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Abstract In this paper, the problem of continuation of the ill-posed Cauchy problem so-
lution’s is studied for matrix factorizations of the Helmholtz equation in a two-dimensional
bounded domains. It is assumed that the solution of the problem exists and also it is contin-
uously differentiable in a closed domain with exactly given Cauchy data. In this case, an explicit
formula for the continuation of the solution as well as a regularization formula are established,
under the indicated conditions. Their continuous approximations with a given error in the uni-
form metric are given instead of the Cauchy data. Additionally a stability estimate is obtained
for the solution of the Cauchy problem in the classical sense.

1 Introduction

Aim of the paper is to work on the construction of exact and approximate solutions to the ill-
posed Cauchy problem for matrix factorizations of the Helmholtz equation. Such problems
naturally arise in mathematical physics with in various fields of natural science (for example,
electro-geological exploration, cardiology, electrodynamics, etc.). In general, the theory of ill-
posed problems for elliptic systems of equations has been sufficiently formed using the workings
of A.N. Tikhonov, V.K. Ivanov, M.M. Lavrent’ev, N.N. Tarkhanov and many other famous math-
ematicians. Among them, the most important ones are the so-called conditionally well-posed
problems, characterized by stability in the presence of additional information about the nature
of the problem data for applications. One of the most effective ways to study such problems is
to construct regularizing operators. As an, this can be given as Carleman-type formulas (as in
complex analysis) or iterative processes (the Kozlov-Maz’ya-Fomin algorithm, etc.).

This work is devoted to the main problem which is the Cauchy problem for partial differential
equations. There are classes of equations for which this problem behaves well named hyperbolic
equations. The main attention is paid to the regularization formulas for solutions of the Cauchy
problem. The question of the existence of a solution to the problem is not considered but it is
assumed a priori. At the same time, it should be noted that any regularization formula leads to
an approximate solution of the Cauchy problem for all data, even if there is no solution in the
usual classical sense. Moreover one can indicate in what sense the approximate solution turns
out to be optimal for explicit regularization formulas. In this sense, exact regularization formulas
are very useful for real numerical calculations. There is a good reason to hope that numerous
practical applications of regularization formulas are still ahead.

This problem concerns ill-posed problems, i.e., it is unstable. It is known that the Cauchy
problem for elliptic equations is unstable relatively small change in the data, it means that it
is, incorrect (example Hadamard, see, for instance [24], p. 39). There is a sizable literature
on the subject (see, e.g. [26], [27], [4] [36], [37] and [25]). N.N. Tarkhanov [32] published a
criterion for the solvability of a larger class of boundary value problems for elliptic systems. In
unstable problems, the image of the operator is not is closed. Therefore, the solvability condition
can not be is written in the terms of continuous linear functionals. So, in the Cauchy problem
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for elliptic equations with data on part of the boundary of the domain the solution is usually
unique. The problem is solvable for everywhere dense a set of data, but this set is not closed.
Consequently, the theory of solvability of such problems is much more difficult and deeper than
theory of solvability of Fredholm equations. The first results in this direction appeared only
in the mid-1980s by the works of L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov (see, for
instance [33]).

While the uniqueness of the solution follows from Holmgren’s general theorem (see [3]), the
conditional stability of the problem follows from the work of A.N. Tikhonov (see [4]), if we
restrict the class of possible solutions to a compactum.

We note that when solving applied problems, one should find the approximate values ofU(x)

and
∂U(x)
∂xj

, x ∈ G, j = 1, 2.

In this paper, we construct a family of vector-functionsU(x, fδ) = Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=

∂Uσ(δ)(x)
∂xj

, (j = 1, 2) depending on a parameterσ, and prove that under certain conditions and a

special choice of the parameterσ = σ(δ), atδ → 0, the familyUσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
converges

in the usual sense to a solutionU(x) and its derivative
∂U(x)
∂xj

, x ∈ G at a pointx ∈ G.

Following A.N. Tikhonov (see [4]), a family of vector-valued functionsUσ(δ)(x) and
∂Uσ(δ)(x)

∂xj

is called a regularized solution of the problem. A regularized solution determines a stable method
of approximate solution of the problem.

Formulas that allow finding a solution to an elliptic equation in the case when the Cauchy
data are known only on a part of the boundary of the domain are called Carleman type formulas.
In [35], Carleman established a formula giving a solution to the Cauchy - Riemann equations
in a domain of a special form. Developing his idea, G.M. Goluzin and V.I. Krylov [20] derived
a formula for determining the values of analytic functions from data known only on a portion
of the boundary, already for arbitrary domains. A multidimensional analogue of Carleman’s
formula for analytic functions of several variables was constructed in (see [25]). A formula
of the Carleman type, in which the fundamental solution of a differential operator with special
properties (the Carleman function) is used, was obtained by M.M. Lavrent’ev (see, for instance
[26]-[27]). By Using this method, Sh. Ya. Yarmukhamedov (see, for instance [36]-[39]) con-
structed the Carleman functions for the Laplace and Helmholtz operators for spatial domains
of a special form, when the part of the boundary of the domain where the data is unknown
is a conical surface or a hyper surface{x3 = 0}. In [33], an integral formula was proved for
systems of equations of elliptic type of the first order, with constant coefficients in a bounded
domain. Using the methodology of works [36]-[39], Ikehata [28] considered the probe method
and Carleman functions for the Laplace and Helmholtz equations in the three-dimensional do-
main. Considering exponentially growing solutions, Ikehata [29] obtained a formula for solving
the Helmholtz equation with a variable coefficient for regions in space where the unknown data
are located on a section of the hypersurface{x · s = t}. Carleman type formulas for various
elliptic equations and systems were also obtained in works [19], [20], [28]-[29], [5]-[18]. In [19]
it was considered the Cauchy problem for the Helmholtz equation in an arbitrary bounded plane
domain with Cauchy data, known only on the region boundary. The solvability criterion of the
Cauchy problem for the Laplace equation in the spaceRm was considered by Shlapunov in [1].
In work [21], the continuation of the problem for the Helmholtz equation was investigated and
the results of numerical experiments are presented. The construction of the Carleman matrix for
elliptic systems was carried out by: Sh. Yarmukhamedov, N.N. Tarkhanov, A.A. Shlapunov, I.E.
Niyozov, D.A. Juraev and others (see, for instance [36]-[39], [1]-[2], [22]-[23], [5]-[18]). The
system considered in this paper was introduced by N.N. Tarkhanov. For this system, he studied
correct boundary value problems and found an analogue of the Cauchy integral formula in a
bounded domain (see, for instance [33]).

