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Abstract The aim of this article is to introduce and investigate a new subclass of analytic
functions involving Gegenbauer polynomials. We obtain for the introduced class various ge-
ometric properties giving the coefficient inequalities, distortion theorem, radius of close-to-
convexity, starlikeness, convex linear combination, partial sums and convolution properties. Fur-
ther, we obtain a neighborhood result for the class defined in the present paper.

1 Introduction

Let A specify the category of analytical functions f represent on the unit disc U = {z : |z| < 1}
with normalization f(0) = 0 and f’(0) = 1, such a function has the extension of the Taylor
series on the origin in the form

f(z) :z—i-Zanz”. (1.1)
n=2

Indicated by S, the subclass of A be composed of functions that are univalent in U.
Then a f(z) function of A is known as starlike and convex of order 9 if it delights the pursing

SOV, |
9?{ f(z) }> 9, ( EU), (1.2)
zf"(2)
and §R{l+ ) }>19, (z€U), (1.3)

for specific #(0 < ¥ < 1) respectively and we express by S*(¢) and K (¢) the subclass of A be
expressed by aforesaid functions respectively. Also, indicate by 7 the subclass of A made up of
functions of this form

f(,z):z—E:anz”7 (a, >0, z€U) (1.4)
n=2

and let T*(9) = TNS*(9),C(9) = T'N K (V). There are interesting properties in the 7*(+9) and
C(V) classes and were thoroughly studied by Silverman [6] and others.

The class 7 (p), p > 0 has been implemented and analyzed by the subclass Szynal [10] of A
consisting of type functions

f@:/K@@w@7 (1.5)
21

where
V4

Kz )= —""°"
(Za ) (1_21€Z+22)KJ7

(zeUtel-1,1)) (1.6)

and p is a probability measure at the interval [—1, 1]. The compilation of such [a, b] calculation
is denoted as Pla, b].
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The function expansion of the Taylor series in (1.6) gives
K(z,0) =2+ (02 + 502 + - (1.7)
The coefficients for (1.7) and those for (1.7) are given below:
i (6) =15 7 (6) = 206, 5 (0) = 2p(p + 1 — p;

4
F(0) = 300 + D(p+2) —2p(p+ 1) -, (1.8)

where ¢£(¢) corresponds to the Gegenbauer degree polynomial n. Varying the o parameter in
(1.7), we get a class of usually real functions studied by (1.7) (see [1, 3, 5, 8] and [9]).
Let %é : A — A s defined by convolution

G f(2) = K(2,0) * f(2),

we have
GoF(2) =24 b (Danz". (1.9)
n=2

In this paper, we are consider as |a,| = a,, and |¢¥_,(¢)] = c¥_,(¢).

n—I1
Now, we propose a new subclass qﬁé(h, 9) of A concerning polynomial of Geganbaur as
below:

Definition 1.1.For 0 < 7 < 1,0 <9 < 1,p > 0,£ > 0, we say f(z) € Ais in qﬁﬁ)(h,ﬁ) if it
fulfils the requirement

o (2L + 12 (940 (2)”
951(2)

) > 9, (€ U). (1.10)
Also we indicate by T'¢% (h, 9) = ¢& (h,9) N T.

2 Coefficient Inequalities

This section gives us an adequate requirement for a function f given by (1.1) to be in gbé,(h, 9).

Theorem 2.1. A function f € A is assigned to the class gﬁé(h, 9) if

oo

> I+ hn(n —1) =9 (Oan, < 1-0. (2.1)

n—1
n=2

Proof. Since 0 < ¢ < 1 and h > 0, now if we put

_2(#01(2) + 12 (951 (2)"
o) = 7

, (z€U).

Then it’s just a matter of proving it |o(z) — 1| < 1 — ¥, (z € U).

Indeed if f(z) = 2, (2 € U), then we have g(z) = z, (z € U).

Implies (2.1) holds.

