

j)
j

, x ∈ I. (2.1)

Then ϕ ∈ Hα,β .

Proof. As the functions a(x− xj + 1) have pairwise disjoint supports, we note that the sum on
the right-hand side of (2.1) is finite. Indeed, if m, k ∈ N and xj − 1/2 ≤ x ≤ xj + 1/2, we may
write

(1 + x2)m(x−1D)kx2β−1ϕ(x) =

(
1 + x2

1 + x2
j

)m
(x−1D)kx2α+2β−1a(x− xj + 1)

(1 + x2
j)
j−m .

Now by Lemma 2.1, we conclude that τα,βm,k(ϕ) < ∞, thus it shows that ϕ ∈ Hα,β as required.
Thus proof is completed.

Theorem 2.3. (Characterization of multipliers of Hα,β):
The following statements are equivalent to each other.

i. The function θ = θ(x) ∈ C∞(I), and for every k ∈ N there exists nk ∈ N such that
(1 + x2)−ηk(x−1D)kθ(x) is bounded on I.

ii. The product θϕ lies in Hα,β whenever ϕ ∈ Hα,β , and the map ϕ → θϕ is a continuous
endomorphism of Hα,β .

iii. The function θ is infinitely differentiable on I, for every k ∈ N and every ϕ ∈ Hα,β the
function ϕ(x)(x−1D)kθ(x) ∈ Hα,β , and the map ϕ(x)→ ϕ(x)(x−1D)kθ(x) is a continuous
endomorphism of Hα,β .

Proof. By following technique used in Zemanian [8, p. 134], one can easily prove that (i) implies
(ii).
To show that (ii) implies (iii) : Let us consider the function ϕ ∈ Hα,β defined by

ϕ(x) = x2αe−x
2

(2.2)

By (ii) above,
ψ(x) = x2αθ(x)e−x

2
(2.3)

lies in Hα,β , and hence
θ(x) = x2αψ(x)e−x

2
(2.4)

is infinitely differentiable on I.
Now, it is sufficient to show that (x−1D)kθ(x) is a multiplier of Hα,β whenever θ is . But this
can be easily established by induction on k, taking into account the formula

ϕ(x)(x−1D)θ(x) = x2α(x−1D)x2β−1θ(x)ϕ(x)− θ(x)x2α(x−1D)x2β−1ϕ(x),

α+ β =
1
2
, (α− β) ≥ −1

2
.

along with the fact that if ϕ ∈ Hα,β then so is x2α(x−1D)kθ(x)ϕ(x).
Finally, let θ(x) be satisfy (iii). As (2.2) belongs to Hα,β , so does (2.3). Thus θ(x) can be
represented by (2.4), and in particular the limit limx→0+ θ(x) exists. Now according to (iii), each
(x−1D)kθ(x) is a multiplier of Hα,β , and we conclude that limx→0+(x

−1D)kθ(x) exists for all
k ∈ N.

Arguing by contradiction, let us assume that (i) is false. Then there exist k ∈ N and a
sequence {xj}j∈N of real numbers, which by what has been just proved, may be chosen so that
x0 > 1 and xj+1 > xj + 1, such that:

|(x−1D)kθ(x)|x=xj
| > (1 + x2

j)
j .
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The function ϕ ∈ Hα,β constructed by means of {xj}j∈N as in Lemma 2.2 plainly satisfies

|x2β−1
j ϕ(xj)(x

−1D)kθ(x)|x=xj
| > a(1) = 1(j ∈ N), (α− β) ≥ −1

2

contradicting (iii). Thus proof is completed.

3 Topology and properties of the space of multipliers.

Following Zemanian [8], we denote by O the linear space of all those θ ∈ C∞(I) such that for
every k ∈ N there exist nk ∈ N, Ak > 0 satisfying

|(x−1D)kθ(x)| ≤ Ak(1 + x2)nk , x ∈ I.

