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Abstract. Quantum calculus is the modern technique vastly used for the investigations in
calculus. Summability theory is the theory of assigning sums, that is fundamental in analysis,
has wide range of applications concerning with infinite series and Fourier series. In the present
article, we have established some properties on Nörlund integrability and Tauberian theorems by
defining the Nörlund integrability method in quantum calculus.

1 Introduction

q-calculus often known as quantum calculus is a methodology that is similar to classical calculus
but focuses on obtaining q-analogous findings without employing the concept of limits. It is a
modern technique which is applied in different field of mathematics such as theory of numbers,
combinatorics, orthogonal polynomials etc. since last decades of twentieth century. It has also
wide applications in different field of science particularly in the areas like quantum theory, the-
ory of relativity and statistical mechanics of physics. Hence q-calculus is a bridge by which
mathematicians and physicist share their views in the same ground.
The theory of summability has a wide range of usage in analysis and practical mathematics.
Engineers and physicists who work with the Fourier series or analytic continuation will find the
concept useful in their work. The idea of summability has been used to a sequence of fuzzy
numbers as well as ergodic theory theorems. A summability technique is essentially a function
from the set. A summability method is a function that returns a value from a set of partial sums
of a series. Summability is the theory of assigning sums, which is fundamental in analysis, func-
tion theory, topolgy, and functional analysis in its broadest sense. Summability approaches for
continuous functions are becoming increasingly prominent in recent years. Currently, a number
of significant classical works are being released.
Throughout the paper, the functions that are dealt with are real valued functions and the numbers
are real. For any function f(t) defined on [0,∞) let

s(t) =

∫ t

0
f(x) dx. (1.1)

The above function s(t) is Cesàro integrable, if there exists a finite number s such that

1
t

∫ t

0
s(x)dx = s, as t→∞. (1.2)

For any non-decreasing function p(t) on [0,∞), let

P (t) =

∫ t

0
p(x) dx, p(x) 6= 0, p(0) = 0 (1.3)



Quantum Calculus and Nörlund integrability 353

The function s(t) is Nörlund integrable, if there is a finite number s for which

1
P (x)

∫ x

0
p(t) s(t) dt = s, as x→∞. (1.4)

It is clear that, Nörlund integrable method is regular. That is, (1.4) is true whenever (1.2) holds.
But (1.4) does not imply (1.2) always. However, by a suitable additional condition to s(x),
(1.4) implies (1.2). Such type of conditions are usually termed as Tauberian conditions, named
after the famous mathematician A.Tauber, and theorem associated with those conditions is called
Tauberian theorem.

2 q-calculus

In order to justify the article, some definitions and properties on q-calculus that are related to this
work have been presented in this section.

2.1 Definitions

Definition 2.1. For a real valued function φ(t) and a number q, the q-differential of φ(t), usually
denoted as dqφ(t) is defined as [7]

dqφ(t) = φ(qt) − φ(t) (2.1)

Clearly dqt = (q − 1)t. For any two functions φ(t) and ψ(t), we have [7]

dq(φ(t)ψ(t)) = φ(qt)dqψ(t) + ψ(t)dqφ(t) (2.2)

Definition 2.2. Dqφ(t), the q-derivative of the φ(t), is defined by [7]

Dqφ(t) =
dφ(t)

dqt
=

φ(qt) − φ(t)

(q − 1)t
(2.3)

In particular, if φ(t) is differentiable, then

limt→1Dqφ(t) =
dφ(t)

dt
(2.4)

Clearly, Leibnitz notation φ(qx)
dx is a ratio of two infinitesimals, on the other hand q-derivative is

simply a ratio.
In particular, for φ(t) = tm, where m is a positive integer

Dqt
m =

(qt)m − tm

(q − 1)t
=

qm − 1
q − 1

tm−1 = [m] tm−1, (2.5)

where

[m] = qm − 1
q − 1 = qm−1 + ...+ 1 .

For any two functions φ(t) and ψ(t) and two constants a and b

(i) Dq(a φ(t) + b ψ(t)) = a Dqφ(t) + b Dqψ(t) (2.6)

(ii) Dq(φ(t) ψ(t)) = ψ(t) Dqφ(t) + φ(qt) Dqψ(t) (2.7)

and

(iii) Dq

(φ(t)
ψ(t)

)
=

ψ(t) Dqφ(t) − φ(t) Dqψ(t)

ψ(t) ψ(qt)
(2.8)
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Thus, similar to differentiation in classical calculus, we too derive product rule and quotient
rule in q-differentiation. However, the chain rule for q-derivative, in general, does not hold. As
an exceptional case for the functions of the form φ(v(t)), where, for the constants α and β,
v(t) = αtβ

Dq[φ(v(t))] = Dq[φ(αt
β)] =

φ(αqβtβ) − φ(αtβ)

qt − t

=
φ(αqβtβ) − φ(αtβ)

αqβt − αtβ
αqβtβ − αtβ)

qt − t

=
φ(qβv) − φ(v)

qβv − v

v(qt) − u(t)

qt − t

and therefore,
Dqφ(v(t)) = (Dqβφ(v(t)) . Dqv(t). (2.9)

similar to classical calculus. On the other hand, for v(t) = t+ t2 and v(t) = sin t, the quantity
v(qt) can not be presented in some form of v easily. Hence, it is impossible to have chain rule,
in general.

