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Abstract In this paper the Zemanian space of Hankel type transformable functions H, g is
shown to be nuclear, Schwartz, montel and reflexive. The Space O is completely character-
ized as the set of multipliers of H, g and H,
Finally certain topologies are considered on O and continuity properties of the multiplication
operation with respect to those topologies are studied.

1 Introduction

Following Zemanian [8], we introduce the space H, g which consists of all those infinitely
differentiable functions ¢ = ¢(z) defined on I = (0, co) such that

o4 m — 1
pini() = supla™ (271 D) % p(w)] < 00,m, b € N, (= ) 2 3.
TE
Endowed with the topology generated by the family of seminorms {p:;i (m,k)eNxNs Ha,p 18 @

Frechet Space.
This topology of H, g can also be defined by means of seminorms

o myo— _ 1
() = sup (1 + )" (27 D) e ()], m,k €N, ¢ € Hap, (0 = f) > —5.
xE
By following the technique used in Zemanian [8], one can show that the vector space O of all
those § € C'°°(I) such that for every k € N there exist ny € N, A, > 0 satisfying

|(z7'D)*0(x)| < Ap(1 4 2?)™ x e T

is a space of multipliers for H, g. In characterizing O as the space of multipliers for H, (’1 5> We
use the reflexivity of H,_ g, which derives from the fact, previously established that H, s is nu-
clear.

One can easily note that most of the properties established here for H, g, H,, 5 and O are similar
to the corresponding ones for the schwartz space S, its dual S’ (the space of tempered distribu-
tions) and their space of multipliers O,,.

In this paper author is motivated by the work done by Betancor and Marrero [2].

2 Multipliers of H,, .

A function § = 6(x) defined on I is said to be a multiplier for H, g if the map ¢ — 6Oy is
continuous from H, g into H, g. The main object of this section is to characterize the space of
multipliers of H, g.

Lemma 2.1. For every r, s € R the holds

1+ 72 )
_ ' <« _ )
1+82_2(1+‘T %)
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Lemma 2.2. Let a € D(I) be such that 0 < a < 1, supp a = [1/2,3/2] and a(1) = 1. Also, let
{z;}jen be a sequence of real numbers satisfying vo > 1 and x; 1 > x; + 1.
Define

_ ez 1) >
,xel. 2.1
]Z T+ x 2.1)

Then ¢ € Hy .

Proof. As the functions a(xz — x; + 1) have pairwise disjoint supports, we note that the sum on
the right-hand side of (2.1) is finite. Indeed, if m,k € Nand z; — 1)2<z< xj + 1/2, we may
write

2\ 1\ k 204281 o
(l_i_xz)m(m—lD)kxzﬁ—l@(x): <1+:c ) (z7'D)Fx a(x mJ+1)'

1+ a2 (14 x%)i—m
Now by Lemma 2.1, we conclude that Ts‘lg(cp) < oo, thus it shows that ¢ € H, g as required.
Thus proof is completed. O

Theorem 2.3. (Characterization of multipliers of H, g):
The following statements are equivalent to each other.

i. The function = 6(x) € C>(I), and for every k € N there exists n, € N such that
(1 + 22)~™(x~'D)*0(x) is bounded on I.
ii. The product O lies in H, g whenever ¢ € H, 3, and the map ¢ — 0 is a continuous
endomorphism of H,, g.
iii. The function 0 is infinitely differentiable on I, for every k € N and every ¢ € H, g the
function p(z)(z~'D)*0(x) € H, 5, and the map o(z) — ¢(x)(xz~'D)*0(x) is a continuous
endomorphism of H, g.