The equivalence between the conditions (i) and (ii) in Theorem 2.3 above characterizes O as the
space of multipliers of Hα,β , with independence of the value of the real parameter (α − β).
However, once (α − β) has been fixed, the condition (iii) suggests to introduce on O the family
of seminorms

Γα,β = {ηα,βϕ,k : ϕ ∈ Hα,β , k ∈ N},

where
ηα,βϕ,k (θ) = sup

x∈I
|x2β−1ϕ(x)(x−1D)kθ(x)|

As the map ϕ(x)→ xν−α+βϕ(x) = ψ(x) establishes an isomorphism between Hα,β and Hν for
any α − β, ν ∈ R, the equality ηα,βϕ,k (θ) = ηα,βψ,k(θ) holds whenever k ∈ N and θ ∈ O. Therefore,
all families Γα,β(α − β ∈ R) define one and the same topology on O. In the sequel, unless
otherwise stated, it will always be assumed that O is endowed with this topology, and (α − β)
will be any real number.
Some Remarks:

i. If θ ∈ C∞(I) is such that ηα,βϕ,k (θ) <∞ for every ϕ ∈ Hα,β and k ∈ N, then θ ∈ O. Indeed,
fix ϕ ∈ Hα,β ,m, k ∈ N and for 0 ≤ p ≤ k define ϕp ∈ Hα,β by

ϕp(x) = (1 + x2)mx2α(x−1D)k−px2β−1ϕ(x), x ∈ I.

As

(1 + x2)m(x−1D)x2β−1(θϕ)(x) =
k∑
p=0

(
k

p

)
x2β−1ϕp(x)(x

−1D)pθ(x), x ∈ I,

necessarily

τα,βm,k(θϕ) ≤
k∑
p=0

(
k

p

)
ηα,βϕp,p(θ) (3.1)

In general

τα,βm,k(ϕ(x)(
1
x
D)kθ(x)) ≤

k∑
p=0

(
k

p

)
ηα,βϕp,p+n(θ), n ∈ N.

Our assertion now follows as in the proof that (iii) implies (i) in Theorem 2.3.

ii. The topology of O may be also generated by means of the family of seminorms, {ηα,βm,k;ϕ :
(m, k) ∈ N×N, ϕ ∈ Hα,β},
where

ηα,βm,k;ϕ(θ) = τα,βm,k(θϕ),m, k ∈ N, ϕ ∈ Hα,β .

Let k ∈ N and for every ϕ ∈ Hα,β and every p ∈ N with 0 ≤ p ≤ k, define ϕp ∈ Hα,β by

ϕp(x) = x2α(x−1D)px2β−1ϕ(x), x ∈ I.
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If ϕ ∈ Hα,β and θ ∈ O, the equality

x2β−1ϕ(x)(x−1D)kθ(x) =
k∑
p=0

(−1)p
(
k

p

)
(x−1D)k−px2β−1(θϕp)(x), x ∈ I

then shows that

ηα,βϕ,k (θ) ≤
k∑
p=0

(
k

p

)
ηα,β0,k−p;ϕp

(θ).

By using (3.1) and this estimate, our assertion is proved.

Theorem 3.1. The identity map O → ε(I) is continuous.

Proof. It is sufficient to observe that

Dkθ(x) =
1

x2β−1ϕ(x)

k∑
p=0

Cpx
a(p)x2β−1ϕ(x)(x−1D)b(p)θ(x), x ∈ I

for every k ∈ N and every θ ∈ O, where ϕ(x) = x2αe−x
2
(x ∈ I) ∈ Hα,β , Cp > 0(0 ≤ p ≤ k)

are suitable constants, and a(p) ≤ k, b(p) ≤ k(0 ≤ p ≤ k) denote non-negative integers, with
Ck = 1 and a(k) = b(k) = k.This completes the proof

Theorem 3.2. The linear topological space O is locally convex, Housdorff, non-metrizable and
complete.

Proof. It is enough to check the completeness property . Let {θl}l∈J be a Cauchy net in O. As
O injects continuously into ε(I), {θl}l∈J is also a Cauchy net in ε(I) being complete,{θl}l∈J
converges to some θ ∈ ε(I) in ε(I). We must show that θ ∈ O and that {θl}l∈J converges to θ in
the topology of O. Fix ϕ ∈ Hα,β , k ∈ N, ε > 0. By assumption, there exists l0 = l0(ϕ, k, ε) ∈ J
such that

ηα,βϕ,k (θl − θl′) < ε, l, l′ ≥ l0. (3.2)

Let us consider x ∈ I, δ > 0. As {θl}l∈J converges to θ in ε(I), there holds

|x2β−1ϕ(x)(x−1D)k(θ − θl′(x)| < δ (3.3)

for some l′ = l′(ϕ, x, δ) ≥ l0. The combination of (3.2) and (3.3) yields

|x2β−1ϕ(x)(x−1D)k(θ − θl(x)| < ε+ δ, l ≥ l0,

and from the arbitrariness of x and δ, we infer that

ηα,βϕ,k (θ − θl) < ε, l ≥ l0.