Definition 2.3. Suppose Dqφ(t) = Φ(t). Then the function φ(t) is called a q-antiderivative of
Φ(t). It is denoted by

∫
Φ(t) dq(t).

It is to be noted that in quantum calculus, it is not necessarily true that Dqφ(t) = 0 if and
only if φ is constant. Further, if φ(t) is expressed as a power series φ(t) =

∑∞
n=0 an t

n , then
φ(t) has a unique q-antiderivative up to a constant term, which is∫

φ(t) dqt =
∞∑
n=0

ant
n+1

[n+ 1]
+ C (2.10)

Definition 2.4. The Jackson integrals of φ(t) over the intervals [0, k] and [0,∞) are defined
respectively by ∫ k

0
φ(t) dqt = (1− q)k

∞∑
n=0

φ(kqn) qn (2.11)

∫ ∞
0

φ(t) dqt = (1− q)
∞∑

n=−∞
φ(qn) qn (2.12)

if the series are absolute-convergent.

Thus, the integral in (2.11) is the sum of the area of an infinite number of rectangles, as shown
in figure-1 [7].

Figure 1. Jackson Integral
.
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If Φ(t) is a q-antiderivative of φ(t) at t = 0 and Φ(t) is continuous, then we have∫ b

a

φ(t) dqt = Φ(b) − Φ(a) (2.13)

Further, for any function φ, we have

Dq

( ∫ t

0
φ(x) dqx

)
= φ(t) . (2.14)

In q-calculus, the change in order of integration is given by∫ x

0

∫ t

0
φ(s) dqs dqt =

∫ x

0

∫ x

qs

φ(s) dqt dqs . (2.15)

Further, it is noted that, for n ∈ R,∫ x

0
φ(qnt) dqt =

1
qn

∫ xqn

0
φ(t) dqt . (2.16)

Definition 2.5. For 0 < q < 1 and z ∈ C with |z| < 2
1−q , the q-exponential function usually

denoted by εzq , is defined by[7]

εzq =
∞∑
n=0

zn

(n)!
(2.17)

where (n) = 1+q+...+qn−1

1
2 (1+q

n−1)
and (n)! = (1)(2)...(n).

Definition 2.6. For all x ∈ R, q-trigonometric functions such as q− sine , q− cosine are defined
respectively as [7]

Sinqx =
εixq − ε−ixx

2i
and Cosqx =

εixq + ε−ixx

2
(2.18)

such that −1 ≤ Cosqx ≤ 1 and −1 ≤ Sinqx ≤ 1

It is established by Cieśliński [4] that

DqSinqx =
Cosqx+ Cosq(qx)

2
and DqCosqx = − Sinqx+ Sinq(qx)

2
(2.19)

3 q-summability of integrals

For 0 < q < 1, we denote Rq,+ = (qn : n ∈ Z). For a function f(t) continuous on [0,∞), let

s(t) =

∫ t

0
f(x) dqx. (3.1)

Then s(x) is q-Cesàro integrable, if there exists a finite numberA such that limx→∞ σ(s(x)) = A,
where

σ(s(x)) =
1
x

∫ x

0
s(t) dqt. (3.2)

Further, for a non-decreasing function p(t) delineated on [0,∞), let

P (t) =

∫ t

0
p(t) dqt, p(t) 6= 0, p(0) = 0 . (3.3)

Then the function s(t), as defined in (3.1), is q-Nörlund integrable, if there is a finite number A
such that limx→∞ ν(s(t)) = A, where

ν(s(t)) =
1

P (t)

∫ t

0
p(x)s(x) dqx. (3.4)

From the following theorem it is clear that q-Nörlund integrability is regular. That is
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Theorem 3.1. The existence of the limit limx→∞ s(t) = l, implies limx→∞ ν(s(t)) = l .