Proof. By following technique used in Zemanian [8, p. 134], one can easily prove that (i) implies
(ii).
To show that (ii) implies (iii) : Let us consider the function ¢ € H, g defined by

2

o(x) = 2™ (2.2)
By (ii) above,
(z) = 220(x)e " (2.3)
lies in H, g, and hence
b(a) = 2 (a)e ™ (24)

is infinitely differentiable on L.
Now, it is sufficient to show that (z~!D)*¢(z) is a multiplier of H, s whenever 6 is . But this
can be easily established by induction on k, taking into account the formula

@(x)(x_lD)e(x):xza(x—lD)xZB—le(x) (z) — 0(z)z Za( —ID) 28—1 o(z),
1

atB=g.(a—B)> -

o \

along with the fact that if € H, g then so is 2% (2~ D)*0(z)p(z).
Finally, let 6(x) be satisfy (iii). As (2.2) belongs to H, g, so does (2.3). Thus #(z) can be
represented by (2.4), and in particular the limit lim,, _,¢+ 6(z) exists. Now according to (iii), each
(x='D)*0(z) is a multiplier of H, s , and we conclude that lim, o+ (z~!D)*6(x) exists for all
keN.

Arguing by contradiction, let us assume that (i) is false. Then there exist ¥ € N and a
sequence {z; }jen of real numbers, which by what has been just proved, may be chosen so that
xo > 1and x4 > x; + 1, such that:

(271 D)*0(2),, | > (14 a3) .
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The function ¢ € H, s constructed by means of {xz; };cy as in Lemma 2.2 plainly satisfies

27 pla) @ DY), | > a(1) = 15 € N), (= ) > —

contradicting (iii). Thus proof is completed. O

3 Topology and properties of the space of multipliers.

Following Zemanian [8], we denote by O the linear space of all those § € C'>°(I) such that for
every k € N there exist n;, € N, A;, > 0 satisfying

|(z7'D)*0(x)| < Ap(1 4+ 2*)™,z € I.

The equivalence between the conditions (i) and (ii) in Theorem 2.3 above characterizes O as the
space of multipliers of H, s , with independence of the value of the real parameter (o — f3).
However, once (o« — 3) has been fixed, the condition (iii) suggests to introduce on O the family
of seminorms

Tap = {130 ¢ € Hapk €N},

where

MR (0) = supla* () (o™ D) 6(a)
As the map ¢(z) — 2~ Pp(z) = 1(z) establishes an isomorphism between H,, g and H,, for
any o — 3, v € R, the equality 773:1/3 0) = nif(@) holds whenever k£ € N and 6 € O. Therefore,
all families I', g(ov — 8 € R) define one and the same topology on O. In the sequel, unless
otherwise stated, it will always be assumed that O is endowed with this topology, and (« — f3)
will be any real number.
Some Remarks:

i. If # € C°°(I) is such that ng;f(e) < oo forevery ¢ € H, g and k € N, then 6 € O. Indeed,
fix p € Hy g, m,k € Nand for 0 < p < k define ¢, € H, 3 by

op(x) = (1 4+ 222 (7' D)k P2?~1p(z), 2 € I.

As
" (k
(1 + xz)m(g;*ID)xZBfl(oﬁp)(z) = Z (p) Izﬁil(pp(x)(l‘ilD)pH(x),x el
p=0
necessarily
"k
AOESY ( ) 0 (0) 3.1)
p=0 p
In general

k
a 1 EY &
T (@) (=D)*o(x)) < (p) g pin(0),n € N.
p=0
Our assertion now follows as in the proof that (iii) implies (i) in Theorem 2.3.

a,B

ii. The topology of O may be also generated by means of the family of seminorms, {n,";. :

(m,k) e NxN,p € Hyp},
where
oo (0) = T (00),m, k € N, € Hyp.