By the inequality
ηα,βϕ,k (θ) ≤ η

α,β
ϕ,k (θ − θl) + ηα,βϕ,k (θl), l ≥ l0.

We finally prove that θ ∈ O and {θl}l∈J converges to θ in O. Thus proof is completed.

Now in the next theorem, we state several continuity properties of certain operators on O.

Theorem 3.3. The following statements hold:

i. The bilinear map O ×O → O, defined by (θ, ϕ)→ θϕ is separately continuous.

ii. If R(x) = P (x)/Q(x), where P (x) and Q(x) are polynomials and Q does not vanish in
[0,∞), then the map θ(x)→ R(x2)θ(x) is continuous from O to O.

iii. For every k ∈ N, the map θ(x)→ (x−1D)kθ(x) is continuous from O to O.
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Proof. Let k ∈ N and θ ∈ O, and for 0 ≤ p ≤ k, let np ∈ N, Ap > 0 be such that

|(x−1D)pθ(x)| ≤ Ap(1 + x2)np , x ∈ I.

Set
ϕp(x) = (1 + x2)npϕ(x), x ∈ I, ϕ ∈ Hα,β .

One can easily deduce that ϕp ∈ Hα,β . Now the formula

x2β−1ϕ(x)(x−1D)k(θϕ)(x) =
k∑
p=0

(
k

p

)
x2β−1φp(x)

(x−1D)pθ(x)

(1 + x2)np
(x−1D)k−pϕ(x),

valid for all x ∈ I , leads to the inequality

ηα,βϕ,k (θϕ) ≤
k∑
p=0

(
k

p

)
Apη

α,β
ϕp,k−p(ϕ).

Thus (i) is proved.
By using Lemma 5.3.1 of Zemanian [7] and (i) above, we can immediately prove(ii). As

ηα,βϕ,k ((x
−1D)kθ(x)) = ηα,βϕ,k+p(θ),

proof of (iii) is clear. Thus proof of the theorem is completed.

Theorem 3.4. The bilinear map O×Hα,β → Hα,β defined by (θ, ϕ)→ θϕ is separately contin-
uous.

Proof. Proof is clear from Theorem 2.3 and part (i) stated in some remarks preceding Theorem
3.1.

Theorem 3.5. The map ϕ(x)→ x2β−1ϕ(x) is continuous from Hα,β into O.

Proof. Proof is immediate from the following:

ηα,βϕ,k (x
2β−1ψ(x)) ≤ sup

x∈I
|x2β−1ϕ(x)|λα,β0,k (ψ), ψ, ϕ ∈ Hα,β , k ∈ N.

Lemma 3.6. The test space D(I) is not dense in x2β−1Hα,β with respect to the topology of O.

Proof. Let ψ ∈ Hα,β and assume that {x2β−1al(x)}l∈J is a net inD(I) converging to x2β−1ψ(x)
in the topology of O. For k ∈ N, ε > 0, there exists l0 = l0(k, ε) ∈ J , with

|e−x
2
(x−1D)kx2β−1(al0 − ψ)(x)| < ε/e, x ∈ I.

Now, for x ∈ (0, 1), we may write

|(x−1D)kx2β−1(al0 − ψ)(x)| < e|e−x
2
(x−1D)kx2β−1(al0 − ψ)(x)| < ε.

Therefore, to every k ∈ N and every n = 1, 2, 3, . . . there corresponds ln ∈ J, xn ∈ (0, 1/n)
such that

|(x−1D)kx2β−1ψ(x)|x=xn
| ≤ |(x−1D)kx2β−1(αln−ψ)(x)|x=xn

|+|(x−1D)kx2β−1aln(x)|x=xn
| < 1/n,

hence,
lim
n→∞

(x−1D)kx2β−1ψ(x)|x=xn
= 0.

However, the particularizations ψ(x) = x2αe−x
2

and k = 0 lead to

lim
x→0+

(x−1D)kx2β−1ψ(x) = 1,

which is contradiction to the assumption. Thus proof is completed.
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Theorem 3.7. Let (α − β) ≥ −1/2. Given θ ∈ O, the function x2αθ(x) defines an element in
H ′α,β by the formula

〈x2αθ(x), ϕ(x)〉 =
∫ ∞

0
x2αθ(x)ϕ(x)dx, ϕ ∈ Hα,β , (3.4)

and the map θ(x)→ x2αθ(x) is continuous from O into H ′α,β .