Proof. Since limt→∞ s(t) = l, for a given δ > 0 there is a k > 0 such that |s(t)− l| < δ
2 , for

all t > k and a finite number K such that |s(t)− l| < K, for all t. Now

|ν(s(t)) − l| =
∣∣∣ 1
P (t)

∫ t

0
p(x)s(x) dqx −

1
P (t)

∫ t

0
l p(x) dqx

∣∣∣
=
∣∣∣ 1
P (t)

∫ t

0
p(x)(s(x) − l) dqx

∣∣∣
≤ 1

P (t)

∫ t

0
|p(x)(s(x) − l)| dqx

≤ 1
P (t)

∫ k

0
|p(x)(s(x) − l)| dqx +

1
P (t)

∫ t

k

|p(x)(s(x) − l)| dqx

≤ P (k)K

P (t)
+

δ

2
(P (t)− P (k))

P (t)

≤ P (k)K

P (t)
+

δ

2
.

Clearly limt→∞
P (k)K
P (t) = 0. Hence for every δ > 0, there is a k1 such that |P (k)K

P (t) | ≤
δ
2 , for

t > k1. Let k0 = max (k, k1). Then, for t > k0

|ν(s(t)) − l| < δ. (3.5)

Hence, limt→∞ ν(s(t)) = l.
Thus the proof is completed.

But, in general the counter part is not always true. For p(t) = 1, the integral
∫ x

0
cosq t + cosq(qt)

2 dqt

is q-Nörlund integrable to zero, though
∫ x

0
cosq t +cosq(qt)

2 dqt does not exist. As in the stan-
dard calculus, addition of some extra condition on s(t), limt→∞ ν(s(t)) = s may imply
limt→∞ (s(t)) = s. The main purpose of this article is to establish certain Tauberian theorems
on q-Nörlund integrability of improper integrals. Before that certain results have been presented
as follows.

Theorem 3.2. If ν(s(t)) is the q-Nörlund mean of the integral s(t), then

s(t) − ν(s(t)) = q w(t), (3.6)

where w(t) = 1
P (t)

∫ t
0 P (qx) f(x) dqx

Proof. We have

ν(s(t)) =
1

P (t)

∫ t

0
p(x) s(x) dqx

=
1

P (t)

∫ t

0
p(x)

(∫ x

0
f(y) dqy

)
dqx

=
1

P (t)

∫ t

0
f(y)

(∫ t

qy

p(x)dqt
)
dqy

=
1

P (t)

∫ t

0

(
P (t) − P (qy)

)
f(y) dqy

=

∫ t

0
f(y) dqy −

1
P (t)

∫ t

0
P (qy)) f(y) dqy

Hence

s(t) − ν(s(t)) =
1

P (t)

∫ t

0
P (qy)) f(y) dqy = r(t) (3.7)
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4 Tauberian theorems for q-Nörlund integrability

An additional condition on a sequence of integrals is said to be a Tauberian condition for a given
limitation method, which with the limitability of the sequence implies the convergence of the
sequence. The theorem associated with the Tauberian condition that establishes the validity of
the condition is usually called Tauberian theorem. The first theorem of this type was presented
by the Hungerian-born Austrian mathematician Alfred Tauber [10]. So far classical summability
method for series is concerned, an = O(1/n) and an = o(1/n) are the Tauberian conditions for
Cesàro and Abel’s method of the series

∑
an respectively. Such theorems are found in the book

of Petersen [8]. We have

Theorem 4.1. bn = O( 1
n) is a Tauberian-condition for (C, 1) limitable of

∑
bn.

Theorem 4.2. bn = o( 1
n) is a Tauberian-condition for Abel’s limitable of

∑
bn.

Varheny[11], have established a Tauberian theorem on Nörlund summability method.
Analogue to Tauber’s first theorem, following theorem for Cesàro integrability for continuous
function was found in the book of Hardy[6]:

Theorem 4.3. limx→∞ x d
dxs(x) = 0 is a Tauberian-condition for Cesàro integrable of an

integral s(x) .

Further, Hardy[6] also delineated slow oscillation concept for functions of real variables
as defined by Schimidt[9]. Dealing with Cesàro summability of integrales, Canak and Totur
([1],[2]) established certain results of Schmidt type theorem. One of the result is

Theorem 4.4. If A is Cesàro integrable of s(x) and s(x) is slowly oscillating, then s(x) converges
to A as x→∞ .

Very recently, dealing with q-Cesàro integrability, Canak et al[3] generalizes the result of
Fitouchi and Brahim[5] establishing the following theorem:

Theorem 4.5. If the function s(t) is q-Cesàro integrable to s and its q-Cesàro mean be such that
for all δ > 0, there is a k > 0 with

|σ(s(t)) − σ(s(qt))| < δ, (4.1)

for all t > k, then limt→∞ s(t) = s.