Let k € N and for every ¢ € H, g and every p € N with 0 < p < k, define ¢, € H, g by

op(z) = 2 (7' D)Pa*P " p(x),x € I.
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If o € H, g and § € O, the equality

then shows that

By using (3.1) and this estimate, our assertion is proved.
Theorem 3.1. The identity map O — () is continuous.
Proof. 1t is sufficient to observe that

1 _ _
D*0(x) = 1 o(z) ZCpxa(p)xm Yo(a) (7' D)}®o(x), z e T

for every k € N and every 6 € O, where o(x) = xzo‘e*xz(x €l)e H,3,C, >00<p<k)
are suitable constants, and a(p) < k,b(p) < k(0 < p < k) denote non-negative integers, with
Cr = 1 and a(k) = b(k) = k.This completes the proof ]

Theorem 3.2. The linear topological space O is locally convex, Housdorf{f, non-metrizable and
complete.

Proof. 1t is enough to check the completeness property . Let {6;},c; be a Cauchy net in O. As
O injects continuously into e(I),{6;};c is also a Cauchy net in ¢(I) being complete,{6; };cs
converges to some 6 € £(I) in (I). We must show that # € O and that {6, };,c; converges to 6 in
the topology of O. Fix ¢ € H, g,k € N, e > 0. By assumption, there exists lo = lo(p, k,€) € J
such that

o (0 — 0n) < €11 > lo. (3.2)

Let us consider z € I, > 0. As {6, };cs converges to 6 in €(I), there holds
|~ p(x) (2~ D)0 — 6u (2)| < & (3.3)
for some I’ = 1'(¢,x,8) > ly. The combination of (3.2) and (3.3) yields
|22~ o(z) (27 D)*(0 — 6;(z)| < e+ 6,1 > o,
and from the arbitrariness of x and d, we infer that
nn(0—6) < e,1>lo.

By the inequality
22 (0) <0200 —6) + 0L (6),1 > L.

We finally prove that § € O and {6, },c; converges to 6 in O. Thus proof is completed. O
Now in the next theorem, we state several continuity properties of certain operators on O.

Theorem 3.3. The following statements hold:
i. The bilinear map O x O — O, defined by (0, p) — O is separately continuous.

ii. If R(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials and Q does not vanish in
[0, 00), then the map 6(x) — R(22)0(z) is continuous from O to O.

iii. Foreveryk € N, the map 0(x) — (x~1D)*0(z) is continuous from O to O.
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Proof. Letk € Nand § € O, and for 0 < p < k, letn, € N, A, > 0 be such that

(7' D)PO(x)| < A,(1 + a2,z e 1.

Set

op(x) = (1+2%)"p(z),2 € 1,0 € Hap.

One can easily deduce that ¢, € H, 3. Now the formula

k —1 P9 (x
xw*wwu*mﬂwwm—§j<ﬁ>#“%AmfD“ﬁ)

p=0
valid for all x € I, leads to the inequality
k
R(0) < ( ) oo p(0)-
p=0

Thus (i) is proved.

1+ 2?)

(a7 D) Po(a),

By using Lemma 5.3.1 of Zemanian [7] and (i) above, we can immediately prove(ii). As

ng (271 D)M (@) = ng 3, (6),

proof of (iii) is clear. Thus proof of the theorem is completed.

m}

Theorem 3.4. The bilinear map O x H, g — H, g defined by (0, p) — O is separately contin-

uous.

Proof. Proof is clear from Theorem 2.3 and part (i) stated in some remarks preceding Theorem

3.1.

Theorem 3.5. The map p(z) — 2~ p(z) is continuous from H, g into O.

Proof. Proof is immediate from the following:

noe (@71 (2)) < sup e~ o(2) NG (), 1, ¢ € Hap,k €N,

zel

O

Lemma 3.6. The test space D(I) is not dense in z**~1H,, g with respect to the topology of O.

Proof. Lety € H, g and assume that {x?°~!a;(z)},c is a netin D(I) converging to z2°~14(x)
in the topology of O. For k € N, e > 0, there exists lo = ly(k, €) € J, with

|€7m2($71D)kI2ﬂ71(a10 —¢)(z)| <ele,x €.