If f(z) # z, (|]z| = r < 1), then there exist a coefficient Q,, (p, ¢)a,, # 0 for some n > 2. The

oo
consequence is that »_ ¢ (¢)a,, > 0. Now
n=2

o0

Z[n +hn(n—1) = 9]c_ (O)a, > (1 —-19) ch_l(f)an
n=2

n=2
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= Zciil(f)an < 1.
n=2
By (2.1), we obtain

io: [n+hn(n—1) = 1]c¥_ (0)a,z""!

lo(2) — 1] = |22 =
1+ > & [ (O)apzn!
n=2
S [+ fin(n— 1) — 1, (O)an
n=2
<

8

< n=2
L+ 37 ey 1 (0)
n=2
(I=9)+(1-9) 3 ch_(O)an

< n=2

1+ > & (Day

n=2

=1-9, (z€U).

Hence we obtain

2 (9L1(2)) + h2? (9Lf(2))”
%< (4L4( >>ggf(z)< 5 () )Z?Tﬁ(@(z))>1—(1—19>:’9-

Then f € ¢ (h,9). . O

Theorem 2.2. Let f be given by (1.4). Then the function f € Tgb[ (h, ) if and only if

o0

> I+ hn(n—1) = 9)cs_ (Oan, <1 -0 (2.2)
n=2

Proof. In view of Theorem 2.1, to examine it f € T(bé(h, ) fulfils the coefficient inequality
(2.1). If f € T¢’,(h, ) then the function

z (géf(z))/ + hz? (géf(z))//

o2) = e e
satisfies R*(o(z)) > ¥. This implies that
G f(z)=2— Z & (0)ayz" #0,(z €U\ {0}).
n=2

f()

Noting that =2~ in the open interval (0, 1), this is the real continuous function with n(0) = 1,

we have
GLf(r)
7_1—2} Oar™™' >0, (0<r<1). (2.3)
1= 3 [nthin(n—1)]c%_, (O)anr™"!
Now ¢ < o(r) = —=2— and consequently by (2.3),

we get Z [n+hn(n—1) =9 (Oa,r™™! <1-9.

n=2
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Letting r — 1, we get > [n+ An(n — 1) —9]cf_ (O)a, <1 -9,
n=2
This proves the converse part. O

Remark 2.3. If a function f of the form (1.4) belongs to the class T¢ﬁ,(h, ) then

1-9
[n+ hn(n—1) —9)c_ (£)

Cn—1

, (n>2).

an <

3 Distortion Theorem
In the section, the distortion limits of the functions owned by the class Tqﬁfg(h, 9).
Theorem 3.1. Let 1) € T¢,(h,9) and |z| = r < 1. Then

1-9 1-9 )

2 < < 3.1
T AN U A T R E AN Ol G0
and
2(1 - 9) ) 2(1 - 19)
— < < . .
mmovrgenm SO s mo e (3-2)
Proof. Since f € T¢.,(h,9), we apply Theorem 2.2 to attain
2R — 0 +2]cf Zan<2n+fm (n—1) =9 (O)ay,
<1-4.
Thus |f(z)|<|z|+|z|2ia <r+ 1= r?
= 2 =TT R e ()
Also we have, |f(2)| < |2| — |z]? Za <r- L-9 7
’ " Rh—9+2]c (0)
and (3.1) follows. In similar way for f’, the inequalities
If'(z) <1+ Znan|z|”7l <1+ 7] Znan
n=2 n=2
and
S 2(1—9)
"=Rh—9+2c_(0)
are satisfied, which leads to (3.2). O

4 Radii of close-to-convexity and starlikeness

A close-to-convex and star-like radius of this class T(;Sﬁ,(h, 1) is obtained in this section.

Theorem 4.1. Let f be specified by (1.4) is in Tgbé(h, 9). Then f is a close-to-convex of order
¢, (0 << 1)inthedisc|z| < ti, where

(1= O)n +nhi(n — 1) — 9Qu(p, )17 .

n(1—9) @D

tl = inf
n>2
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Proof. If f € T and f is a close-to-convex of order ¢ then we get
1/'(z) = 1] <12 4.2)
For the left hand side of (4.2), we obtain

If'(z)—1] < E:nan|z|”_1 <1l-v

n=2

00 n o
n=2

We know that f(z) € T¢%,(h, ) if and only if

i [n+ nh(n — 1) — 9]Q(p. 0)

<1.

