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Abstract In this paper, the problem of continuation of the ill-posed Cauchy problem so-
lution’s is studied for matrix factorizations of the Helmholtz equation in a two-dimensional
bounded domains. It is assumed that the solution of the problem exists and also it is contin-
uously differentiable in a closed domain with exactly given Cauchy data. In this case, an explicit
formula for the continuation of the solution as well as a regularization formula are established,
under the indicated conditions. Their continuous approximations with a given error in the uni-
form metric are given instead of the Cauchy data. Additionally a stability estimate is obtained
for the solution of the Cauchy problem in the classical sense.

1 Introduction

Aim of the paper is to work on the construction of exact and approximate solutions to the ill-
posed Cauchy problem for matrix factorizations of the Helmholtz equation. Such problems
naturally arise in mathematical physics with in various fields of natural science (for example,
electro-geological exploration, cardiology, electrodynamics, etc.). In general, the theory of ill-
posed problems for elliptic systems of equations has been sufficiently formed using the workings
of A.N. Tikhonov, V.K. Ivanov, M.M. Lavrent’ev, N.N. Tarkhanov and many other famous math-
ematicians. Among them, the most important ones are the so-called conditionally well-posed
problems, characterized by stability in the presence of additional information about the nature
of the problem data for applications. One of the most effective ways to study such problems is
to construct regularizing operators. As an, this can be given as Carleman-type formulas (as in
complex analysis) or iterative processes (the Kozlov-Maz'ya-Fomin algorithm, etc.).

This work is devoted to the main problem which is the Cauchy problem for partial differential
equations. There are classes of equations for which this problem behaves well named hyperbolic
equations. The main attention is paid to the regularization formulas for solutions of the Cauchy
problem. The question of the existence of a solution to the problem is not considered but it is
assumed a priori. At the same time, it should be noted that any regularization formula leads to
an approximate solution of the Cauchy problem for all data, even if there is no solution in the
usual classical sense. Moreover one can indicate in what sense the approximate solution turns
out to be optimal for explicit regularization formulas. In this sense, exact regularization formulas
are very useful for real numerical calculations. There is a good reason to hope that numerous
practical applications of regularization formulas are still ahead.

This problem concerns ill-posed problems, i.e., it is unstable. It is known that the Cauchy
problem for elliptic equations is unstable relatively small change in the data, it means that it
is, incorrect (example Hadamard, see, for instai®, [p. 39). There is a sizable literature
on the subject (see, e.c2d], [27], [4] [36], [37] and [25]). N.N. Tarkhanov/82] published a
criterion for the solvability of a larger class of boundary value problems for elliptic systems. In
unstable problems, the image of the operator is not is closed. Therefore, the solvability condition
can not be is written in the terms of continuous linear functionals. So, in the Cauchy problem
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for elliptic equations with data on part of the boundary of the domain the solution is usually
unique. The problem is solvable for everywhere dense a set of data, but this set is not closed.
Consequently, the theory of solvability of such problems is much more difficult and deeper than
theory of solvability of Fredholm equations. The first results in this direction appeared only
in the mid-1980s by the works of L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov (see, for
instance/83)).

While the uniqueness of the solution follows from Holmgren’s general theorem3Bethf
conditional stability of the problem follows from the work of A.N. Tikhonov (sé,[if we
restrict the class of possible solutions to a compactum.

We note that when solving applied problems, one should find the approximate valuies) of

U (z) .
and——~, z€ G, j=12
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8Uo’(6) (:E)
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8JJ]'
in the usual sense to a solutidi{z) and its derivativeag#, x € G atapointz € G.
J
andng‘s) (z)
7
is called a regularized solution of the problem. A regularized solution determines a statile method
of approximate solution of the problem.

Formulas that allow finding a solution to an elliptic equation in the case when the Cauchy
data are known only on a part of the boundary of the domain are called Carleman type formulas.
In [35], Carleman established a formula giving a solution to the Cauchy - Riemann equations
in a domain of a special form. Developing his idea, G.M. Goluzin and V.I. Kry&s} flerived
a formula for determining the values of analytic functions from data known only on a portion
of the boundary, already for arbitrary domains. A multidimensional analogue of Carleman’s
formula for analytic functions of several variables was constructed in &#e [A formula
of the Carleman type, in which the fundamental solution of a differential operator with special
properties (the Carleman function) is used, was obtained by M.M. Lavrent'ev (see, for instance
[2€]-[27]). By Using this method, Sh. Ya. Yarmukhamedov (see, for instaB€[B9]) con-
structed the Carleman functions for the Laplace and Helmholtz operators for spatial domains
of a special form, when the part of the boundary of the domain where the data is unknown
is a conical surface or a hyper surfage; = 0}. In [33], an integral formula was proved for
systems of equations of elliptic type of the first order, with constant coefficients in a bounded
domain. Using the methodology of work36]-[139], Ikehata P8] considered the probe method
and Carleman functions for the Laplace and Helmholtz equations in the three-dimensional do-
main. Considering exponentially growing solutions, Ikeh@g} pbtained a formula for solving
the Helmholtz equation with a variable coefficient for regions in space where the unknown data
are located on a section of the hypersurféce s = ¢t}. Carleman type formulas for various
elliptic equations and systems were also obtained in wdis [20], [28]-[29], [5]-[18]. In [19]
it was considered the Cauchy problem for the Helmholtz equation in an arbitrary bounded plane
domain with Cauchy data, known only on the region boundary. The solvability criterion of the
Cauchy problem for the Laplace equation in the sg@i¢ewas considered by Shlapunov I [

In work [21], the continuation of the problem for the Helmholtz equation was investigated and
the results of numerical experiments are presented. The construction of the Carleman matrix for
elliptic systems was carried out by: Sh. Yarmukhamedov, N.N. Tarkhanov, A.A. Shlapunov, I.E.
Niyozov, D.A. Juraev and others (see, for instar@€}-[39], [1]-[2], [22]-[23], [5]-[18]). The

system considered in this paper was introduced by N.N. Tarkhanov. For this system, he studied
correct boundary value problems and found an analogue of the Cauchy integral formula in a
bounded domain (see, for instan&8)).