Now, for z € (0, 1), we may write

(&' D)*a?~ (ag, — ) ()] < ele™™ (27 D)*a? ! (ay, —

Therefore, to every k£ € N and every n = 1,2,3,... there corresponds [,

such that

(@™ D) " y(a),,, | < (a7 D)2 (o, —¢) ()., [+|(z7'D

hence,
lim (x_lD)kaB_lw(x)"c:Tn = 0.

n—oo

However, the particularizations )(z) = 22®e~* and k = 0 lead to

lim (z7'D)*2*~1y(2) = 1,

z—0t

which is contradiction to the assumption. Thus proof is completed.

P) (@) <e
€ Jx, € (0,1/n)

)kxz,@—l

ay, () loeay | < 1/n,
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Theorem 3.7. Let (o — ) > —1/2. Given 0 € O, the function z**0(x) defines an element in
H], 5 by the formula

(20(x), plx)) = / T 20(@)p(a)dr, o € Hag, (3.4)

za . . .
and the map 0(x) — x*>*0(x) is continuous from O into H, 4
Proof. Let§ € O, € H, 3 and choose r € N, A, > 0 satisfying
0(2)] < Ar(1+22)", 2 € 1.

Further, let s € N, s > (3 + ) be such that

Ca7ﬂ_/°°m-4"1dx<oo
C T Grayte

By multiplying and dividing the integrand in (3.4) By 22#~!(1 + 22)* we find that

(276(), p(2))| < A,CE0E 4 (0),

and that
[(@?0(z), p(x))] < CPni0(0),

where ¢(z) = (1 4+ 2?)*¢(x) € Hy 5.

Thus proof is completed. O

4 Multipliers of H, ,

In this section our aim is to characterize O as the space of multipliers of H/, ;((a— ) € R). The
reflexivity of H, g will be needed for that purpose. First we shall prove the following Lemma.

Lemma 4.1. Let m, k € N, and let ¢ € H, g. Then

m+1 foe)
Zsup| + 22)™(z 7' D)* 2?1y (z)] < (m + 1) Z/ |(1 4 £2)™ L (= D)F#2P L op(t) |dt.
k= OIEI k=0 0
Proof. We have
(1+2%)™(z7'D)Fa?P =1y D((1+ )™t~ 'D) 2P p(t))dt

/ 2mt(1 + )™t~ D)*e*P p(t)dt
/ t(1+ )™t D)2 () dt, 2z € 1.
As 2t <1+ t%,(t € I), it follows that

[(1+4 xz)m(x_lD)kxM_lgo(xﬂ < / [(1+ tz)mH(t_lD)kthﬁ_lgo(t)\dt,x el
0

Thus proof is completed. O
Theorem 4.2. The space H,, g is nuclear.

Proof. Letp € Hy g,m,k € N. Now fort € T and 0 < k < m + 2 we define u, ;, € H/, 5 by
the formula

(g, ) = (L+ 82" 2t~ D)~ 1o(t),
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Let
m+2

={p € Hap: Y sup|(L+ )" (7 D) ¥ p(t)] < 1.
k=0 tel

One can easily note that V is a neighbourhood of the origin in H, g , and that each wu, ;(t €
1,0 < k < m + 2) belongs to V°, the polar set of V. Thus a positive Radon measure o may be
defined on V? by the relation

m+2

(o,1)) = /wda— m+ 1 Z/ Y(ug ) (1 + 2" tat, v € C(VO).

Now by using Lemma 4.1, we can infer that

m+2
Zsup| +22)™(z7 ' D) P p(z)| < (m+ 1 Z/ (14 2™ (¢ DY 2P~ (8 |dt
T O’EGI

m+2

ZI (g g, )| (1 + )" dt

- / ((u, @) do(u), ¢ € Ho .
Vo

Because the sets

V(m,e) ={p € Hap: Zsupl +a?)" (a7 D)* P ()| < €},m € Nye > 0.
T O’I‘GI

form a basis of neighbourhoods of the origin in H, - the nuclearity of this space follows from
Pietsch [4, Proposition 4.1.5].
This finishes the proof of the theorem. O

Now as applications of the Theorem 4.2, we have following corollaries.
Corollary 4.3. The space H (’1 s Is nuclear with respect to its strong topology.
Proof. Proof is clear from Treves[5, proposition III. 50.6]. O

Corollary 4.4. H,, s ( with its usual topology) and H, 5 (with the strong topology) are Schwartz
spaces.