(1-9) "
Thus (4.2) holds true if

n |Z|n_] < [n+nh(n_ 1)_19]Qn(p7£)

1-¢ - (1-9)
then |5 < [(L= Ol nh(n = 1)~ 0] (6.0)] ™
- n(l —9)

hence the proof. O

Theorem 4.2. Let | € TqSé(h, 9). Then f is a starlike of order £, (0 < £ < 1) in the disc

|z| < ta, where
1

[(1 —O)[n+nh(n—1) - 19]9“(@’5)} =
(n—0)(1-9) '

Proof. We have f € T and f is a starlike of order ¢, we have

ty = inf 4.3)

n>2

zf’(Z)_’ 3
i 1l<1-¢ 4.4)

For the left hand side of (4.4), we have

e}

-1 n n—1
Zf’(Z)_1‘<nzz(n Jonl

f(z)

o0
L= anlz|!

n=2

(1 — ¢) is greater than the right hand side of the left relation if

[es)
—! n—1
n=2

We know that f € T¢{ (h,9) if and only if

io: [n+nh(n—1) —ﬁ]gn(p’g)an <L

- (1-9)
Thus (4.4) is true if
n—"L .1 _ [n+nhin—1)—9]Q,(p,~)
l2]"7 <
11— (1-9)
(1 =0)[n+nh(n—1)—9)Q,(p,£) =
then |z] < { O

hence the proof. O
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5 Convex Linear combinations
Theorem 5.1. Let fi(z) = z and

-9 .
fu(z)=2— [n—!—fm(n—l)—ﬁ]cs_l(ﬁ)z , (z€eUmn>2). (5.1)

Then f € Td)é(h, 9) if and only if f is the form of

=Y tnfa(2), (un>0) (5.2)
n=1

and Y pun = 1.

n=1

o0

Proof. If a function f is of the form f(z) = > pnfu(2),n > 0and > p, = 1 then

in—i—ﬁn n—1) =9 (O)ay,
o (1 *ﬁ)ﬂn
< nz;;[” +hn(n = 1) = e O T =1 — a1

=Y (1= = (1 = p)(1 = 9)

n=2
=1-9

which provides (2.2), hence f € T'¢,(h,1), by Theorem 2.2.
On the other hand, if f is in the class f € Tqﬁe (h, 1), then we may set

[+ hn(n—1) =9 (€)
Hn = 1—9

an, (n>2),

and pp =1— > pp.
n=2
Then the function f is of the form (5.2) . O

6 Partial Sums

Silverman [7] examined partial sums f for the function f € A given by (1.1) established through

f1(z) = zand f,(z —Z—I—Zan m=23,4,---. 6.1)

In this paragraph, in the class qﬁﬁ,(ﬁ, 1), partial function sums can be considered and sharp lower
limits can be reached for the function. True component ratios of f to f,,, and f’ to f/ .

Theorem 6.1. Lez [ € ¢}, (h, V) and fulfils (2.1). Then

f(2) 1
m<fm(z))21dml,(zeU,meN), 6.2)

where
4 — [n—i—ﬁnl(n_fﬂl)fﬁ]' 6.3)
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Proof. Clearly,d, 1 >d, >1,n=2,3,4,---.
Thus by Theorem 2.1 we get,

Z an + dm+1 Z 2% < Z dnan < 1. (64)
n=2 n=2 n=2
. f(2) < 1 )}
Sett =dpn —(1-
etting g(z) T {fm(z) T
A1 Y. apz™!

g(z) =1+ nomt] (6.5)

1+ > apzn-!