In many well-posed problems for systems of equations of elliptic type of the first order with
constant coefficients that factorize the Helmholtz operator, it is not possible to calculate the

Following A.N. Tikhonov (see4]), a family of vector-valued functions,, s (z)
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values of the vector function on the entire boundary. Therefore, the problem of reconstructing the
solution of systems of equations of first order elliptic type with constant coefficients, factorizing
the Helmholtz operator (see, for instan&i[[19]), is one of the topical problems in the theory

of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical physics has re-
mained. This direction in the study of the properties of solutions of the Cauchy problem for the
Laplace equation was started @&6[-[27], [36]-[39] and subsequently developed 19[-[20],
[30-[33]. [28]-[29], [22-[23], [1]-[2], [5]-[18].

Let R? be a two-dimensional real Euclidean space,
x = (21, 22) € R, y = (y1, y2) € R?
G C R?is a bounded simply-connected domain with piecewise smooth boundary consisting
of the planeT”: y» = 0 and some smooth curnv lying in the half-space, > 0, i.e., 9G =

SUT.
We introduce the following notation:

r=ly—z|,a=yr— x|, w=ivVuE+a?+y u>0,

&2

Ulz) = (U(x), ..., Up(@)T, = (1, ..., 1) e R*, n=2"", m =2,

T
8% = (ai 8:2) , a% — T T = < &1 > be a transposed vectgr
1 2

E(z)=| ... — diagonal matrixz = (21, ..., z,) € R™.

Let D(¢T) be a(n x n)—dimensional matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following condition is
satisfied:

D*(EM)D(E") = E((|€]° + X)u°),
whereD*(¢7T) is the Hermitian conjugate matrie(¢7) and )\ is a real number.
We consider a system of differential equations in the region

D (;ﬁ) U(z) =0, (1.1)

ox
We denote by class of vector functions ByG)— in the domainG continuous onG =
G | 0G and satisfying systeni(l).

whereD (8) is the matrix of first-order differential operators.

2 Construction of the Carleman matrix and the Cauchy problem
Formulation of the problem. Suppose, that/(y) € A(G) and

Ulg = fly), yeS. (2.1)

Here, f(y) a given continuous vector-function ¢h It is required to restore the vector func-
tion U(y) in the domainG, based on it's valueg(y) on S.
If U(y) € A(G), then the following integral formula of Cauchy type is valid

U(z) = /N(y, z; \)U(y)dsy, z € G, (2.2)
oG
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where

N(y, z;\) = <E (p2(Ar)u’) D* (i)) D(tT).

Alsot = (t1, t2)—is the unit exterior normal, drawn at a poipthe curvedG andpz(Ar)— is
the fundamental solution of the Helmholtz equatio®fpwhereyp,(\r) defined by the following
formula (see34)): .

@ng:_%HykMy (2.3)

Itis defined that (w) is an entire function taking real values for regw = u-+iv, w,v—real
numbers) and satisfying the following conditions:

K (u) # 0, sup|o?K®)(w)| = B(u, p) < o0,

v>1

(2.4)
—o<u<oo, p=0,1,2.
Also, it can be defined the functiab(y, z; ) aty # = by the following equality
o 1 [ [ KW ul(w)
Py, z;\) = 2K (12) /Im LU = xz} mdu, (2.5)
0
wherelp(Au) = Jo(iAu)—is the Bessel function of the first kind of zero order (S8} [
In the formula2.5), choosing
K(w) = explow), K(z2) = explozz), o >0, (2.6)
we get
L e T explow)] ulp(Au)
P, (y, z;A) = 5 /Im [ rp— ] \/mdu. (2.7)
0
The formulalR.2) is true if we instead,(Ar) of substituting the function
Py (y, 23 A) = 02(Ar) + g0 (y, 23 A), (2.8)

whereg, (y, x)— is the regular solution of the Helmholtz equation with respect to the variable
including the pointy = z.
Then, the integral formula has the form:

U(z) = /Ng(y, z; N)U(y)dsy, =€ G, (2.9)
oG

where

Ny(y, z;\) = (E (Py(y, 73 N)u®) D (;;)) D(tT).

3 The continuation formula and regularization according to M.M.
Lavrent'ev’s

Theorem 3.1.Assume thal/ (y) € A(G) satisfies the inequality

Uy <1 yeT. (3.1)

Uy(z) = /Na(y, z; N)U(y)dsy, = € G, (3.2)
5
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then the following estimates are true:
|U(xz) = Uyp(z)| < C(N\,x)oe™ 7%, 0> 1, z €@, (3.3

oU(z)  OUy(x)
8xj 8xj

<C\z)oe ™, o>1 €@, j=12 (3.4)
Here and below functions bounded on compact subsets of the daghaive denote by
C(\ ).

Proof. Let us estimate inequalitB(3) firstly. Using the integral formule2(9) and the equality
(3.2), we obtain

— [ Mol w U@, + [ Noly w U @)ds, =

+/Na(y’ z; MU (y)dsy, = € G.