In many well-posed problems for systems of equations of elliptic type of the first order with
constant coefficients that factorize the Helmholtz operator, it is not possible to calculate the
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values of the vector function on the entire boundary. Therefore, the problem of reconstructing the
solution of systems of equations of first order elliptic type with constant coefficients, factorizing
the Helmholtz operator (see, for instance [5]-[18]), is one of the topical problems in the theory
of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical physics has re-
mained. This direction in the study of the properties of solutions of the Cauchy problem for the
Laplace equation was started in [26]-[27], [36]-[39] and subsequently developed in [19]-[20],
[30]-[33], [28]-[29], [22]-[23], [1]-[2], [5]-[18].

LetR2 be a two-dimensional real Euclidean space,

x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

G ⊂ R2 is a bounded simply-connected domain with piecewise smooth boundary consisting
of the planeT : y2 = 0 and some smooth curveS lying in the half-spacey2 > 0, i.e., ∂G =
S

⋃
T .

We introduce the following notation:

r = |y − x| , α = |y1 − x1| , w = i
√

u2 + α2 + y2, u ≥ 0,

∂

∂x
=

(
∂

∂x1
,

∂

∂x2

)T

,
∂

∂x
→ ξT , ξT =

(
ξ1

ξ2

)
be a transposed vectorξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 2,

E(z) =

∥∥∥∥∥∥∥

z1 ... 0
.......

0 ...zn

∥∥∥∥∥∥∥
− diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Let D(ξT ) be a(n × n)−dimensional matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following condition is
satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

whereD∗(ξT ) is the Hermitian conjugate matrixD(ξT ) andλ is a real number.
We consider a system of differential equations in the regionG

D

(
∂

∂x

)
U(x) = 0, (1.1)

whereD

(
∂

∂x

)
is the matrix of first-order differential operators.

We denote by class of vector functions byA(G)− in the domainG continuous onG =
G

⋃
∂G and satisfying system (1.1).

2 Construction of the Carleman matrix and the Cauchy problem

Formulation of the problem. Suppose, thatU(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S. (2.1)

Here,f(y) a given continuous vector-function onS. It is required to restore the vector func-
tion U(y) in the domainG, based on it’s valuesf(y) onS.

If U(y) ∈ A(G), then the following integral formula of Cauchy type is valid

U(x) =
∫

∂G

N(y, x; λ)U(y)dsy, x ∈ G, (2.2)
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where

N(y, x; λ) =
(

E
(
ϕ2(λr)u0) D∗

(
∂

∂x

))
D(tT ).

Also t = (t1, t2)−is the unit exterior normal, drawn at a pointy, the curve∂G andϕ2(λr)− is
the fundamental solution of the Helmholtz equation inR2, whereϕ2(λr) defined by the following
formula (see [34]):

ϕ2(λr) = − i

4
H

(1)
0 (λr). (2.3)

It is defined thatK(w) is an entire function taking real values for realw, (w = u+iv, u, v−real
numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1

∣∣vpK(p)(w)
∣∣ = B(u, p) < ∞,

−∞ < u < ∞, p = 0, 1, 2.

(2.4)

Also, it can be defined the functionΦ(y, x; λ) aty 6= x by the following equality

Φ(y, x; λ) = − 1
2πK(x2)

∞∫

0

Im
[

K(w)
w − x2

]
uI0(λu)√
u2 + α2

du, (2.5)

whereI0(λu) = J0(iλu)−is the Bessel function of the first kind of zero order (see [3]).
In the formula (2.5), choosing

K(w) = exp(σw), K(x2) = exp(σx2), σ > 0, (2.6)

we get

Φσ(y, x; λ) = −e−σx2

2π

∞∫

0

Im
[

exp(σw)
w − x2

]
uI0(λu)√
u2 + α2

du. (2.7)

The formula (2.2) is true if we insteadϕ2(λr) of substituting the function

Φσ(y, x; λ) = ϕ2(λr) + gσ(y, x; λ), (2.8)

wheregσ(y, x)− is the regular solution of the Helmholtz equation with respect to the variabley,
including the pointy = x.

Then, the integral formula has the form:

U(x) =
∫

∂G

Nσ(y, x; λ)U(y)dsy, x ∈ G, (2.9)

where

Nσ(y, x; λ) =
(

E
(
Φσ(y, x; λ)u0)D∗

(
∂

∂x

))
D(tT ).

3 The continuation formula and regularization according to M.M.
Lavrent’ev’s

Theorem 3.1.Assume thatU(y) ∈ A(G) satisfies the inequality

|U(y)| ≤ 1, y ∈ T. (3.1)

If

Uσ(x) =
∫

S

Nσ(y, x; λ)U(y)dsy, x ∈ G, (3.2)
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then the following estimates are true:

|U(x)− Uσ(x)| ≤ C(λ, x)σe−σx2, σ > 1, x ∈ G, (3.3)

∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(x)
∂xj

∣∣∣∣ ≤ C(λ, x)σe−σx2, σ > 1, x ∈ G, j = 1, 2. (3.4)

Here and below functions bounded on compact subsets of the domainG, we denote by
C(λ, x).

