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Abstract. We introduce the notion of -y-derivations in rings and obtain commutativity results
in a prime ring R admitting multiplicative y-derivations. We show that the symmetry of v with
various conditions on Lie products and Jordan products gives rise to commutativity of R. We
obtain (i) a characterization of Galois field of any characteristic by using Lie product and ~-
derivation, and (ii) a characterization of Galois field of characteristic 2 by using Jordan product
and ~y-derivation.

1 Introduction

A derivation d on a ring R is a linear map on R which satisfies the Leibniz rule, that is,
d(zy) = zd(y) + d(x)y for all z,y € R. Derivations on rings and nearrings have been widely
studied in the literature. Posner [23] and Herstein [11, 12, 13] obtained some of the impor-
tant early results on prime rings with derivations. Derivations and commutativity in prime and
semiprime rings with different types of derivations have been widely investigated. Bresar [7]
introduced the notion of generalized derivations. Argag [2] generalized a well-known result of
Posner [23] on commuting derivations to semiprime rings and obtained some sufficient con-
ditions for a derivation to be commuting on a nonzero ideal of the ring. Recently, Gélbasi
and Ogirtici [9] obtained certain sufficient conditions for a multiplicative semiderivation on a
semiprime ring to be commuting on an ideal of the ring. Mamouni and Tamekkante [20] studied
commutativity in prime rings admitting two generalized derivations. Birkenmeier, Heatherly and
Lee [6] studied the interconnections between different types of prime ideals in nearrings. Bha-
vanari, Kuncham and Kedukodi [5] introduced the graph of a nearring with respect to an ideal of
the nearring and studied the relation between 3-primeness of the ideal and ideal symmetry of the
corresponding graph. Kedukodi, Kuncham and Bhavanari [15] introduced equiprime, 3-prime
and c-prime fuzzy ideals of nearrings, and subsequently, Koppula, Kedukodi and Kuncham [16]
related the ideas to decision making. Koppula, Kedukodi and Kuncham [17] studied the no-
tion of perfect ideals of seminearrings. Derivations in prime nearrings were first investigated by
Bell and Mason [4] and several other results were obtained by Bell [3], Wang [24], Kamal and
Shaalan [14], among others. Aishwarya, Kedukodi and Kuncham [1] obtained commutativity
results in prime nearrings through permutation identities satisfied by certain subsets and gave a
characterization of Galois field using permutation identities. It is well-known that Galois fields
are extensively used in cryptography and coding theory (Lidl and Niederreiter [19], Mullen and
Mummert [21], etc.). Different classes of codes based on Galois fields are used in various appli-
cations like error detection and correction, data transmission and storage, among many others.
Gomez-Torrecillas, Lobillo, Navarro and Sanchez-Hernandez [10] defined differential convolu-
tional codes which are built from a derivation of the rational function field of a Galois field. In
this paper, we introduce y-derivation on a ring R as a generalization of derivations and provide
natural examples of y-derivations. The definition of y-derivation extends the notion of derivation
studied in Zhu and Xiong [25, 26], Li and Pan [18]. We obtain commutativity results in prime
rings using multiplicative ~y-derivations satisfying conditions on Lie and Jordan products. These
results generalize the commutativity results obtained by Bell [3], Kamal and Shaalan [14]. Fi-
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nally, we obtain a characterization of Galois fields of any characteristic and a characterization of
Galois fields of characteristic 2 by using y-derivations.

We would like to point out that one of the consequences of the results on «y-derivations is that
the symmetry of Pascal’s triangle arising due to the well-known discrete combinatorial formula
"C, = "C,_,, naturally induces the commutativity of multiplication in complex numbers.

2 Preliminaries

Let (R, +,-) be a ring. For subsets A and B of R, the product of the sets A and B is AB =
{abla € A, b€ B}. If A= {a} or B = {b}, we write AB simply as aB or Ab respectively. A
non-empty subset K of R is called a subsemigroup of (R, ) if KK C K. A non-empty subset
K of R is called a semigroup left ideal (resp. semigroup right ideal) of R if RK C K (resp.
KR C K) and a semigroup ideal of Rif RK C K and KR C K. An element x in R is said to
centralize a subset K of R if xk = kx for all k € K. The set {x € R|xzr = rx forall r € R} is
called the multiplicative center of R, and is denoted by Z(R). R is said to be a prime ring if for
all a,b € R, aRb = {0} implies that either a = 0 or b = 0. For a,b € R, [a, b] denotes the Lie
product ab—ba and aob denotes the Jordan product ab+ba. For A, B C R, [A, B] denotes the set
{[a,b]|a € A,b € B} and A o B denotes the set {a ob|a € A,b € B}. If A= {a} or B = {b},
[A, B] is simply written as [a, B] or [A, b] respectively, and A o B is written as a o B or Ao b
respectively. For a natural number ¢t and K C R, we write tK = {k+k+---+ k | k € K}. For
t times

more definitions and properties, we refer to Pilz [22], Ferrero and Ferrero [8].