Taking into account the inequalit® (1), we estimate the following

U(z) = Us ()| <

/Ng(y7 z; \)U(y)dsy | <

(3.5)
< [Ny w0 ds, < / (No(y. 2 X)|ds,. =€ C.
T
We estimate the integralg [P, (y, x; \) |dsy,/‘a¢y’x/\)‘d and/’W‘dsy
2
on the parfl" of the planey2 =
Separating the imaginary part &.7), we get
. e (v2—22) OOCOSU uZ + a?
D, (y, 2;0) = 5 / 22 ulo(Au) du—
0
(3.6)
OO Y2 — T2) San\/ u? + a? ulp(Au)
2 dul|, z2 > 0.
/ Ve + a2
From {3.6) and the inequality
2
<4/ — .
IO()‘U) = A\ (3 7)
we have
/\CDg(y, z;N)|dsy < C(\,z)oe 72, 0> 1, z € G, (3.8)
T
To estimate the second integral, we use the equality
0P, (y, z; A 0P, (y, z;\) 0 0P, (y, =; A
gJy zi ) = (gsx )8; Z(yl—l‘l)i(gsx ),
! (3.9)
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Considering equalityd.€), inequality 8.7) and equality/8.S), we obtain

/‘8(1) ay’ %) ‘dsy <O\ z)oe™ ™, 0>1 x €, (3.10)
Y1

Now, we estimate the integr7{ 0% (v, 21 0) dsy.
Oy2
Taking into account equaliti8(6) and inequality'8.7), we have

/‘8(1) ayy’ %) ‘dsy <O\ z)oe™ ™, 0>1 z €, (3.11)
2

From inequalities3.7), (3.10 and B3.11), bearing in mind3.5), we get an estimat3(3).
Now let us prove inequality3(4). To do this, we take the derivatives from equaliti@<)
and B.2) with respectta;, (j = 1,2). Then, we obtain the following:

8U(§f) :/3Na(y’ I;)\>U(y)dsy+/WU(y)dsya

Ox; Ox;j Oz
S T
(3.12)
OUs(x) [ ON(y, z;\) o
oz, —/ oz U(y)dsy, € G, j=12
S
Taking into account the3(12) and inequality'8.1), we estimate the following
oU(z) ON,(y, T; \)
<
’ Oz / Oz Uly)dsy| <
3.13
/’8Ny,x/\’|U )l ds, </‘8Ny,x)\’ . ( )
0 Ox;
e, j=12
To do this, we estimate the integrals 0% (v, 21 1) ds and/ 0% (v, 21 1) ds, on the
0x1 O0xz
partT of the plane, =0
To estimate the first integrals, we use the equality
0P, (y, z; A 0P, (y, z;A) 0 0P, (y, z; A
(a:ilx ) — (gsx ) 8;1 _ _z(yl _ 901) (gsx )’
(3.14)
S = Oéz.
Given equality[8.6), inequality 8.7) and equality/8.14), we obtain
/‘m y, 7 ) ‘dsy < C(\a)oe%, o>1, z € G. (3.15)
6331
Now, we estimate the integr?{ ’8‘130(3/,1:)\)‘ dsy.
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Taking into account equality8(6) and inequality/8.7), we obtain
/ 0P, (y, 73 )
0xo
T

From inequalities3.15) and B.1€), bearing in mind3.13), we get an estimat8(4).
So, theorem 3.1 is proved. ]

dsy < C(\,x)oe 7", 0> 1, x €G. (3.16)

Corollary 3.2. The limiting equality For eacht € G, the following equalities are true

lim U, (2) = U(z), lim 2@ _ 9U()

g—00 o—oo 0 O0x; ’

j=12
We denote by, the set
G, = {(xl,xz) €eG,a>z2>¢ a= mTan(xl), O<e< a} )

It is easy to see that the €t C G is compact.

U, (z)

Corollary 3.3. If z € G., then the families of functiond/,, (=)} and{ } converge uni-

formly foro — oo. It mean that following converges are satisfied:

U, () _ oU (z)

Uole) = Ule): =5, dx;

j=12

It should be noted that the sBt = G'\G. serves as a boundary layer for this problem, as in
the theory of singular perturbations, where there is no uniform convergence.

4 Estimation of the stability of the solution to the Cauchy problem
Suppose that the cunsis given by the equation

y2=¢(y1), y1 €R,

wherey(y,) is a single-valued function satisfying the Lyapunov conditions.

We put
a= mTaxw(yl), b= mTax\ /14 42(y1).

Theorem 4.1.Suppose thal/(y) € A(G) satisfies condition3.10), and on a smooth curvé
the inequality
[U(y)| <46, 0<é <1 (4.2)

Then, the following estimates are true

U(z)| < C(\,2)o6 %, o> 1, z€G. (4.2)

PW@ <C(\z)odt, o>1, 2€G, j=12 (4.3)

833j

Proof. It is estimated inequalityd(.2) firstly. Using the integral formulé?(9), we have

U(z) = /Ng(y, z; \)U (y)ds, + /Ng(y, z; \)U(y)dsy, = € G. (4.4)
S T
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We estimate the following

z)| < /Ng(y, z; N)U (y)ds, | + /Ng(y, z; N U (y)dsy|, z € G. (4.5)
S T
Given inequality/4.1), we estimate the first integral of inequalig.).
[ Vol U@, | < [ Nl 2 U ds, <
s (4.6)