Proof. Let us estimate inequality (3.3) firstly. Using the integral formula (2.9) and the equality
(3.2), we obtain

U(x) =
∫

S

Nσ(y, x; λ)U(y)dsy +
∫

T

Nσ(y, x; λ)U(y)dsy =

= Uσ(x) +
∫

T

Nσ(y, x; λ)U(y)dsy, x ∈ G.

Taking into account the inequality (3.1), we estimate the following

|U(x)− Uσ(x)| ≤
∣∣∣∣∣∣

∫

T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤

≤
∫

T

|Nσ(y, x; λ)| |U(y)| dsy ≤
∫

T

|Nσ(y, x; λ)| dsy, x ∈ G.

(3.5)

We estimate the integrals
∫

T

|Φσ(y, x; λ)| dsy,

∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy and
∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy

on the partT of the planey2 = 0.

Separating the imaginary part of (2.7), we get

Φσ(y, x; λ) =
eσ(y2−x2)

2π



∞∫

0

cosσ
√

u2 + α2

u2 + r2 uI0(λu)du−

−
∞∫

0

(y2 − x2) sinσ
√

u2 + α2

u2 + r2

uI0(λu)√
u2 + α2

du


 , x2 > 0.

(3.6)

From (3.6) and the inequality

I0(λu) ≤
√

2
λπu

, (3.7)

we have ∫

T

|Φσ(y, x; λ)| dsy ≤ C(λ, x)σe−σx2, σ > 1, x ∈ G, (3.8)

To estimate the second integral, we use the equality

∂Φσ(y, x; λ)
∂y1

=
∂Φσ(y, x; λ)

∂s

∂s

∂y1
= 2(y1 − x1)

∂Φσ(y, x; λ)
∂s

,

s = α2.

(3.9)
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Considering equality (3.6), inequality (3.7) and equality (3.9), we obtain

∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy ≤ C(λ, x)σe−σx2, σ > 1, x ∈ G, (3.10)

Now, we estimate the integral
∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy.

Taking into account equality (3.6) and inequality (3.7), we have

∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy ≤ C(λ, x)σe−σx2, σ > 1, x ∈ G, (3.11)

From inequalities (3.7), (3.10) and (3.11), bearing in mind (3.5), we get an estimate (3.3).
Now let us prove inequality (3.4). To do this, we take the derivatives from equalities (2.9)

and (3.2) with respect toxj , (j = 1, 2). Then, we obtain the following:

∂U(x)
∂xj

=
∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy,

∂Uσ(x)
∂xj

=
∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy, x ∈ G, j = 1, 2.

(3.12)

Taking into account the (3.12) and inequality (3.1), we estimate the following

∣∣∣∣
∂U(x)
∂xj

− ∂σU(x)
∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣

∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤

≤
∫

T

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤
∫

T

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy,

x ∈ G, j = 1, 2.

(3.13)

To do this, we estimate the integrals
∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy and
∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy on the

partT of the planey2 = 0.

To estimate the first integrals, we use the equality

∂Φσ(y, x; λ)
∂x1

=
∂Φσ(y, x; λ)

∂s

∂s

∂x1
= −2(y1 − x1)

∂Φσ(y, x; λ)
∂s

,

s = α2.

(3.14)

Given equality (3.6), inequality (3.7) and equality (3.14), we obtain

∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy ≤ C(λ, x)σe−σ x2, σ > 1, x ∈ G. (3.15)

Now, we estimate the integral
∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy.
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Taking into account equality (3.6) and inequality (3.7), we obtain

∫

T

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy ≤ C(λ, x)σe−σ x2, σ > 1, x ∈ G. (3.16)

From inequalities (3.15) and (3.16), bearing in mind (3.13), we get an estimate (3.4).
So, theorem 3.1 is proved.

Corollary 3.2. The limiting equality For eachx ∈ G, the following equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)
∂xj

=
∂U(x)
∂xj

, j = 1, 2.

We denote byGε the set

Gε =
{

(x1, x2) ∈ G, a > x2 ≥ ε, a = max
T

ψ(x1), 0 < ε < a

}
.

It is easy to see that the setGε ⊂ G is compact.

Corollary 3.3. If x ∈ Gε, then the families of functions{Uσ(x)} and
{

∂Uσ(x)
∂xj

}
converge uni-

formly forσ →∞. It mean that following converges are satisfied:

Uσ(x) ⇒ U(x),
∂Uσ(x)

∂xj
⇒ ∂U(x)

∂xj
, j = 1, 2.

It should be noted that the setEε = G\Gε serves as a boundary layer for this problem, as in
the theory of singular perturbations, where there is no uniform convergence.

4 Estimation of the stability of the solution to the Cauchy problem

Suppose that the curveS is given by the equation

y2 = ψ(y1), y1 ∈ R,

whereψ(y1) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y1), b = max
T

√
1 + ψ′2(y1).

Theorem 4.1.Suppose thatU(y) ∈ A(G) satisfies condition (3.10), and on a smooth curveS
the inequality

|U(y)| ≤ δ, 0 < δ < 1. (4.1)

Then, the following estimates are true

|U(x)| ≤ C(λ, x)σδ
x2
a , σ > 1, x ∈ G. (4.2)

∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤ C(λ, x)σδ
x2
a , σ > 1, x ∈ G, j = 1, 2. (4.3)

Proof. It is estimated inequality (4.2) firstly. Using the integral formula (2.9), we have

U(x) =
∫

S

Nσ(y, x; λ)U(y)dsy +
∫

T

Nσ(y, x; λ))U(y)dsy, x ∈ G. (4.4)
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We estimate the following

|U(x)| ≤
∣∣∣∣∣∣

∫

S

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
, x ∈ G. (4.5)

Given inequality (4.1), we estimate the first integral of inequality (4.5).
∣∣∣∣∣∣

∫

S

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤

∫

S

|Nσ(y, x; λ)| |U(y)| dsy ≤

≤ δ

∫

S

|Nσ(y, x; λ)| dsy, x ∈ G.