Proof. Let θ ∈ O,ϕ ∈ Hα,β and choose r ∈ N, Ar > 0 satisfying

|θ(x)| ≤ Ar(1 + x2)r, x ∈ I.

Further, let s ∈ N, s > (3α+ β) be such that

Cα,βs =

∫ ∞
0

x4α

(1 + x2)s
dx <∞.

By multiplying and dividing the integrand in (3.4) By x2β−1(1 + x2)s we find that

|〈x2αθ(x), ϕ(x)〉| ≤ ArCα,βs τα,βr+s,0(ϕ),

and that
|〈x2αθ(x), ϕ(x)〉| ≤ Cα,βs ηα,βψ,0 (θ),

where ψ(x) = (1 + x2)sϕ(x) ∈ Hα,β .
Thus proof is completed.

4 Multipliers of H ′
α,β.

In this section our aim is to characterize O as the space of multipliers of H ′α,β((α−β) ∈ R). The
reflexivity of Hα,β will be needed for that purpose. First we shall prove the following Lemma.

Lemma 4.1. Let m, k ∈ N, and let ϕ ∈ Hα,β . Then

m∑
k=0

sup
x∈I
|(1 + x2)m(x−1D)kx2β−1ψ(x)| ≤ (m+ 1)

m+1∑
k=0

∫ ∞
0
|(1 + t2)m+1(t−1D)kt2β−1ϕ(t)|dt.

Proof. We have

(1 + x2)m(x−1D)kx2β−1ϕ(x) = −
∫ ∞
x

D((1 + t2)m(t−1D)kt2β−1ϕ(t))dt

= −
∫ ∞
x

2mt(1 + t2)m−1(t−1D)kt2β−1ϕ(t)dt

−
∫ ∞
x

t(1 + t2)m(t−1D)k+1t2β−1ϕ(t)dt, x ∈ I.

As 2t ≤ 1 + t2, (t ∈ I), it follows that

|(1 + x2)m(x−1D)kx2β−1ϕ(x)| ≤
∫ ∞

0
|(1 + t2)m+1(t−1D)k+1t2β−1ϕ(t)|dt, x ∈ I.

Thus proof is completed.

Theorem 4.2. The space Hα,β is nuclear.

Proof. Let ϕ ∈ Hα,β ,m, k ∈ N. Now for t ∈ I and 0 ≤ k ≤ m + 2 we define ut,k ∈ H ′α,β by
the formula

〈ut,k, ϕ〉 = (1 + t2)m+2(t−1D)kt2β−1ϕ(t),



338 B.B.Waphare

Let

V = {ϕ ∈ Hα,β :
m+2∑
k=0

sup
t∈I
|(1 + t2)m+2(t−1D)kt2β−1ϕ(t)| < 1}.

One can easily note that V is a neighbourhood of the origin in Hα,β , and that each ut,k(t ∈
I, 0 ≤ k ≤ m + 2) belongs to V 0, the polar set of V. Thus a positive Radon measure σ may be
defined on V 0 by the relation

〈σ, ψ〉 =
∫
V 0
ψdσ = (m+ 1)

m+2∑
k=0

∫ ∞
0

ψ(ut,k)(1 + t2)−1dt, ψ ∈ C(V 0).

Now by using Lemma 4.1, we can infer that

m∑
k=0

sup
x∈I
|(1 + x2)m(x−1D)kx2β−1ϕ(x)| ≤ (m+ 1)

m+2∑
k=0

∫ ∞
0
|(1 + t2)m+1(t−1D)kt2β−1ϕ(t)|dt

= (m+ 1)
m+2∑
k=0

|〈ut,k, ϕ〉|(1 + t2)−1dt

=

∫
V 0
|〈u, ϕ〉| dσ(u), ϕ ∈ Hα,β .

Because the sets

V (m, ε) = {ϕ ∈ Hα,β :
m∑
k=0

sup
x∈I
|(1 + x2)m(x−1D)kx2β−1ϕ(x)| < ε},m ∈ N, ε > 0.

form a basis of neighbourhoods of the origin in H ′α,β , the nuclearity of this space follows from
Pietsch [4, Proposition 4.1.5].
This finishes the proof of the theorem.

Now as applications of the Theorem 4.2, we have following corollaries.

Corollary 4.3. The space H ′α,β is nuclear with respect to its strong topology.

Proof. Proof is clear from Treves[5, proposition III. 50.6].

Corollary 4.4. Hα,β ( with its usual topology) and H ′α,β (with the strong topology) are Schwartz
spaces.