/ oy, ; \)|dsy, = € G.
s

We estimate the integralg |, (y, z; \)| ds,, /‘W‘ Sy, and/‘W‘dsy
on a smooth curve. §
Given equality[8.6) and the inequality3.7), we have
/|qag(y, ;N ds, < C(\x)oe? @) 5> 1 zeq. (4.7)

To estimate the second integral, using equalitg§)(@nd B.9) as well as inequalityd.7),
we get

/‘aq} 8y7 %) ’dsy <O\ z)oe? @) o> 1 2 eG. (4.8)
Y1

Also, to estimate the integr7{ ‘(%Ugy,:cA) ds,, using equality (3.6) and inequality (3.7),
Y2

we obtain

/‘8CD ay’ 7)) ’dsy <C(\z)oe” ) o> 1 2z e G (4.9)
Y2

From 4.7)-(4.9), bearing in mindi4.€), we obtain

<C(\2)ose’ %) 5> 1 2. (4.10)

/ Ny (y, 3 \U(y)ds,
S

By the way following inequality is known

<C\z)oe ™, o>1, z €. (4.11)

[ Vol mi 0w,

Now, taking into accoun#(.10-(4.11), bearing in mind4.5), we have
|U(z)| < M((Se‘m +De 72, 0>1 2z €G. (4.12)
Choosings from the equality

o= }In }, (4.13)
a 0
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we obtain an estimat@ (2).
Now let us prove inequality4(.3). To do this, we find the partial derivative from the integral
formula 2.9) with respect to the variable;, j = 1,2:

oU(z) _ [ ONo(y, z;)) /6Na(y, z; \) _
o = / o Uy, + [ SR, =
T
(4.14)
_ OUy(x) ON,(y, z; \) o
= on, —|—/ oz, U(y)dsy, v € G, j=1,2.
T
Here U, (z) ON,( A)
ag x g y7 Jj;
= . 4.1
S
We estimate the following
oU(x) NG (y, 73 M) /aNo(% ;)
< || ==t/ EERLAT A RS <
‘ 3:1:j - / al’j U(y)dsy * 8xj U(y)dSu -
s T
(4.16)
ON,(y, T; \) .
< =12
< 83@ / oz, U(y)dsy|, x€ G, j=1,2
Given inequality'4.1), we estimate the first integral of inequalil. L€).
ON,(y, 73 \) )\ AN, (y, T; \)
< [ | == <
° (4.17)
/ W TN G weq, j=1,2
81‘] Sy, Y ) J I Bl
S
To do this, we estimate the integrals M Sy, and/ 0% (v, 21 ) ds, on a
o0x1 Oz
smooth curves.
Given equality 8.6), inequality 8.7) and equality4.14), we obtain
/ 0@, (y, 7)) dsy < C\ z)oe? @2 o> 1 zed, (4.18)
8:81
Now, we estimate the mtegr?f ’W‘ dsy.
4
Taking into account equaht;B(G) and inequality'8.7), we obtain
/ 0@, (y, 7 1) ds, < C\ z)oe? @2 o> 1 z e, (4.19)
8:52 )
From 4.18-(4.19, bearing in mind4.17), we obtain
ONG (y, z;\) _
< ox
/ oz U(y)dsy| < C(A\,z)ode "2, 0 > 1, x € G, (4.20)
S

j=1,2
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The following is known

N .
/aa(y’x')\)U(y)dsy < C(\z)oe 72, 0> 1, z € G,

Oz (4.21)
T
i=12
Now, taking into accouni20)-(4.21), bearing in mind4.1€), we have
aU(z)|  C(\xz)o _
< 5 oa 1 ogxrp 1
‘8$j s =5 0D o>1 v eG, (4.22)
j=12
Choosings from the equality4.13), we obtain an estimatd.(3).
Thus, theorem 4.1 is proved. O

LetU(y) € A(G) and instead/(y) on S with its approximationfs(y), respectively, with an
error0 < ¢ < 1,

max|u(y) — fi(y)| < b (4.23)
We put
Uys)() = / Ny (g, 2 0) fs(y)dsy, @ € G. (4.24)
S

Theorem 4.2.LetU(y) € A(G) on the part of the plang, = 0 satisfy condition3.1)

Then, the following estimates are true

U(2) = Upgs)(@)| < C(\,2)08<, 0> 1, z € G, (4.25)

U (z) B 3U0(5)(33)

< Z 1 =12 4.26
P or; <C(\z)oda,oc>1 xe€G,j , ( )

Proof. From the integral formula®(C) and @4.24), we have

mm—mww=/m@mmwwm—
oG

—/Ng(y7m;)\)f5(y)d8yZ/Na(y,x;)\)U(y)dsy—l—
S S

+/M@mﬂmwm—LMWmmem=

= [ Moy U ) = S0 sy + [ Nl 23 U ()i,

S



REGULARIZATION OF THE CAUCHY PROBLEM 391

and

OU(z)  OUgs)(x) _ /6Na(y7x:A)U

al'j afL'j 8xj (y)dsy_
oG

_/Wfa(y)dsy—/(WU(y)dsy"'

O Iz
S S
aNg(y,(L', )\) aNa(y,wv )‘) —
+/ oz, Ul(y)ds, / oz fs(y)ds, =
T S
/aN(y’I)‘){U() fs(y)td +/8N<’(?/>”3;)‘)U( )d
o Oz vy Ox; e
3 T
j=12

Using conditions3.1) and @4.23), we estimate the following:

U (2) — Uygs) ()] = / Ny (.25 M) {U(y) — f3(9)} dsy | +
S

+ / N, (4,23 VU (y)dsy | < / N, (5 N {U ) — fo(9)}] dsy+

T S

+ / N (2 V)| U ()| dsy < 6 /S N, (25 A)| sy +
T

+ / INy(y, z; N)| dsy.
T

and
T OU (s (x 7
208e) o)) | [ el ) — gy +
S
- /aN ((;;Jm 2y /’aN a?:]x s ’HU F5(9)} dsy+

/‘8Ny,:c)\‘|U )| ds <5/‘6Ny,x/\‘ s+
Oz,

ON,(y,x; \) o

Now, repeating the proof of Theorems 3.1 and 4.1, we obtain

C(\ z)o

!U(x) — Us(s) (:L‘)’ < 5 (6e7® 4+ 1)e™ 72,
< C(\ z)o

- 2

8U(-T) Uo’(§) (Z‘) oa —oxy ;o
‘ o, o1, (0e’+1)e "2, j=1,2.
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From here, choosing from equality @.13), we have an estimate4.25) and @4.26).
So, theorem 4.2 is proved. O

Corollary 4.3. The following equalities are true

. .0
J;lTOUU(J)(‘T) = U(l)v (ISITO (91‘3' 6$j ’

for eachz € G,

aUG(J) (SIJ)

Corollary 4.4. If z € G., then the families of functiond’, 5 () } and{ o
i

uniformly for§ — 0. It mean that following converges are satisfied:

} converge

Wow)(®) _, IU(x)

Ua(é)(x) = U((E), 6Ij 8.13j 3

j=12

5 Regularization of the Cauchy problem for a domain of the type of a
curvilinear triangle

Let R? be a two dimensional real Euclidean space,
x = (21, 2) € R2, y = (y1, y2) € R?.
We introduce the following notation:

r=ly—zl,a=y —|,w=irVul+ a2+ B, wo = ira + 3,

B =Ty, 'r:tgzi, p>l,u20,5:a2,
0

G,={y: [yl <7y2, 92> 0}, 0G, = {y . |y1| = Ty2, y2 > O},

o (o o\ 0 4 o+ (&
895_(3:1:1’8zz> ,%_g , € _<£2 - transposed vectay,

Ulz) = (U(x), ..., Up(2)T, u® = (1, ..., 1) € R, n =27, m =2,

EZ)=| ... — diagonal matrixz = (21, ..., z,) € R™.

G, C R?is a bounded simply connected domain whose boundary consists of segments of
rays
lyil = 7y2, 0 <y2 <yo < oo,

with the beginning at zero and the a¥oof a smooth curve lying inside the angle of wid%h

i.e.,0G, =SUT, T = 0G,\S.

We assume tha0, z;) € G,, z2 > 0. G,—is called a domain of the type of a curvilinear
triangle.

We consider a system of differential equations in the regign

D ((,i) U(z) =0, (5.1)

whereD (;;) is the matrix of first-order differential operators.
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We denote by4(G,)the class of vector functions in the domaif, continuous on&, =
G, 0G, and satisfying systenb(]).
Formulation of the problem. Supposé/(y) € A(G,) and

Uy)ls = fly), y € 8. (5.2)

Here, f(y) a given continuous vector-function ¢h It is required to restore the vector func-
tion U(y) in the domainG,,, based on it's valueg(y) on S.
If U(y) € A(G,), then the following integral formula of Cauchy type is valid

U(z) = /N(y, ;MU (y)dsy, =€ G, (5.3)
oG
where

Ny, z;)\) = <E (p2(Mr)u®) D* <£E>) D(tT).

In the formula2.5), choosing

K(w) = E,(c"w), K(w2)=E,(0777), v=r12, 0>0, (5.4)
we get ) .

D, (y, 7, \) = —E’Jl(z‘;/pw / Im Eg(flz’:)l \/u%du. (5.5)

0

HereEp(al/Pw)— is the entire Mittag-Leffler function.

Then the integral formula has the form:

Ulz) = / No(y, & \U(y)dsy, @€ G, (5.6)
oG

where
Ny(y, z;\) = (E (Py(y, 73 N)u®) D* (i)) D(tT).

Recall the basic properties of the Mittag-Leffler function. The entire function of Mittag-
Leffler is defined by a series:

w"
ngzl Fa+ ) H(w), w=u+iv,

whererl (s)— is the Euler gamma function.

We denote byy.(5o)(e > 0, 0 < By < ) the contour in the complex plarg run in the
direction of non-decreasirgyg¢ and consisting of the following parts:
1. The beanmarg¢ = —fo, || > ¢;
2. The arc—fp < arg¢ < fp of circle || = ¢;
3. The beanarg¢ = By, || > ¢.

The contoury. (o) divides the plang into two unbounded simply connected domaiiis
andG’; lying to the left and to the right of. (), respectively.

Letp > 1, le<ﬂo<%-

Denote

1 P
wlw) =5 [ 2B 57)
¥e (Bo)

Then the following integral representations are valid:

Ep(w> = wl’(w)v z € G;v (5.8)
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E,(w) = pexplw”) + ¢, (w), zé€ G:;7 (5.9
From these formulas we find

|E,(w)| < pexp(Rewr) + [v,(w)], [argw| < Z + o,

(5.10)
|Ep(w)] < [¢p(w)], 35 +m0 < |argw| <, 7o >0
M
[P, (w)] < 5 ja)’ M = const (5.11)
E,(w) = pexpw”), w>0, w— oo, (5.12)
Further, sinceZ,(w) is real with reaks, then
_ P 2( — Rew 0
Revy(w) = o [ e s @R

e (Bo)

dg,

() = 00 [ )

2mi ¢ —w)¢ —w)
'YE(BO)
The information given here concerning the functiBp(w) is taken from (see, for instance
[10] and [13]).
In what follows, to prove the main theorems, we need the following estimates for the function
D, (y, z; A).