(4.6)

We estimate the integrals
∫

S

|Φσ(y, x; λ)| dsy,

∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy, and
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy

on a smooth curveS.

Given equality (3.6) and the inequality (3.7), we have
∫

S

|Φσ(y, x; λ)| dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G. (4.7)

To estimate the second integral, using equalities (3.6) and (3.9) as well as inequality (3.7),
we get

∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G. (4.8)

Also, to estimate the integral
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy, using equality (3.6) and inequality (3.7),

we obtain
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G. (4.9)

From (4.7)-(4.9), bearing in mind (4.6), we obtain
∣∣∣∣∣∣

∫

S

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤ C(λ, x)σδ eσ(a−x2), σ > 1, x ∈ G. (4.10)

By the way following inequality is known
∣∣∣∣∣∣

∫

T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤ C(λ, x)σe−σx2, σ > 1, x ∈ G. (4.11)

Now, taking into account (4.10)-(4.11), bearing in mind (4.5), we have

|U(x)| ≤ C(λ, x)σ
2

(δ eσa + 1)e−σx2, σ > 1, x ∈ G. (4.12)

Choosingσ from the equality

σ =
1
a

ln
1
δ
, (4.13)
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we obtain an estimate (4.2).
Now let us prove inequality (4.3). To do this, we find the partial derivative from the integral

formula (2.9) with respect to the variablexj , j = 1, 2:

∂U(x)
∂xj

=
∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy =

=
∂Uσ(x)

∂xj
+

∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy, x ∈ G, j = 1, 2.

(4.14)

Here
∂Uσ(x)

∂xj
=

∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy. (4.15)

We estimate the following

∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣

∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤

≤
∣∣∣∣
∂Uσ(x)

∂xj

∣∣∣∣ +

∣∣∣∣∣∣

∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
, x ∈ G, j = 1, 2.

(4.16)

Given inequality (4.1), we estimate the first integral of inequality (4.16).
∣∣∣∣∣∣

∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤

∫

S

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤

≤ δ

∫

S

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy, x ∈ G, j = 1, 2.

(4.17)

To do this, we estimate the integrals
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy, and
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy on a

smooth curveS.

Given equality (3.6), inequality (3.7) and equality (4.14), we obtain
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G, (4.18)

Now, we estimate the integral
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy.

Taking into account equality (3.6) and inequality (3.7), we obtain
∫

S

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy ≤ C(λ, x)σeσ(a−x2), σ > 1, x ∈ G, (4.19)

From (4.18)-(4.19), bearing in mind (4.17), we obtain
∣∣∣∣∣∣

∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤ C(λ, x)σδe−σx2, σ > 1, x ∈ G,

j = 1, 2.

(4.20)
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The following is known

∣∣∣∣∣∣

∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤ C(λ, x)σe−σx2, σ > 1, x ∈ G,

j = 1, 2.

(4.21)

Now, taking into account (4.20)-(4.21), bearing in mind (4.16), we have

∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤
C(λ, x)σ

2
(δ eσa + 1)e−σx2, σ > 1, x ∈ G,

j = 1, 2.

(4.22)

Choosingσ from the equality (4.13), we obtain an estimate (4.3).
Thus, theorem 4.1 is proved.

Let U(y) ∈ A(G) and insteadU(y) on S with its approximationfδ(y), respectively, with an
error0 < δ < 1,

max
S
|U(y)− fδ(y)| ≤ δ. (4.23)

We put

Uσ(δ)(x) =
∫

S

Nσ(y, x; λ)fδ(y)dsy, x ∈ G. (4.24)

Theorem 4.2.LetU(y) ∈ A(G) on the part of the planey2 = 0 satisfy condition (3.1)

Then, the following estimates are true

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(λ, x)σδ

x2
a , σ > 1, x ∈ G. (4.25)

∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

∣∣∣∣ ≤ C(λ, x)σδ
x2
a , σ > 1, x ∈ G, j = 1, 2. (4.26)

Proof. From the integral formulas (2.9) and (4.24), we have

U(x)− Uσ(δ)(x) =
∫

∂G

Nσ(y, x; λ)U(y)dsy−

−
∫

S

Nσ(y, x; λ)fδ(y)dsy =
∫

S

Nσ(y, x; λ)U(y)dsy+

+
∫

T

Nσ(y, x; λ)U(y)dsy −
∫

S

Nσ(y, x; λ)fδ(y)dsy =

=
∫

S

Nσ(y, x; λ) {U(y)− fδ(y)} dsy +
∫

T

Nσ(y, x; λ)U(y)dsy.
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and
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

=
∫

∂G

∂Nσ(y, x; λ)
∂xj

U(y)dsy−

−
∫

S

∂Nσ(y, x; λ)
∂xj

fδ(y)dsy =
∫

S

∂Nσ(y, x; λ)
∂xj

U(y)dsy+

+
∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy −
∫

S

∂Nσ(y, x; λ)
∂xj

fδ(y)dsy =

=
∫

S

∂Nσ(y, x; λ)
∂xj

{U(y)− fδ(y)} dsy +
∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy,

j = 1, 2.

Using conditions (3.1) and (4.23), we estimate the following:

∣∣U(x)− Uσ(δ)(x)
∣∣ =

∣∣∣∣∣∣

∫

S

Nσ(y, x; λ) {U(y)− fδ(y)} dsy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∫

T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤

∫

S

|Nσ(y, x; λ)| |{U(y)− fδ(y)}| dsy+

+
∫

T

|Nσ(y, x; λ)| |U(y)| dsy ≤ δ

∫

S

|Nσ(y, x; λ)| dsy+

+
∫

T

|Nσ(y, x; λ)| dsy.

and ∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

∣∣∣∣ =

∣∣∣∣∣∣

∫

S

∂Nσ(y, x; λ)
∂xj

{U(y)− fδ(y)} dsy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∫

T

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤

∫

S

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |{U(y)− fδ(y)}| dsy+

+
∫

T

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ δ

∫

S

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy+

+
∫

T

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy, j = 1, 2.