The following definition is from a communicated paper by Aishwarya, Kedukodi and Kun-
cham.

Definition 2.1. Let ) # K C R. K is called a {0}-weak semigroup left ideal ({0}-weak semi-
group right ideal) of R if there exists a nonzero subset I of K such that RI C K (resp. IR C K).

Note that every non-zero semigroup left ideal (resp. nonzero semigroup right ideal) of R is a
{0}-weak semigroup left ideal of R (resp. {0}-weak semigroup right ideal of R).

Definition 2.2. (Zhu and Xiong [26], Li and Pan [18]) A linear map d from a unital algebra
A over a field F to an A-bimodule M is called a generalized derivation if for all a,b € A,
d(ab) = d(a)b+ ad(b) — ad(1)b, where 1 is the unit of A.

Proposition 2.3. (Bell [3]) Let R be a prime ring. If © € Z(R) \ {0}, then x is not a zero divisor.

Proposition 2.4. (Bell [3]) Let K be a nonzero semigroup left ideal of a prime ring R. If x € R
is such that x centralizes K, then x € Z(R).

Proposition 2.5. (Bell [3]) Let R be a prime ring. If Z(R) contains a nonzero semigroup left
ideal or a nonzero semigroup right ideal, then R is commutative.

3 ~ - derivation

Definition 3.1.Let R be aring and let v : R x R — R. A functiond : R — R is called a
multiplicative ~y-derivation on R if for all z,y € R,

d(zy) = zd(y) + zy(x,y) y + d(z) y.

We say that + is symmetric if v(z,y) = v(y, ) for all z,y € R. It is clear that if y(z,y) = ¢
for all z,y € R then v is symmetric. When v(z,y) = 0, we get d(zy) = zd(y) + d(z)y, that is,
d is a (usual) multiplicative derivation.

Definition 3.2. Let R be a ring. A multiplicative y-derivation d on R is called a y-derivation on
R if d is additive.

First, we give some examples to illustrate the concept and the idea involved.
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Example 3.3. Let F be a field and let F[z] be the polynomial ring over F. Let f(x) be an
element of F[x] with degree at least 2 and let R = F[z]|/(f(x)), the quotient ring of F'[x] by the
principal ideal generated by f(z). Define d : R — R by

d(p(z) + (f(2))) = zp(z) + (f())
and lety : R x R — R be defined by
v (p(@) + (f(2)), a(@) + (f(2))) = —2 + (f(2))-

By (i) and (ii), d is a y-derivation on R.

In particular, when F' is a Galois field and R = F[z]/(z™ — 1) for some n > 2, the elements
of R can be seen as codewords of length n over the field F. It is well-known that the ideals of R
exactly correspond to the cyclic codes. The function d is the cyclic right shift operation on the
set of codewords. The cyclic right shift operation is a y-derivation on R.

Example 3.4. A generalized derivation d (refer Definition 2.2) from a unital algebra A over a
field F' to an .A-bimodule M is a y-derivation on F when A = M = F, where v(z,y) = —d(1).

Example 3.5. Let R be a ring and let n be a natural number. Consider the ring

ail a2 co. Qrp

az] azy ... Q2n Lo
MH(R): . . . . |aij€R71§7’7.7§n

anl Ap2 .. QAnn

of all matrices of order n x n over R. For ¢ € R, define dy,d, : M,,(R) — M, (R) by

ail ain oo Qrp call caln ... Caip

anq ano e (0529 cany cann e CQop
di(| . . )=

Apl Ap2 ... Qpn Clpl CQp2 ... CQpnp

and

aill aiz ce. Qrp ajipic appc ... QaipcC

any any ... Qop a)ic ax»pc ... QaypcC
14 =

anl  Gp2 ... Qnn ap1 € Ap2C ... AnnC
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Let vy : M, (R) x M,(R) — M,(R) be defined by