Lemma5.1.Letz = (z1,22) € G, y # z, 0 > XA+ 09, ¢ > 0, then
1) at 8 < « inequalities are satisfied

2
[P, (y, ;M| < C(p7)\)Ep_1(al/Pw)lnl+2r , v €G,, (5.13)
r
. E-1 1/p
R e A N (5.14)
ayj r
. E-1 oA
8cba(ya Ly )\) S C(p, A) P (G ’UJ) , TE Gp’ ] = 1’ 2. (515)
Oz, r
2) at3 > « inequalities are satisfied
. -1 Y 1412 p
P, (y, z; A)| < C(p, \)E, (o 7Pw) { In 2 exploRewy), z € G,, (5.16)
oD, (y, x; A 4,1 1 .
’gjyj)’ <C(p,NE, Yo /Pw)é exploRewy), z€G,, j=12, (5.17)
0P, (y, x; A 1,1 1 )
’(gyxj)’ < C(p,\E, Yo /f’w)é exploRewy), z€G,, j=12 (5.18)

HereC(p, \) is the function depending gnand .

For a fixedz € G, we denote bys* the part ofS on which > a. If z € G, thenS = S*
(in this case3 = Ty, and the inequality > o means thay lies inside or on the a curvilinear
triangle).

Theorem 5.2.LetU(y) € A(G,) it satisfy the inequality
Uy <1, yeT. (5.19)

U,(z) = /Ng(y7 z; U (y)dsy, =€ G, (5.20)
g
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then the following estimates are true
|U(z) — Uys(z)| < Cp(X, z)oexp(—o1”), o > 1, x € G,. (5.21)

oU(z)  OUy(x)
8$j axj

< Cy(\, z)oexp(—o’), o> 1, 2€G,, j=12 (5.22)
Here and below functions bounded on compact subsets of the damaiwe denote by

C,(\, ).

Proof. Let us first estimate inequalitp(2]). Using the integral formule5(€) and the equality

(5.20), we obtain

U) = [ Nl 2 NU@dsy + [ Naly 50U (1), =
S 0G,\S*

=Uy(z) + / No(y, z; \)U (y)dsy, x € G,,.

3G, \S*
Taking into account the inequalit (19, we estimate the following

U@ - U@l 2| [ NolysiNU()ds, | <

o (5.23)
< [ o sNU@Ids, < [ INa(g 5N ds,, @€ G,
0G,\S~ 8G,\S*
. : , D, (y, z;
To do this, we estimate the mtegrals/ | Do (y, z; N)| dsy, / ’W‘dsy
G, \S5* G ,\S* v
and / ‘mj"(ay’m)‘)‘ ds, on the paroG,\S* of the planey, = 0.
8G,\S* b2
Separating the imaginary part &.E), we obtain
(6} ( T )\) _ E;l(al/p’y) 7(ym - xm)lmEp(al/Pw) UIQ()\U) _
o'ya 3 — 271' ’u,2+7“2 u2+a2
0
(5.24)
o0 1
uReE, (o 7Pw)
/ 212 o(Au)du| , y #x, 22 >0
0

Given 5.24) and the inequality

Io(\u) < \/qu, (5.25)

(P, (y, 3 N)| dsy < Cp(N, x)oexp(—or’), o> 1, z e G, (5.26)

we have

AG,\S*

To estimate the second integral, we use the equality
0Py (y, 2;0) _ 0Po(y, 2;0) s

oY1 N Js 0y1

0D, (y, =, \)
Os ’

=2(y1 — 71)
(5.27)
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Given equality[6.24), inequality 6.25) and equality'$.27), we obtain

0P, (y, z; M)
AG,\S*
Now, we estimate the integral / ‘m)"(ay’x;)‘)‘dsy.
Y2

8G,\S*
Taking into account equalitib(24) and inequality/s.25), we obtain

D, (y, z; A
/ ‘aéyyzx)‘ dsy < C,(\,z)oexp(—ov”), 0 >1, z € G,. (5.29)
8G,\S*
From inequalities’.26), (5.28 and £.29), we obtain an estimat®21).
Now let us prove inequality5;22). To do this, we take the derivatives from equalitiBg)
and 6.20) with respect tac;, (j = 1,2), then we obtain the following:

oU(xz) [ ONy(y, x;\) / ON,(y, T; \)
§* aG,\S*

Ul(y)ds,,

(5.30)

s () _ / N0 20 17V ds, 0 € Gy j =12

0xj
S*

Taking into account theb(30) and inequality’$.19), we estimate the following

’aU(x) B 0, U(x) < / ON,(y, z; \)

ds,| <
8gcj aa:j 8.’1,‘]‘ U(y) Syl =

G ,\S*

ON, (y, z; \) ON, (y, z;\) (5.31)
< _ < RERAC SRt VA
0G,\S* 9G,\S*

ze€G, j=12

oD, (y, x; A) 0P, (y, x; A)

T dsy, and / T dSy
G ,\S* G ,\5*

on the paroG,\S* of the planey, = 0.

To do this, we estimate the integrals/ ‘

To estimate the first integrals, we use the equality

0D, (y, ; \)
Os ’

0P, (y, z; A) 0P, (y, z; \) ﬁ

p— —2 —_—
0x1 Js 0x1 (v1 = 1)

(5.32)

S:Oéz.