Now, repeating the proof of Theorems 3.1 and 4.1, we obtain

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(λ, x)σ

2
(δ eσa + 1)e−σx2.

∣∣∣∣
∂U(x)
∂xj

− Uσ(δ)(x)
∂xj

∣∣∣∣ ≤
C(λ, x)σ

2
(δ eσa + 1)e−σx2, j = 1, 2.
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From here, choosingσ from equality (4.13), we have an estimates (4.25) and (4.26).
So, theorem 4.2 is proved.

Corollary 4.3. The following equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)
∂xj

=
∂U(x)
∂xj

, j = 1, 2.

for eachx ∈ G,

Corollary 4.4. If x ∈ Gε, then the families of functions
{
Uσ(δ)(x)

}
and

{
∂Uσ(δ)(x)

∂xj

}
converge

uniformly forδ → 0. It mean that following converges are satisfied:

Uσ(δ)(x) ⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒ ∂U(x)

∂xj
, j = 1, 2.

5 Regularization of the Cauchy problem for a domain of the type of a
curvilinear triangle

LetR2 be a two dimensional real Euclidean space,

x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

We introduce the following notation:

r = |y − x| , α = |y′ − x′| , w = iτ
√

u2 + α2 + β, w0 = iτα + β,

β = τy2, τ = tg
π

2ρ
, ρ > 1, u ≥ 0, s = α2,

Gρ = {y : |y1| < τy2, y2 > 0} , ∂Gρ = {y : |y1| = τy2, y2 > 0} ,

∂

∂x
=

(
∂

∂x1
,

∂

∂x2

)T

,
∂

∂x
= ξT , ξT =

(
ξ1

ξ2

)
- transposed vectorξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 2,

E(z) =

∥∥∥∥∥∥∥

z1 ... 0
.......

0 ...zn

∥∥∥∥∥∥∥
− diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Gρ ⊂ R2 is a bounded simply connected domain whose boundary consists of segments of
rays

|y1| = τy2, 0 < y2 ≤ y0 < ∞,

with the beginning at zero and the arcS of a smooth curve lying inside the angle of width
π

ρ
,

i.e., ∂Gρ = S
⋃

T, T = ∂Gρ\S.
We assume that(0, x2) ∈ Gρ, x2 > 0. Gρ−is called a domain of the type of a curvilinear

triangle.
We consider a system of differential equations in the regionGρ

D

(
∂

∂x

)
U(x) = 0, (5.1)

whereD

(
∂

∂x

)
is the matrix of first-order differential operators.
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We denote byA(Gρ)the class of vector functions in the domainGρ continuous onGρ =
Gρ

⋃
∂Gρ and satisfying system (5.1).

Formulation of the problem. SupposeU(y) ∈ A(Gρ) and

U(y)|S = f(y), y ∈ S. (5.2)

Here,f(y) a given continuous vector-function onS. It is required to restore the vector func-
tion U(y) in the domainGρ, based on it’s valuesf(y) onS.

If U(y) ∈ A(Gρ), then the following integral formula of Cauchy type is valid

U(x) =
∫

∂Gρ

N(y, x; λ)U(y)dsy, x ∈ Gρ, (5.3)

where

N(y, x; λ) =
(

E
(
ϕ2(λr)u0) D∗

(
∂

∂x

))
D(tT ).

In the formula (2.5), choosing

K(w) = Eρ(σ
1/ρw), K(x2) = Eρ(σ

1/ργ), γ = τx2, σ > 0, (5.4)

we get

Φσ(y, x; λ) = −E−1
ρ (σ1/ργ)

2π

∞∫

0

Im

[
Eρ(σ

1/ρw)
w − xm

]
uI0(λu)√
u2 + α2

du. (5.5)

HereEρ(σ
1/ρw)− is the entire Mittag-Leffler function.

Then the integral formula has the form:

U(x) =
∫

∂Gρ

Nσ(y, x; λ)U(y)dsy, x ∈ Gρ, (5.6)

where

Nσ(y, x; λ) =
(

E
(
Φσ(y, x; λ)u0)D∗

(
∂

∂x

))
D(tT ).

Recall the basic properties of the Mittag-Leffler function. The entire function of Mittag-
Leffler is defined by a series:

∞∑

n=1

wn

Γ(1 + ρ−1n)
= Eρ(w), w = u + iv,

whereΓ(s)− is the Euler gamma function.
We denote byγε(β0)(ε > 0, 0 < β0 < π) the contour in the complex planeζ, run in the

direction of non-decreasingargζ and consisting of the following parts:
1. The beamargζ = −β0, |ζ| ≥ ε;
2. The arc−β0 < argζ < β0 of circle |ζ| = ε;
3. The beamargζ = β0, |ζ| ≥ ε.

The contourγε(β0) divides the planeζ into two unbounded simply connected domainsG−ρ
andG+

ρ lying to the left and to the right ofγε(β0), respectively.
Let ρ > 1, π

2ρ < β0 < π
ρ .

