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Abstract The paper deals with the concept of α Wronskian for the following fractional dif-
ferential equation

(DαDα + P (s)Dα +Q(s))y(s) = R(s).

We establish the relation between proposed Wronskian and ordinary Wronskian and obtain some
important results including Abel’s formula for fractional differential equations. The method
of variation of constants has been briefly explained to solve the problems. The procedure is
very clear to understand how to observe one of the solutions of the basis of the differential
equation, then to find other independent solutions and therefore to reach the complete solution.
The fractional derivative used is the UD derivative.

1 Introduction

A solution of fractional order differential equations is now one of the emerging areas of present
research as nowadays the research is being done in fractional space. To model, a physical phe-
nomena differential equation of arbitrary order plays a major role to study. Various studies show
their frequent appearances in different applications such as plasma physics, biomathematics,
theology fluid mechanics, control theory, nanoscience engineering, signal processing, etc. Gen-
erally, one faces the problem to find the solutions of concerned fractional differential systems
[3, 4, 10].
Though several fractional derivatives have been suggested by many mathematicians with their
different approaches like Grunwald-Letnicov presented the fractional derivative in discrete form
using a backward difference operator, Riemann-Liouville introduced the fractional derivative in
continuous form by defining fractional integral first, Caputo made some modifications in the R-L
definition [2, 5, 7], etc. Besides these, series solution (Mittag-Leffler) and numerical schemes
(ADM) [1, 8, 12] are also there. The method of variation of constants is not applicable always
[9] due to some lack of basic properties. One has to ensure that which definition is conformable
with the applied process.
Recall that the concept of Wronskian exhibits a prerequisite role in the study of differential equa-
tions. Here we work with the UD derivative [6, 11] which is also defined in classical form, but
with some different approach. Proposed Wronskian is an extension of the usual Wronskian in
the natural sense. Some problems have been discussed to illustrate the application of the work.

2 Basic definitions

Definition 2.1. Let h(s) be a real valued function defined on [0,∞), then the UD derivative [6]
is defined in the following manner

Dαh(s) = αh′(s) + (1− α)h(s), where 0 6 α 6 1, (2.1)

provided h(s) is differentiable.

Definition 2.2. The UD -Integral [6] of a continuous function h(s) for positive real numbers is
defined as:

Iα(h(s)) =
1
α
e−

(1−α)
α s

∫
h(s).e

(1−α)
α sds+Ae−

(1−α)
α s; α ∈ (0, 1], (2.2)
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where A is constant.

Definition 2.3. Consider the second order linear fractional differential equation

(DαDα + P (s)Dα +Q(s))y = R(s). (2.3)

If u, v be its two basic solutions, then α- Wronskian Wα is presented as

Wα[u, v] =

∣∣∣∣∣ u v

Dαu Dαv

∣∣∣∣∣
= α(uv′ − vu′)
= αW [u, v]

where W denotes the ordinary Wronskian of the linear differential equation of second order.

Remark 2.4. It is to be noted that if u, v are dependent(or independent) for the ordinary DE then
they will be the same for the corresponding fractional differential equation except α is not equal
to zero.

3 Some results of α- Wronskian

Theorem 3.1. Let u, v be two basis solutions of (2.3) and if the Wα is zero then

dα

dsα

(u
v

)
= (1− α)u

v
(3.1)

Proof. With UD derivative,

((1− α) + αD)
(u
v

)
=

(1− α)uv + α(uv′ − vu′)
v2

= (1− α)u
v
.

Here it is clear that if W = 0 instead of Wα = 0, we get the same result.

Corollary 3.2. If u, v are constant multiple of each other that is both are dependent then

dα

dsα

(u
v

)
= (1− α)u

v
;α ∈ [0, 1].

Theorem 3.3.

(2(1− α) + P (s))Wα + α2DW = 0, (3.2)

where D and W denotes the ordinary differentiation and ordinary Wronskian respectively.

Proof. We have

Dα [Wα(u, v)] = α((1− α) + αD)(uv′ − vu′)
= α [(1− α)(uv′ − vu′) + α(uv′′ − vu′′)]
= α(1− α)W [u.v] + α2DW [u.v].

Also,

Dα [Wα(u, v)] = uDαDαv − vDαDαu− (1− α)uv + (1− α)vDαu

= u(−PDα −Q)v − v(−PDα −Dα)u− (1− α)uv + (1− α)vDαu

= (P + (1− α))(vDαu− uDαv)

= −(P + (1− α))Wα.

Therefore,

α(1− α)W + α2DW + (P + (1− α))Wα = 0. (3.3)
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Theorem 3.4.

Wα[u, v] = e−
1
α

∫
(P+2(1−α))ds. (3.4)

Proof. From the above theorem we have

Dα(Wα) = −(P + (1− α))Wα

⇒ D(Wα)

Wα
= −P + 2(1− α)

α

solving we get

Wα[u, v] = Ae−
1
α

∫
(P+2(1−α))dt.

Theorem 3.5. If one solution of second order linear fractional differential equation

(DαDα + P (s)Dα +Q(s))y = 0 (3.5)

is u then the other independent solution is given by

v =
u

α

∫
e−

1
α

∫
(P+2(1−α))ds

u2 ds. (3.6)

Proof. Let the second solution is v = u.r where u is known solution and r is a function of s.
Then,

Wα = α(uv′ − vu′)
= α[u(ur′ + ru′)− u′ru]
= αr′u2.