Given equality[6.24), inequality 6.25) and equality'$.32), we obtain

/ '8¢J(y, x; \)

D ‘dsy < C,(\,z)oexp(—or”), o> 1, z € G,. (5.33)

G, \S*

oP,(y, x; A)

Now, we estimate the integral / ‘
61‘2

‘ dsy.
8G,\S*
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Taking into account equalitys(24) and inequality5.25), we obtain

/ '8¢J(y, x; \)

s ’dsy < C,(\,z)oexp(—or”), o> 1, z € G,. (5.34)

G ,\S*

From inequalities.31), (5.33 and £.34), we obtain an estimat®22).
Theorem 5.2 is proved. |

Corollary 5.3. For eachz € G, the equalities are true

lim Ug(m) — U(l‘), lim 8U(,(x) _ aU(SC)

T—00 o—00 8I] 8I] 9

j=12

We denote by, the set

G, = {(xl,xz) €eGpa>x2>¢€, a= mjgxw(:cl), O<e< a}.

Here,p(x1) - is a curve. Itis easy to see that the &etC G, is compact.

U, (z)

Corollary 5.4.1f z € G., then the families of function&U,(z)} and { 3
Zj

} converge
uniformly foro — oo, i.e.:

U, (z)  oU(x)
8:cj = aCCj ’

Uy (z) = Ulz), j=12

It should be noted that the sBt = G,\G. serves as a boundary layer for this problem, as in
the theory of singular perturbations, where there is no uniform convergence.

Suppose that the cunsis given by the equation

y2 =v(y1), y1 € R,

wherey(y,) is a single-valued function satisfying the Lyapunov conditions.

We put
a=maxy(y1), b=maxy/1+¢2(y).

Theorem 5.5.LetU(y) € A(G,) satisfy condition$.1), and on a smooth curvgthe inequality
U(y)| <6, 0<d<1. (5.35)

Then the following estimates are true
U(x) < C,(\2)06(3) ) o>1, zeq, (5.36)

oU(z)
6xj

Here isa” = maxRewy.
yEeS

<C,\2)osd)" o>1 zeq, j=12 (5.37)

Proof. Let us first estimate inequalitp(3€). Using the integral formuléb(€), we have
w@:/mmﬁ»me+ /.MW&MW@WWxﬂ% (5.38)
S G, \S*
We estimate the following

()] < H [ NawsUwis, se6, (6:39)

G ,\S*

/ Ny (y, 3 U (y)ds,
J
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Given inequality6.35), we estimate the first integral of inequalify.89).

L No(y, 2 MU (y)ds,

< / N (g, 2 0| [U(y)] dsy <
S*

(5.40)
< 5/ INy(y, z;N)| dsy, © € G,.
We estimate the integralg |®, (y, x; \) |dsy,/‘ oy, 130) ‘ y,and/‘aq) y, 1)) '
i oy Y2
on a smooth curve.
Given equality[6.24) and the inequality5.25), we have
/|(D(,(y7 z; )| dsy < Cp(N,x)oexpo(tPa’ —~°), o>1 xeG,. (5.41)

S*

To estimate the second integral, using equalie®4) and 5.27) as well as inequalitys,.25),
we obtain

/ ’aq) 5;’ N gs, < €\ a)rexpo(ria” — 7). o > 1, 2 € G, (5.42)
1
To estimate the mtegrey[ ‘y’x/\) ds,, using equality$.24) and inequality %.25),
we obtain
/‘% a% = ’dsy < C,(\,z)oexpo(rPa” =), o >1, € G,  (5.43)
Y2

From 5.41]) - (5.43), we obtain

/Ng(y, z; N U (y)dsy| < Cp(N\,z)odexpo(rPa’ — ), o > 1, z € G,. (5.44)
S*
The following is known
No(y, ; N)U (y)ds,| < Cp(N, z)oexp(—or”), o > 1, z € G,. (5.45)

G, \S*

Now taking into accounig.44) - (5.45), we have

|U(z)| < M(é explor’a’) + 1) exp(—ov”), o > 1, z € G,,. (5.46)
Choosings from the equality
1 1
= In 5 (5.47)

we obtain an estimat®(3€).
Now let us prove inequalitys37). To do this, we find the partial derivative from the integral
formula [5.6) with respect to the variable;, j =1, 2.