Denote

ψρ(w) =
1

2πi

∫

γε(β0)

exp(ζρ)
ζ − w

dζ, (5.7)

Then the following integral representations are valid:

Eρ(w) = ψρ(w), z ∈ G−ρ , (5.8)
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Eρ(w) = ρ exp(wρ) + ψρ(w), z ∈ G+
ρ , (5.9)

From these formulas we find

|Eρ(w)| ≤ ρ exp(Rewρ) + |ψρ(w)| , |argw| ≤ π
2ρ + η0,

|Eρ(w)| ≤ |ψρ(w)| , π
2ρ + η0 ≤ |argw| ≤ π, η0 > 0





(5.10)

|ψρ(w)| ≤ M

1 + |w| , M = const (5.11)

Eρ(w) ≈ ρ exp(wρ), w > 0, w →∞, (5.12)

Further, sinceEρ(w) is real with realw, then

Reψρ(w) =
ρ

2πi

∫

γε(β0)

2ζ −Rew

(ζ − w)ζ − w)
exp(ζρ)dζ,

Im ψρ(w) =
ρIm (w)

2πi

∫

γε(β0)

exp(ζρ)
(ζ − w)ζ − w)

dζ,

The information given here concerning the functionEρ(w) is taken from (see, for instance
[10] and [13]).

In what follows, to prove the main theorems, we need the following estimates for the function
Φσ(y, x; λ).

Lemma 5.1.Letx = (x1, x2) ∈ Gρ, y 6= x, σ ≥ λ + σ0, σ0 > 0, then
1) atβ ≤ α inequalities are satisfied

|Φσ(y, x; λ)| ≤ C(ρ, λ)E−1
ρ (σ

1/ρw)ln
1 + r2

r2 , x ∈ Gρ, (5.13)

∣∣∣∣
∂Φσ(y, x; λ)

∂yj

∣∣∣∣ ≤ C(ρ, λ)
E−1

ρ (σ1/ρw)
r

, x ∈ Gρ, j = 1, 2, (5.14)

∣∣∣∣
∂Φσ(y, x; λ)

∂xj

∣∣∣∣ ≤ C(ρ, λ)
E−1

ρ (σ1/ρw)
r

, x ∈ Gρ, j = 1, 2. (5.15)

2) atβ > α inequalities are satisfied

|Φσ(y, x; λ)| ≤ C(ρ, λ)E−1
ρ (σ

1/ρw)
(

ln
1 + r2

r2

)
exp(σRewρ

0) , x ∈ Gρ, (5.16)

∣∣∣∣
∂Φσ(y, x; λ)

∂yj

∣∣∣∣ ≤ C(ρ, λ)E−1
ρ (σ

1/ρw)
1
2

exp(σRewρ
0) , x ∈ Gρ, j = 1, 2, (5.17)

∣∣∣∣
∂Φσ(y, x; λ)

∂xj

∣∣∣∣ ≤ C(ρ, λ)E−1
ρ (σ

1/ρw)
1
2

exp(σRewρ
0) , x ∈ Gρ, j = 1, 2. (5.18)

HereC(ρ, λ) is the function depending onρ andλ.
For a fixedx ∈ Gρ we denote byS∗ the part ofS on whichβ ≥ α. If x ∈ Gρ, thenS = S∗

(in this case,β = τy2 and the inequalityβ ≥ α means thaty lies inside or on the a curvilinear
triangle).

Theorem 5.2.LetU(y) ∈ A(Gρ) it satisfy the inequality

|U(y)| ≤ 1, y ∈ T. (5.19)

If

Uσ(x) =
∫

S∗

Nσ(y, x; λ)U(y)dsy, x ∈ Gρ, (5.20)
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then the following estimates are true

|U(x)− Uσ(x)| ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (5.21)

∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(x)
∂xj

∣∣∣∣ ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, 2. (5.22)

Here and below functions bounded on compact subsets of the domainGρ, we denote by
Cρ(λ, x).

Proof. Let us first estimate inequality (5.21). Using the integral formula (5.6) and the equality
(5.20), we obtain

U(x) =
∫

S∗

Nσ(y, x; λ)U(y)dsy +
∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy =

= Uσ(x) +
∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy, x ∈ Gρ.

Taking into account the inequality (5.19), we estimate the following

|U(x)− Uσ(x)| ≤

∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
≤

≤
∫

∂Gρ\S∗
|Nσ(y, x; λ)| |U(y)| dsy ≤

∫

∂Gρ\S∗
|Nσ(y, x; λ)| dsy, x ∈ Gρ.

(5.23)

To do this, we estimate the integrals
∫

∂Gρ\S∗
|Φσ(y, x; λ)| dsy,

∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy

and
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy on the part∂Gρ\S∗ of the planey2 = 0.

Separating the imaginary part of (5.5), we obtain

Φσ(y, x; λ) =
E−1

ρ (σ1/ργ)
2π



∞∫

0

(ym − xm)ImEρ(σ
1/ρw)

u2 + r2

uI0(λu)√
u2 + α2

du−

−
∞∫

0

uReEρ(σ
1/ρw)

u2 + r2 I0(λu)du


 , y 6= x, x2 > 0.

(5.24)

Given (5.24) and the inequality

I0(λu) ≤
√

2
λπu

, (5.25)

we have ∫

∂Gρ\S∗
|Φσ(y, x; λ)| dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ, (5.26)

To estimate the second integral, we use the equality

∂Φσ(y, x; λ)
∂y1

=
∂Φσ(y, x; λ)

∂s

∂s

∂y1
= 2(y1 − x1)

∂Φσ(y, x; λ)
∂s

,

s = α2.

(5.27)
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Given equality (5.24), inequality (5.25) and equality (5.27), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (5.28)

Now, we estimate the integral
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy.

Taking into account equality (5.24) and inequality (5.25), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (5.29)

From inequalities (5.26), (5.28) and (5.29), we obtain an estimate (5.21).
Now let us prove inequality (5.22). To do this, we take the derivatives from equalities (5.6)

and (5.20) with respect toxj , (j = 1, 2), then we obtain the following:

∂U(x)
∂xj

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy,

∂Uσ(x)
∂xj

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy, x ∈ Gρ, j = 1, 2.

(5.30)

Taking into account the (5.30) and inequality (5.19), we estimate the following

∣∣∣∣
∂U(x)
∂xj

− ∂σU(x)
∂xj

∣∣∣∣ ≤

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤

≤
∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤
∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy,

x ∈ Gρ, j = 1, 2.