Now

Wα[u, v] = Ae−
1
α

∫
(P+2(1−α))ds

⇒ αu2r′ = Ae−
1
α

∫
(P+2(1−α))ds

⇒ s = C

∫
e−

1
α

∫
(P+2(1−α))ds

u2 ds.

and hence, complete solution of homogeneous part will be

y = c1u+ c2u

∫
e−

1
α

∫
(P+2(1−α))ds

u2 ds. (3.7)

Theorem 3.6. In (3.5)

(a) y = sm is the one of the part of the basis if

((1− α)2 + α2m(m− 1) + 2α(1− α)m) + s(α+ (1− α)m)P (s) + s2Q(s) = 0.

(b) y = ems is the one of the part of the basis if

((1− α)2 + α2m2 + 2α(1− α)m) + ((1− α) + αm)P (s) +Q(s) = 0.

Proof. Using the definition of UD derivative to get

((1− α) + αD)2sm + P (s)((1− α) + αD)sm + smQ(s) = 0.

and
((1− α) + αD)2ems + P (s)((1− α) + αD)ems + emsQ(s) = 0.

respectively.
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4 Technique to solve the concerned problems

Consider the first order fractional linear DE

(Dα + p(s))y(s) = r(s);Dα ≡ ((1− α) + αD);α ∈ (0, 1] (4.1)

let u(s) be the solution of homogeneous part of (4.1).
Assume that particular solution is yp = v(s)u(s) such that yp satisfy (4.1). We get

v′(s) =
r(s)

αu(s)

and so general solution is given by

y(s) = c1u+
1
α

∫
r(s)

u(s)
ds. (4.2)

which is same as
y(s) = c1e

− (p(s)+(1−α))s
α +

1
α

∫
r(s)e

(p(s)+(1−α))s
α ds

as
u(s) =

1
α
e

−(p(s)+(1−α))s
α .

Now consider the second order linear FDE

(DαDα + P (s)Dα +Q(s))y(s) = R(s); α ∈ (0, 1] (4.3)

If two basis solutions of (4.3) are u and v then we try to write its particular solution
yp = Au+Bv.

where A and B are functions depends on s with the following condition:

A′u+B′v = 0. (4.4)

Since, Dαy = (1− α)(Au+Bv) + α(Au′ +Bv′) and

DαDαy = (1− α)[(1− α)(Au+Bv) + α(Au′ +Bv′)] + α[(1− α)(Au′ +Bv′)+

α(A′u′ +B′v′ +Au′′ +Bv′′)].

Putting the values of DαDαy,Dαy, y with (4.3) using (4.4), we obtain

α2(A′u′ +B′v′) = R (4.5)

solving (4.4) and (4.5) for A and B, we get

A = − 1
α

∫
Rv

Wα
ds and B =

1
α

∫
Ru

Wα
ds (4.6)

and therefore complete solution is

y(s) = c1u+ c2v +Au+Bv.

5 Solved examples

The section demonstrates, some solved problems, based on the discussed theory.

Example 5.1. Consider the example

(D2/3D2/3 − 4D2/3 + 3)y = sin e−s
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obviously the independent solutions of the homogeneous part are es and e4s using Theorem 3.6
so that,

W2/3 = 2e5s.

A = − 1
α

∫
Rv

Wα
ds

= −3
2

∫
e4s sin e−s

2e5s ds

=
3
4

cos e−s,

and

B =
1
α

∫
Ru

Wα
ds

=
3
2

∫
es sin e−s

2e5s ds

=
3
4
(e−3s cos e−s − 3e−2s sin e−s − 6e−s cos e−s + 6 sin e−s).

Therefore,
y = c1e

s + c2e
4s +Aes +Be4s.

Example 5.2. Consider the example

s2 d
1/2

ds1/2

(
d1/2y

ds1/2

)
− (s2 + 2s)

d1/2y

ds1/2 +

(
s+

5
4

)
y = s6es

we may write (
D1/2D1/2 −

(
1 +

2
s

)
D1/2 +

1
s2

(
s+

5
4

))
y = s4es

we observe that y = s satisfy the homogeneous part of above equation so u = s and get the
second solution using Theorem 3.5

v =
u

α

∫
e−

1
α

∫
(P+2(1−α))ds

u2 ds

= 2
∫
e
∫
−2(1+ 2

s)ds

s2 ds

=
2
3
s4.

Solution set of the basis is
{
s, 2

3s
4
}

so that W 1
2
= 4s4.

Now

A = − 1
α

∫
Rv

Wα
ds

= −2
∫
s4es

( 2
3s

4
)

4s4 ds

= −1
3
(s4 − 4s3 + 12s2 − 24s+ 24)es
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and

B =
1
α

∫
Ru

Wα
ds

= 2
∫
s4es (s)

4s4 ds

=
1
2
(s− 1)es.

Therefore,
y = c1s+ c2s

4 +As+Bs4.

6 Conclusion

We investigate the α Wronskian with its properties and develop the method of variation of con-
stants using the UD derivative. Establishing various results here the algorithm is used to solve
some fractional differential equation which coincides with classical differential equation at α=1.
A new approach for fractional derivative has been used which produces analytic results but is
different from the classical derivative and Conformable derivative.
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