OU(x) _ [ ONs(y, z;)) / ONo(y, x; M)
oz, */ oz, CWdsy T o, U Wdsyt
G ,\S*

(5.48)
+

o () / ONe (. @) 1V ds,, 2 € G,y j= 1,2

E)xj aa:j
G, \S*
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Here

OU,(x) [ ONs(y, z;N)
o = / U )i, (5.49)
S*

We estimate the following

oU (z) ON,(y, z; A) / ON,(y, x; N))
— < — s ds, — e ds,| <
‘ &nj - / (9.’)3]‘ U(y) Syl + 8l‘j U(y> S| =
S G, \S*
(5.50)
U, () ONo (y, z; M) ,
< | —— — d =12
_’ 9z, + / oz, U(y)dsy|, x € G,, j ,
G, \5*
Given inequality6.35), we estimate the first integral of inequalif.50).
[P v < || PR vl <
81‘]‘ y vl = (%zj y v =
g (5.51)
ONy(y, T; A) .
<5/’ . ds,, € G,, j=12
al,j Yy P
To do this, we estimate the integreyf 0% (v, 21 1) dsy, and/ 0P (v, zi M) ds, on a
or1 a=’172
smooth curves.
Given equality5.24), (5.25 and equality’$.32), we obtain
oD, (y, x; \)
/ ’ D ‘dsy < Cy(\,z)oexpo(tPa’ —~°), o > 1, x € G,. (5.52)
Now, we estimate the mtegr?f ’W‘ dsy.
0xo
Taking into account equaI|t15(24) and inequality$.25), we obtain
/‘aq’ 8y’ i) ‘dsy < C,(\ z)odexpo(ra’ — 1), 0 > 1, w € G,. (5.53)
2
From 5.52) - (5.59, we obtain
ON, (y, z; \)
/%U(y) < C,(\ z)od expo(rPa® —~P), o>1 xeG,, (5.54)
sx
j=12.
The following is known
ONy(y, T; \)
/ TjU(y)dsy < C,(\,z)oexp(—ov”), o > 1, x € G,, (5.55)
8G,\S*
j=12.
Now taking into accounig.54) - (5.55), we have
oU(z)|  C,(\z)o
‘ o <2 5 (6 exploPa”) + 1) exp(—o7”), o > 1, z € G,,, (5.56)

j=1,2
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Choosings from the equality.47) we obtain an estimat&(37).
Theorem 5.5 is proved. O

LetU(y) € A(G,) and instead/(y) on S with its approximatiorys(y), respectively, with an
error0 < ¢ < 1,

max|U(y) - fs(y)| < 6. (5.57)
We put

Unio@) = [ Nty 53 i0)dsy. 2 € G, (5.58)
S*
Theorem 5.6.LetU(y) € A(G,,) on the part of the plang, = 0 satisfy condition$.19).
Then the following estimates is true

U (2) = Uys) ()] < Co(N2)06(3) 0> 1, 2 €G,, (5.59)

U(x)  OUys)(x)
8:0]- axj

<o,\2)od(@) o1 26, j=1,2 (5.60)

Proof. From the integral formula®(€) and £.58), we have

U(x) = Uys)(z) = / No(y, 2 MU (y)dsy — /Na(y, z; X\) fs(y)ds, =
oG S*

= /Na(y, ; \)U (y)dsy + / Ny (y, z; AU (y)ds, —/Na(y, ;N f5(y)dsy =
5 8G,\S* S

— [Nl sV U@ - @ dsy + [ Nl s U,
S 8G,\S*

and

oU(z) Wy s)(x) / wU(y)dsy /a]v"(y’m;)‘)fé(y)dsy =

8xj 8xj al‘j 8l‘j
oG, S*

[ ON,(y, z; \) ON,(y, z; A) / ON,(y, z; N) B
5% G\ S 5+

ON,(y, T; \)
6xj

/6Nc,(y, - U(y)dsy, j=1,2.

P2 (U ) ~ St} ds,+
S G ,\S*
Using conditions%.19 and 6.57), we estimate the following:

|U(x) = Uy ()| = +

/ No(y, 2 \) (U ) — f3(0)} ds,
J

+ / N, (y, 2 \U (y)ds, | < / N, (9, 23 V] {U () — fa()} dsy+

8G,\S*

+ / N, (g, ;M) [U(y) | dsy < 6 / N (y, )| ds, + / N, (. 5 )| ds,.
9G,\S* S* 9G ,\S*
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and
oU(x)  OUs () (2) ON, (y, z;))
) - S| | [ OB () g} s, +
5’*
ON,(y, >\ ON,(
+ / (y & y)dsy| < /’ ‘HU fs(y)} |dsy+
Ox;
8G,\S*

ON,(y, T; \) ON,(y, T; \)
o\ T A < Lo\ A

" / ‘ O, ‘U sy 6/’ D ‘dsy—i-

8G,\S*
ON,(y, =, \) o
+ ‘al'] dSy,]—l,z.
G \S*

Now, repeating the proof of Theorems 5.4 and 5.5, we obtain

C,(\x)o

V() ~ Upio(a)] < 2%

(0 explor?a’) + 1) exp(—or"),

oU(z) Us(s)(x) <
an 8Ij -

Az“””)" (6 explor’a?) + 1) exp(—o?) j=1,2.

From here, choosing from equality 6.47), we obtain an estimate5.69 and 5.60).
Theorem 5.6 is proved. |

Corollary 5.7. For eachz € G,, the equalities are true

_ Uy (s)(x) _ 9U(x)
(LILnOU @ )( )_ U( ) (|5an0 037j - 8$j

_ ouU,
Corollary 5.8. If z € G, then the families of functiond/,,(5) () } and{”a(i)_(x)} converge
uniformly fors — 0, i.e.: ’

s (s)(2) - oU (z)
8xj ax]-

UU([;)(l‘) = U(x), ,7=212

6 Conclusion

Following results are obtained in the article:

Using the Carleman function, a formula is obtained for the continuation of the solution of
linear elliptic systems of the first order with constant coefficients in a spatial bounded domains
R2. The resulting formula is an analogue of the classical formula of B. Riemann, W. Voltaire and
J. Hadamard, which they constructed to solve the Cauchy problem in the theory of hyperbolic
equations. An estimate of the stability of the solution of the Cauchy problem in the classical
sense for matrix factorizations of the Helmholtz equation is given. The problem it is considered
when, instead of the exact data of the Cauchy problem, their approximations with a given devi-
ation in the uniform metric are given and under the assumption that the solution of the Cauchy

problem is bounded on péft, of the boundary of the domaigandG,,, an explicit regulariza-

tion formula is obtained. ou
Thus, functionald/,, s (z) and%@)

problemsL.1) - 2.1 and 6.1) - (5.2).

determines the regularization of the solution of
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