However, in the present paper we establish certain theorems on q-Nörlund integrability. We
prove :

Theorem 4.6. If s(t) is q-Nörlund integrable to s and its q-Nörlund mean be such that for all
δ > 0, there is to > 0 such that

|ν(s(t)) − ν(s(qt))| < ε, (4.2)

for all t > to , then limt→∞ s(t) = s .

Proof. The theorem is established in two steps. In the first step it is considered for s = 0 and in
the later step it is established for s 6= 0. First of all we start with s = 0. From the definition of
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ν(x), we have

ν(s(t)) − ν(s(qt)) =
1

P (t)

∫ t

0
p(x) s(x) dqx −

1
P (qt)

∫ qt

0
p(x) s(t) dqx

=
1

P (t)

∫ qt

0
p(x) s(x) dqx +

1
P (t)

∫ t

qt

p(x) s(x) dqx−
1

P (qt)

∫ qt

0
p(x) s(x) dqx

=
( 1
P (x)

− 1
P (qx)

)∫ qx

0
p(t) s(t) dqt +

1
P (x)

∫ x

qx

p(t) s(t) dqt

=
P (qt)− P (t)
P (t)P (qt)

∫ qt

0
p(x) s(x) dqx +

1
P (t)

∫ t

qt

p(x) s(x) dqx

=
P (qt)− P (t)

P (t)
ν(s(qt)) +

s(t)

P (t)
(P (t)− P (qt))

=
(

1− P (qt)

P (t)

)
(s(t) − ν(s(t)) ≤ (s(t) − ν(s(t))

Hence

ν(s(t)) − s(t) ≤ ν(s(qt)) − ν(s(t)). (4.3)

Therefore, by the condition, for every δ > 0 there exists t1 > 0 such that

|ν(s(t)) − s(t)| ≤ |ν(s(qt)) − ν(s(t))| < δ

2
. (4.4)

Further, since q-Nörlund integrability of s(t) tends to zero, for every δ > 0 there is t2 > 0 with

|ν(s(t))| < δ

2
, (4.5)

for all t > t2.
Let t0 = Max(t1, t2). Then , for t > t0

|s(t)| = |s(t)− ν(s(t)) + ν(s(t))| ≤ |s(t)− ν(s(t)|+ |ν(s(t))| < δ

2
+

δ

2
= δ. (4.6)

which implies that limt→∞ s(t) = 0.
If s 6= 0, let v(t) = s(t) − s. Proceeding as above we can show that limt→∞ v(t) = 0 which
implies that limt→∞ s(t) = 0.

From Theorem 4.6, we derive Theorem 4.7 as a corollary.

Theorem 4.7. Let s(t) be q-Nörlund integrable to s and be such that for all δ > 0, there is t0 > 0
such that

|p(t)s(t) − p(qt)s(qt)| < δ , (4.7)

for all t > t0 , then limt→∞ s(t) = s .

Proof. For establishing the theorem, we need to show that ν(s(t)), the q-Nörlund mean of the
integral s(t), satisfies the condition that satisfies s(t). By the hypothesis, for every δ > 0, there
exists t1 > 0 such that for all t > k1

|s(t) − s(qt)| < δ

2
(4.8)
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For a positive finite number A, we have |s(t)− s(qt)| < A for all t. Then

|ν(s(t)) − ν(s(qt))| =
∣∣∣ 1
P (t)

∫ t

0
p(x) s(x) dqx −

1
P (qt)

∫ qt

0
p(x) s(x) dqx

∣∣∣
=
∣∣∣ 1
P (t)

∫ t

0
p(x)s(x) dqx −

q

P (qt)

∫ t

0
p(qx) s(qx) dqt

∣∣∣
=
∣∣∣ 1
P (t)

∫ t

0
p(t) s(x) dqx −

1
P (t)

∫ t

0
p(qx) s(qx) dqx

∣∣∣
=
∣∣∣ 1
P (t)

∫ t

0
[p(x) s(x) − p(qx) s(qx)] dqx

∣∣∣
≤ 1

P (t)

∫ t

0
|p(x) s(x) − p(qx) s(qx)| dqx

≤ 1
P (t)

∫ t1

0
|p(x)s(x)− p(qx)s(qt)| dqx+

1
P (t)

∫ t

t1

|p(x)s(x)− p(qx)s(qx)| dqx

≤ t1A

P (t)
+

δ(t− t1)
2P (t)

≤ t1A

P (t)
+

δ

2

Since limt→∞
t1A
P (t) = 0, for every δ > 0, there is t2 such that | t1A

P (t) | ≤
δ
2 , for t > t2. Let

t0 = max (t1, t2). Then, for t > t0

|ν(s(t)) − ν(s(qt))| < δ. (4.9)

Hence, using Theorem 4.6, the proof is completed.
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