(5.31)

To do this, we estimate the integrals
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy, and
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy

on the part∂Gρ\S∗ of the planey2 = 0.

To estimate the first integrals, we use the equality

∂Φσ(y, x; λ)
∂x1

=
∂Φσ(y, x; λ)

∂s

∂s

∂x1
= −2(y1 − x1)

∂Φσ(y, x; λ)
∂s

,

s = α2.

(5.32)

Given equality (5.24), inequality (5.25) and equality (5.32), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (5.33)

Now, we estimate the integral
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy.
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Taking into account equality (5.24) and inequality (5.25), we obtain
∫

∂Gρ\S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (5.34)

From inequalities (5.31), (5.33) and (5.34), we obtain an estimate (5.22).
Theorem 5.2 is proved.

Corollary 5.3. For eachx ∈ Gρ, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)
∂xj

=
∂U(x)
∂xj

, j = 1, 2.

We denote byGε the set

Gε =
{

(x1, x2) ∈ Gρ, a > x2 ≥ ε, a = max
T

ψ(x1), 0 < ε < a

}
.

Here,ψ(x1) - is a curve. It is easy to see that the setGε ⊂ Gρ is compact.

Corollary 5.4. If x ∈ Gε, then the families of functions{Uσ(x)} and
{

∂Uσ(x)
∂xj

}
converge

uniformly forσ →∞, i.e.:

Uσ(x) ⇒ U(x),
∂Uσ(x)

∂xj
⇒ ∂U(x)

∂xj
, j = 1, 2.

It should be noted that the setEε = Gρ\Gε serves as a boundary layer for this problem, as in
the theory of singular perturbations, where there is no uniform convergence.

Suppose that the curveS is given by the equation

y2 = ψ(y1), y1 ∈ R,

whereψ(y1) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y1), b = max
T

√
1 + ψ′2(y1).

Theorem 5.5.LetU(y) ∈ A(Gρ) satisfy condition (5.19), and on a smooth curveS the inequality

|U(y)| ≤ δ, 0 < δ < 1. (5.35)

Then the following estimates are true

|U(x)| ≤ Cρ(λ, x)σδ(
γ
a )ρ

, σ > 1, x ∈ Gρ. (5.36)
∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤ Cρ(λ, x)σδ(
γ
a )ρ

, σ > 1, x ∈ Gρ, j = 1, 2. (5.37)

Here isaρ = max
y∈S

Rewρ
0 .

Proof. Let us first estimate inequality (5.36). Using the integral formula (5.6), we have

U(x) =
∫

S∗

Nσ(y, x; λ)U(y)dsy +
∫

∂Gρ\S∗
Nσ(y, x; λ))U(y)dsy, x ∈ Gρ. (5.38)

We estimate the following

|U(x)| ≤
∣∣∣∣∣∣

∫

S∗

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
, x ∈ Gρ. (5.39)
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Given inequality (5.35), we estimate the first integral of inequality (5.39).
∣∣∣∣∣∣

∫

S∗

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤

∫

S∗

|Nσ(y, x; λ)| |U(y)| dsy ≤

≤ δ

∫

S∗

|Nσ(y, x; λ)| dsy, x ∈ Gρ.

(5.40)

We estimate the integrals
∫

S∗

|Φσ(y, x; λ)| dsy,

∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy, and
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy

on a smooth curveS.
Given equality (5.24) and the inequality (5.25), we have

∫

S∗

|Φσ(y, x; λ)| dsy ≤ Cρ(λ, x)σ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.41)

To estimate the second integral, using equalities (5.24) and (5.27) as well as inequality (5.25),
we obtain

∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y1

∣∣∣∣ dsy ≤ Cρ(λ, x)σ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.42)

To estimate the integral
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂ym

∣∣∣∣ dsy, using equality (5.24) and inequality (5.25),

we obtain
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂y2

∣∣∣∣ dsy ≤ Cρ(λ, x)σ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.43)

From (5.41) - (5.43), we obtain
∣∣∣∣∣∣

∫

S∗

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤ Cρ(λ, x)σδ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.44)

The following is known
∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
≤ Cρ(λ, x)σ exp(−σγρ), σ > 1, x ∈ Gρ. (5.45)

Now taking into account (5.44) - (5.45), we have

|U(x)| ≤ Cρ(λ, x)σ
2

(δ exp(στρaρ) + 1) exp(−σγρ), σ > 1, x ∈ Gρ. (5.46)

Choosingσ from the equality

σ =
1
aρ

ln
1
δ
, (5.47)

we obtain an estimate (5.36).
Now let us prove inequality (5.37). To do this, we find the partial derivative from the integral

formula (5.6) with respect to the variablexj , j = 1, 2.:

∂U(x)
∂xj

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +

+
∂Uσ(x)

∂xj
+

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy, x ∈ Gρ, j = 1, 2.

(5.48)
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Here
∂Uσ(x)

∂xj
=

∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy. (5.49)

We estimate the following

∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ))
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤

≤
∣∣∣∣
∂Uσ(x)

∂xj

∣∣∣∣ +

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ))
∂xj

U(y)dsy

∣∣∣∣∣∣∣
, x ∈ Gρ, j = 1, 2.

(5.50)

Given inequality (5.35), we estimate the first integral of inequality (5.50).
∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣
≤

∫

S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤

≤ δ

∫

S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy, x ∈ Gρ, j = 1, 2.

(5.51)

To do this, we estimate the integrals
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy, and
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy on a

smooth curveS.
Given equality (5.24), (5.25) and equality (5.32), we obtain

∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x1

∣∣∣∣ dsy ≤ Cρ(λ, x)σ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.52)

Now, we estimate the integral
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy.

Taking into account equality (5.24) and inequality (5.25), we obtain
∫

S∗

∣∣∣∣
∂Φσ(y, x; λ)

∂x2

∣∣∣∣ dsy ≤ Cρ(λ, x)σδ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (5.53)

From (5.52) - (5.53), we obtain
∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)

∣∣∣∣∣∣
≤ Cρ(λ, x)σδ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, 2.