Proof. Following the technique used in Wong [6, Proposition 3.2.5], we can complete the proof.
|

Corollary 4.5. The space H,, g is Montel and hence reflexive.

Proof. By Horvath [3, corollary to Proposition 3.15.4], Frechet Schwartz spaces are Montel
and by Horvath[3, corollary to proposition 3.9.1], Motel spaces are reflexive. Thus proof is
completed. O

Definition 4.6. For 0 € O and T' € H|, 4, 0T is defined by transposition

Theorem 3.4 guarantees that 67 € H, 5 and that each map 7" — 6T is continuous from
H! pltoHJ ! 5~ By applying the universal property of initial topologies, we also find that the map
¢ — 0T is continuous from O in to H), 4 if the latter is equipped with its weak topology. Thus
we have the following

Theorem 4.7. The bilinear map
O x H,, 5 — H,, 5 defined by
0,T) — 6T

is separately continuous when H, s is endowed with its weak* topology.
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Given a > 0 and (o« — ) € R, B, g, (see [6]) is the subspace of H, 3 formed by all those
functions ¢p = () infinitely differentiable on I such that ¢)(z) = 0(z > a), for which the
quantities

Pl (v) = sup |(z'D)*a? =1y (z)| < 00,k € N.
xe

When equipped with the topology generated by the family of seminorms { pg’ﬁ tren, Ba,,q be-
comes a Frechet space. It is easy to see that B, g, C Ba g if 0 < a < band that B, g , inherits
from B,, g q its own topology. These facts allow us to define B, g = Uy>0B4,38,q as the inductive
limit of the family {B, g, }4>0. The space B, g turns out to be dense in H, g.

Definition 4.8. Let § € C°°(I) be such that (z~'D)*6(x) is bounded in a neighbourhood of zero
forevery k € N.If T € H, ;5 then T lies in By, 4, the dual space of B, g, and 0T € B/, ; may be
consistently defined by the formula

<9T7 w> = <Tv 01/)>7 7/) € Ba,ﬂ~
Now at this stage we are ready to prove that the space of multipliers of H, 4 is precisely O.

Theorem 4.9. Assume that € C>(I) is such that (x~'D)*0(z), k € N is bounded in a neigh-
bourhood of zero. If for every T € H), 5, the functional 0T € Bj, ;5 extended up to H, g as a
member of H,, 5 in such a way that the map § — 0T is continuous from H}, 5 into itself, then
6cO.

Proof. 1t ¢ € H, s then our hypothesis imply that the linear functional T — (6T, ) is continu-
ous on H;, 5. By the reflexivity of H,, g, there exists ¢ € H, g satisfying

<8Ta 50> = <T,¢>7T € Héz,ﬁ'

In particular,
(O, v) = (Bv, ) = (v,9) = (Y,v),v € By p.

Hence, 0 = 9 € H, 3. As space of multipliers of H, g is O, we conclude tnat # € O. Thus
proof is completed O

5 Another topology on O.

Let (v — ) be any real number, and let B, g denote the family of all bounded subsets of H, g
. Throughout this section we shall assume that O is endowed with the topology generated by the
family of seminorms

Ny = sup{nf i € B}, B € Bos k€N 5.1)

Theorem 5.1. The topological vector space O is locally convex, Hausdorff, nonmetrizable and
complete.