n=2

it be good enough to show R(g(z)) > 0, (z € U). Applying (6.4) we think that

o0
dm+1 Z Qn
n=2

’9(2)—1‘<
9(2) +1 2-2> an—dmy1 Y. an
n=2 n=m+1
<1

)

which gives,

(m)2 o

hence the proof. O

Theorem 6.2. Let f in Tqbé(fu 9) and fulfils (2.1). Then
fm(z)> dm+1
R > : U,m € N), 6.6
(f(z) S T dy FEUmeN) ©0
where 5 . 9
a, = 1) =0] ©6.7)

Proof. Clearly, d,,11 >d, >1,n=2,34,.--.
Thus by Theorem 2.1 we get,

Zan + dm+1 Z an < Zdnan < 1. (68)
n=2 n=m+1 n=2
: fm(z) ( dm+1 )}
Setting h(z) = (1 + d,, —
etting blz) = {1 + “){ 7@ T
(1+dm+]) Z anznil
h(z)=1— _n=mt] (6.9)
14+ > apzn!
n=2

to show R(h(z)) > 0, (2 € U). Implementing (6.8), we attain

(1 + dm+l) Z Qn
n=2

h(z) -1
W) 1| = m =
2-2% an— (1 +dn) > an
n=2 n=m+1
<1,
which gives,
R (fm<2)) dm+l
f(Z) — 1 + dm-H ’

and hence the proof. O



ON A CERTAIN - - - BY GEGENBAUER POLYNOMIALS

349

Theorem 6.3. Let f in Tgbfo(h, 9) and fulfils (2.1). Then

§R<f’(z)>21_m+l’ (z€eU,me N),

f;n(z) dm+1
and
fvln(z) dm+l
>
m(f’(z) Z il (zeU,meN)
where
i _[n+hn(n—-1) -9

1—-9

Proof. By Setting

g(z):dmﬂ{f('z) (1’”“)}, (z € U)

fh(2) dm+1
and h(z) = (m+ 14 dps1) {J;’QE,(ZZ)) - (m +Ci’”fdm+l>} . (ze ).

The evidence is close to that of the 6.1 and 6.2 theorems, so the specifics are omitted.

7 Convolution properties

We will prove in this section that the Tqb?p(h, ) class is closed by convolution.

Theorem 7.1. Let g(z) of the form

g(z) =2z — ibnz"
n=2

(6.10)

6.11)

(6.12)

be regular in U. If f € Tcﬁé(h, ) then the function f * g is in the class Tqbfé(h, v). Here the

symbol x denoted to the Hadmard product .

Proof. Since f € T¢ (R, ), we have

oo

> I+ hn(n—1) =] (Oan, < 1-.

n—1 —
n=2

Employing the last inequality and the fact that
f(z)xg(z)=2— Zanbnz".
n=2

‘We obtain

Z[n +hn(n—1) = 9] (O)an|bn|

n=2

<3+ o — 1) — 98 (O
n=2

=1-9

and hence, in view of Theorem 2.1, the result follows.
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8 Neighbourhood results

Following [2, 4], we defined the a—neighbourhood of the function f(z) € T by
No(f) = {gGT’g —Z—E:bz ami}jnmnb|<a},“mmeazo. (8.1)

Definition 8.1. A function f € T is said to be in the class Tqb?pﬁ(h, ) if there exists a function
h € T¢L(h,9) such that

‘—1’ -7, (€U, 0<y<1). (8.2)

Theorem 8.2. If h € T¢%,(h, V) and

a(2h -9 +2)Q(p, h)
22h— 0+ 2)Q(p h) — (1 - 0)

y=1-

then Ny (h) C To57 (R, 9).

Proof. Let f € N, (h). We then find from that

o0
Zn\an — byl < a,
n=2

which is easily implies the coefficient inequality

> (6%
Z lan, — by| < —
n=2

Since h € T(;Sé(h, 1), we have from equation (2.1) that

1—9
n <
nzzza = (20— 0+ 2)Q(p, h)

and
S nla, — by
1< i
h(z) -3 b,
n=2
a (2h — 9 +2)Q(p, h)
< —
2 (2h=9+2)Q(p,h) — (1 +9)
=1- e
hence the proof. O
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