Proof. Following the technique used in Wong [6, Proposition 3.2.5], we can complete the proof.

Corollary 4.5. The space Hα,β is Montel and hence reflexive.

Proof. By Horvath [3, corollary to Proposition 3.15.4], Frechet Schwartz spaces are Montel
and by Horvath[3, corollary to proposition 3.9.1], Motel spaces are reflexive. Thus proof is
completed.

Definition 4.6. For θ ∈ O and T ∈ H ′α,β , θT is defined by transposition

〈θT, ϕ〉 = 〈T, θϕ〉, ϕ ∈ Hα,β .

Theorem 3.4 guarantees that θT ∈ H ′α,β and that each map T → θT is continuous from
H ′α,β to H ′α,β . By applying the universal property of initial topologies, we also find that the map
θ → θT is continuous from O in to H ′α,β if the latter is equipped with its weak topology. Thus
we have the following

Theorem 4.7. The bilinear map

O ×H ′α,β → H ′α,β defined by

(θ, T )→ θT

is separately continuous when H ′α,β is endowed with its weak* topology.
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Given a > 0 and (α − β) ∈ R, Bα,β,a (see [6]) is the subspace of Hα,β formed by all those
functions ψ = ψ(x) infinitely differentiable on I such that ψ(x) = 0(x ≥ a), for which the
quantities

ρα,βk (ψ) = sup
x∈I
|(x−1D)kx2β−1ψ(x)| <∞, k ∈ N.

When equipped with the topology generated by the family of seminorms {ρα,βk }k∈N, Bα,β,a be-
comes a Frechet space. It is easy to see that Bα,β,a ⊂ Bα,β,b if 0 < a < b and that Bα,β,a inherits
fromBα,β,a its own topology. These facts allow us to defineBα,β = ∪a>0Bα,β,a as the inductive
limit of the family {Bα,β,a}a>0. The space Bα,β turns out to be dense in Hα,β .

Definition 4.8. Let θ ∈ C∞(I) be such that (x−1D)kθ(x) is bounded in a neighbourhood of zero
for every k ∈ N.If T ∈ H ′α,β then T lies in B′α,β , the dual space of Bα,β , and θT ∈ B′α,β may be
consistently defined by the formula

〈θT, ψ〉 = 〈T, θψ〉, ψ ∈ Bα,β .

Now at this stage we are ready to prove that the space of multipliers of H ′α,β is precisely O.

Theorem 4.9. Assume that θ ∈ C∞(I) is such that (x−1D)kθ(x), k ∈ N is bounded in a neigh-
bourhood of zero. If for every T ∈ H ′α,β , the functional θT ∈ B′α,β extended up to Hα,β as a
member of H ′α,β in such a way that the map θ → θT is continuous from H ′α,β into itself, then
θ ∈ O.

Proof. If ϕ ∈ Hα,β then our hypothesis imply that the linear functional T → 〈θT, ϕ〉 is continu-
ous on H ′α,β . By the reflexivity of Hα,β , there exists ψ ∈ Hα,β satisfying

〈θT, ϕ〉 = 〈T, ψ〉, T ∈ H ′α,β .

In particular,
〈θϕ, v〉 = 〈θv, ϕ〉 = 〈v, ψ〉 = 〈ψ, v〉, v ∈ Bα,β .

Hence, θϕ = ψ ∈ Hα,β . As space of multipliers of Hα,β is O, we conclude tnat θ ∈ O. Thus
proof is completed

5 Another topology on O.

Let (α − β) be any real number, and let Bα,β denote the family of all bounded subsets of Hα,β

. Throughout this section we shall assume that O is endowed with the topology generated by the
family of seminorms

ηα,βB,k = sup{ηα,βϕ,k : ϕ ∈ B}, B ∈ Bα,β , k ∈ N. (5.1)

Theorem 5.1. The topological vector space O is locally convex, Hausdorff, nonmetrizable and
complete.

Proof. It is enough to check the completeness property . For, let {θl}l∈J be a Cauchy net in O.
As {θl}l∈J is also Cauchy with respect to the topology considered on O in section 3 above, there
exists θ ∈ O such that {θl}l∈J converges to θ in that topology.
Let B ∈ Bα,β , k ∈ N, ε > 0 . By hypothesis there exists l0 = l0(B, k, ε) ∈ J such that

ηα,βB,k(θl − θl′) < ε/2 l, l′ ≥ l0.