Proof. 1t is enough to check the completeness property . For, let {6;};c; be a Cauchy net in O.
As {0, }1e is also Cauchy with respect to the topology considered on O in section 3 above, there
exists 6 € O such that {6, },c; converges to € in that topology.

Let B € B, 5,k € N,e > 0. By hypothesis there exists lp = lo(B, k, €) € J such that

M (00— 0r) < e/2 11 > ly.
Thus to every o € B there corresponds I’ = I'(, k, €) > [y satisfying
e (O — 0) < e/2.
If we combine the last two inequalities, it shows that
M0 —0) < e, > lo.

Hence, {0, },c; converges to 6 in O.
This completes the proof. O
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Theorem 5.2. The bilinear map
O x Hy 3 — H, g defined by

(0,0) = Op (5.2)
is hypocontinuous.
Proof. First we note that the topology defined on O is finer than that introduced in section 3. Any
two spaces H, 3 and H, ; being isomorphic, this topology does not depend on the parameter
(av— ). Now by Theorem 3.4 the bilinear map defined by (5.2) above is continuous. As H, g is
a Frechet space, the uniform boundedness principle grantees the hypocontinuity with respect to

the bounded subsets of O. On the otherside, we take m, k € N and for every ¢ € H, g and every
p € N,0 < p <k, define ¢, € H, g by

op(z) = (1 +22)m2? (27 D) P2~ 1p(2),z € I.

The map ¢ — ¢, is continuous from H,, g into H, g by Leibnitz’s rule. Denoting by B, € B, 3
the image of B € B, g through this map, it can be proved as in the part (i) of the remark
preceding Theorem 3.1 that

5 (0y) <Z< )773 ,(0),0€0,0€B. (5.3)

p=0
Therefore, (5.2) is B, 3- hypocontinuous.
Thus proof is completed. O

It must be observed that the topology generated on O by the seminorms(5.1) is compatible
with the family
M (6) = sup{7o 5 (69) 9 € BY.m,k € N, B € Bo .

Indeed, let £ € N . For each p € N with 0 < p < k, the map ¢ — ¢,, defined from H, g by the

formula 1

op = 2**(z7 ' DY p(x), 2 € I, (e — B) > —3

is continuous . As before we denote by B, € B, 3 the image of B € B, g through this map.
Now, the argument in the part (ii) of the remark preceding Theorem 3.1 shows that

(e} k (e}
SHOESY ( ) ) noffp;BP(G)?B €eB,p keNbeoO.

p=0
Along with (5.3) this estimate proves our assertion.
Theorem 5.3. The bilinear map
O x H}, 5 — H}, 5 defined by
(0.0) = 0p
is separately continuous when H ; s Is endowed either with its weak™ or with its strong topology.

Proof. By following [5, Propositions II. 19.5 and II. 35.8], continuity in the second variable can
be proved.
LetT € H, 5,0 € O, B € B, 5. There exist r € N and a constant C' > 0 such that

T, ¢)| <C max ) (z/)),weHa,B.

0<m,k<r
Thus
(0T, 9)| = |(T.00)] <€ max_ 720(0¢),¢ € B,
which leads to the inequality )
sup{[(0T, )| : p € By <O max_ 5} 5(0).

0<m,k<r

Thus proof is completed. O



Multipliers of Hankel type transformable generalizedfunctions 341

Theorem 5.4. The bilinear map
O x O — O defined by

(0,v) — v
is hypocontinuous.

Proof. Let ‘B denote the family of all bounded subsets of O. If A € B and B € B, g, a fortiori
AB € B, g (Theorem 5.2 and [3, Proposition 4.7.2]).Fix m,k € N, € A,v € O, ¢ € B, then

77:[,[;;3(9“) < ngz’,ﬁk;AB(U)'
This completes the proof. O

Special cases:

(i) If we take o = § + &, 8 = ; — & throughout this paper, then all the results studied in this
paper reduce to the results studied in [2].

(i) Author claims that, our results are stronger than that of [2].
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