(5.54)

The following is known
∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤ Cρ(λ, x)σ exp(−σγρ), σ > 1, x ∈ Gρ,

j = 1, 2.

(5.55)

Now taking into account (5.54) - (5.55), we have
∣∣∣∣
∂U(x)
∂xj

∣∣∣∣ ≤
Cρ(λ, x)σ

2
(δ exp(στρaρ) + 1) exp(−σγρ), σ > 1, x ∈ Gρ,

j = 1, 2.

(5.56)
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Choosingσ from the equality (5.47) we obtain an estimate (5.37).
Theorem 5.5 is proved.

Let U(y) ∈ A(Gρ) and insteadU(y) onS with its approximationfδ(y), respectively, with an
error0 < δ < 1,

max
S
|U(y)− fδ(y)| ≤ δ. (5.57)

We put

Uσ(δ)(x) =
∫

S∗

Nσ(y, x; λ)fδ(y)dsy, x ∈ Gρ. (5.58)

Theorem 5.6.LetU(y) ∈ A(Gρ) on the part of the planey2 = 0 satisfy condition (5.19).
Then the following estimates is true

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(λ, x)σδ(

γ
a )ρ

, σ > 1, x ∈ Gρ. (5.59)

∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

∣∣∣∣ ≤ Cρ(λ, x)σδ(
γ
a )ρ

, σ > 1, x ∈ Gρ, j = 1, 2. (5.60)

Proof. From the integral formulas (5.6) and (5.58), we have

U(x)− Uσ(δ)(x) =
∫

∂Gρ

Nσ(y, x; λ)U(y)dsy −
∫

S∗

Nσ(y, x; λ)fδ(y)dsy =

=
∫

S∗

Nσ(y, x; λ)U(y)dsy +
∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy −

∫

S∗

Nσ(y, x; λ)fδ(y)dsy =

=
∫

S∗

Nσ(y, x; λ) {U(y)− fδ(y)} dsy +
∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy.

and

∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

=
∫

∂Gρ

∂Nσ(y, x; λ)
∂xj

U(y)dsy −
∫

S∗

∂Nσ(y, x; λ)
∂xj

fδ(y)dsy =

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy +
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy −
∫

S∗

∂Nσ(y, x; λ)
∂xj

fδ(y)dsy =

=
∫

S∗

∂Nσ(y, x; λ)
∂xj

{U(y)− fδ(y)} dsy +
∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy, j = 1, 2.

Using conditions (5.19) and (5.57), we estimate the following:

∣∣U(x)− Uσ(δ)(x)
∣∣ =

∣∣∣∣∣∣

∫

S∗

Nσ(y, x; λ) {U(y)− fδ(y)} dsy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗
Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣∣
≤

∫

S∗

|Nσ(y, x; λ)| |{U(y)− fδ(y)}| dsy+

+
∫

∂Gρ\S∗
|Nσ(y, x; λ)| |U(y)| dsy ≤ δ

∫

S∗

|Nσ(y, x; λ)| dsy +
∫

∂Gρ\S∗
|Nσ(y, x; λ)| dsy.
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and

∣∣∣∣
∂U(x)
∂xj

− ∂Uσ(δ)(x)
∂xj

∣∣∣∣ =

∣∣∣∣∣∣

∫

S∗

∂Nσ(y, x; λ)
∂xj

{U(y)− fδ(y)} dsy

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣

∫

∂Gρ\S∗

∂Nσ(y, x; λ)
∂xj

U(y)dsy

∣∣∣∣∣∣∣
≤

∫

S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |{U(y)− fδ(y)} | dsy+

+
∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ δ

∫

S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy+

+
∫

∂Gρ\S∗

∣∣∣∣
∂Nσ(y, x; λ)

∂xj

∣∣∣∣ dsy, j = 1, 2.

Now, repeating the proof of Theorems 5.4 and 5.5, we obtain

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(λ, x)σ

2
(δ exp(στρaρ) + 1) exp(−σγρ),

∣∣∣∣
∂U(x)
∂xj

− Uσ(δ)(x)
∂xj

∣∣∣∣ ≤
Cρ(λ, x)σ

2
(δ exp(στρaρ) + 1) exp(−σγρ) j = 1, 2.

From here, choosingσ from equality (5.47), we obtain an estimates (5.59) and (5.60).
Theorem 5.6 is proved.

Corollary 5.7. For eachx ∈ Gρ, the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)
∂xj

=
∂U(x)
∂xj

, j = 1, 2.

Corollary 5.8. If x ∈ Gε, then the families of functions
{
Uσ(δ)(x)

}
and

{
∂Uσ(δ)(x)

∂xj

}
converge

uniformly forδ → 0, i.e.:

Uσ(δ)(x) ⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒ ∂U(x)

∂xj
, j = 1, 2.

6 Conclusion

Following results are obtained in the article:
Using the Carleman function, a formula is obtained for the continuation of the solution of

linear elliptic systems of the first order with constant coefficients in a spatial bounded domains
R2. The resulting formula is an analogue of the classical formula of B. Riemann, W. Voltaire and
J. Hadamard, which they constructed to solve the Cauchy problem in the theory of hyperbolic
equations. An estimate of the stability of the solution of the Cauchy problem in the classical
sense for matrix factorizations of the Helmholtz equation is given. The problem it is considered
when, instead of the exact data of the Cauchy problem, their approximations with a given devi-
ation in the uniform metric are given and under the assumption that the solution of the Cauchy
problem is bounded on partT , of the boundary of the domainsG andGρ, an explicit regulariza-
tion formula is obtained.

Thus, functionalsUσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
determines the regularization of the solution of

problems (1.1) - (2.1) and (5.1) - (5.2).
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