Thus to every ϕ ∈ B there corresponds l′ = l′(ϕ, k, ε) ≥ l0 satisfying

ηα,βϕ,k (θl′ − θ) < ε/2.

If we combine the last two inequalities, it shows that

ηα,βB,k(θl − θ) < ε, l ≥ l0.

Hence, {θl}l∈J converges to θ in O.
This completes the proof.
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Theorem 5.2. The bilinear map

O ×Hα,β → Hα,β defined by

(θ, ϕ)→ θϕ (5.2)

is hypocontinuous.

Proof. First we note that the topology defined on O is finer than that introduced in section 3. Any
two spaces Hα,β and Ha,b being isomorphic, this topology does not depend on the parameter
(α−β). Now by Theorem 3.4 the bilinear map defined by (5.2) above is continuous. As Hα,β is
a Frechet space, the uniform boundedness principle grantees the hypocontinuity with respect to
the bounded subsets of O. On the otherside, we take m, k ∈ N and for every ϕ ∈ Hα,β and every
p ∈ N, 0 ≤ p ≤ k, define ϕp ∈ Hα,β by

ϕp(x) = (1 + x2)mx2α(x−1D)k−px2β−1ϕ(x), x ∈ I.

The map ϕ→ ϕp is continuous from Hα,β into Hα,β by Leibnitz’s rule. Denoting by Bp ∈ Bα,β

the image of B ∈ Bα,β through this map, it can be proved as in the part (i) of the remark
preceding Theorem 3.1 that

τα,βm,k(θϕ) ≤
k∑
p=0

(
k

p

)
ηα,βBp,p

(θ), θ ∈ O,ϕ ∈ B. (5.3)

Therefore, (5.2) is Bα,β- hypocontinuous.
Thus proof is completed.

It must be observed that the topology generated on O by the seminorms(5.1) is compatible
with the family

ηα,βm,k;B(θ) = sup{τα,βm,k(θϕ) : ϕ ∈ B},m, k ∈ N, B ∈ Bα,β .

Indeed, let k ∈ N . For each p ∈ N with 0 ≤ p ≤ k, the map ϕ → ϕp defined from Hα,β by the
formula

ϕp = x2α(x−1D)px2β−1ϕ(x), x ∈ I, (α− β) ≥ −1
2
.

is continuous . As before we denote by Bp ∈ Bα,β the image of B ∈ Bα,β through this map.
Now, the argument in the part (ii) of the remark preceding Theorem 3.1 shows that

ηα,βB,k(θ) ≤
k∑
p=0

(
k

p

)
ηα,β0,k−p;Bp

(θ), B ∈ Bα,β , k ∈ N, θ ∈ O.

Along with (5.3) this estimate proves our assertion.

Theorem 5.3. The bilinear map

O ×H ′α,β → H ′α,β defined by

(θ, ϕ)→ θϕ

is separately continuous when H ′α,β is endowed either with its weak* or with its strong topology.

Proof. By following [5, Propositions II. 19.5 and II. 35.8], continuity in the second variable can
be proved.
Let T ∈ H ′α,β , θ ∈ O,B ∈ Bα,β . There exist r ∈ N and a constant C > 0 such that

|〈T, ϕ〉| ≤ C max
0≤m,k≤r

τα,βm,k(ψ), ψ ∈ Hα,β .

Thus
|〈θT, ϕ〉| = |〈T, θϕ〉| ≤ C max

0≤m,k≤r
τα,βm,k(θϕ), ϕ ∈ B, .

which leads to the inequality

sup{|〈θT, ϕ〉| : ϕ ∈ B} ≤ C max
0≤m,k≤r

ηα,βm,k;B(θ).

Thus proof is completed.
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Theorem 5.4. The bilinear map

O ×O → O defined by

(θ, v)→ θv

is hypocontinuous.

Proof. Let B denote the family of all bounded subsets of O. If A ∈ B and B ∈ Bα,β , a fortiori
AB ∈ Bα,β (Theorem 5.2 and [3, Proposition 4.7.2]).Fix m, k ∈ N, θ ∈ A, v ∈ O,ϕ ∈ B, then

ηα,βm,k;B(θv) ≤ η
α,β
m,k;AB(v).

This completes the proof.

Special cases:

(i) If we take α = 1
4 + µ

2 , β = 1
4 −

µ
2 throughout this paper, then all the results studied in this

paper reduce to the results studied in [2].

(ii) Author claims that, our results are stronger than that of [2].
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