— 0 0
0 —c 0
v(A,B) = :
0 0 —c
nxn
Then d; and d, are multiplicative y-derivations on M, (R).
cosf —sinf

Example 3.6. Consider the ring M,(R). For 6 € R, ) is the standard rotation

sind  cosd

matrix where ¢ denotes the polar angle of rotation.
Then d : M>(R) — M;(R) defined by

d(A) = (cos@ —sin&)A

sinf@ cos6

is a multiplicative y-derivation on M;(IR), where v : M>(R) x M,(R) — M, (R) is defined by

cos(m + 6) —sin(7r+9)> B (—cos& sin @ >

sin(m +6) cos(m+0) —sinf —cosf

”Y(AvB) = (

the matrix corresponding to rotation by a polar angle 7 4 6. Clearly, d rotates the column vectors
of A by an angle 6 in the anticlockwise direction.

Example 3.7. The identity map on a ring R is a (usual) derivation only when the multiplication
in R is trivial. Such a severe restriction is not imposed by ~y-derivations. For instance, if R is any
ring with 1 then the identity map is a -derivation on R; where v(z,y) = —1.

Example 3.8.Let R be aring. Lety : Rx R — Randlet f : R — R be a y-derivation
on R. For an element ¢ € Z(R), the functions d, : R — R defined by d,(z) = f(z)c and
d, : R — R defined by d,(z) = ¢ f(z) are a v,-derivation and a ~,-derivation respectively on
R, where v,,7, : R x R — R are defined by v,(z,y) = v(x,y) c and ~,.(z,y) = c¢vy(x,y). The
~,-derivation d; and the ~,-derivation d,. are induced by the y-derivation f on R.

In what follows, v : R x R — R and the image of ~ is denoted by

['={y(z,y)|z,y € R}.

Proposition 3.9. Let K be a subsemigroup of (R, ) and let V be a non-empty subset of R such
that KV C K. If d is a multiplicative ~-derivation on R such that d([V, K]) = {0} (resp.
d(VoK)={0})and [V,K|T'V = {0} (resp. (Vo K)TV ={0}), then [v, K] K d(v) = {0} V
veV.

Proof. Letk € K,v € V. We have kv € K and hence
d([v, kv]) = d(v(kv) — (kv)v) = d((vk — kv)v) = d([v,k]v) =0

(resp. d(v o (kv)) = d(v(kv) + (kv)v) = d((vk + kv)v) = d((vo k) v) = 0).
This gives
[v, k] d(v) + [v, k] ¥([v, k],v) v + d([v,k]) v =0
(resp. (vok)d(v)+ (vok)y(vok,v)v+d(vok)v=D0).

Hence we get [v, k] d(v) = 0 (resp. (v o k) d(v) = 0). This implies that vkd(v) = kvd(v) (resp.
vkd(v) = —kvd(v)).

Now let I € K. We have [k € K and hence vikd(v) = lkvd(v) (resp. vlkd(v) = —lkvd(v)).
As vkd(v) = kvd(v) (resp. vkd(v) = —kvd(v)), we get vikd(v) = lvkd(v) = 0 (resp.
vikd(v) = —I(—vkd(v)) = 0). Therefore vikd(v) = lvkd(v). This gives (vl — lv)kd(v) =
[v,1] kd(v) = {0}. Hence [v, K] K d(v) = {0}.

O
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Theorem 3.10. Let S := {c € R|zcy = ycx Yz € Z(R),y € R}. Then S is a subgroup of
(R, +) containing Z(R). If R is prime and Z(R) # {0} then S = Z(R).

Proof. As 0 € S, the set S is non-empty. Let a,b € S. Let z € Z(R) and y € R. We have
z(a —b)y = x(ay — by) = zay — zby = yax — ybxr = y(ax — bx) = y(a — b)x, showing that
a—be S. Hence S is a subgroup of (R, +). Now we will show that Z(R) C S. Letb € Z(R).
Let z € Z(R) and y € R. We have z(by) = z(yb) = (yb)xz. Hence b € S, which implies
Z(R) C S. Suppose R is prime and Z(R) # {0}. Leta € S. Letz € Z(R)\ {0} and y € R. We
have zay = yax, which implies that zay —yax = 0. This gives ayx —yax = (ay—ya)z = 0. By
Proposition 2.3, we get ay —ya = 0, that is, ay = ya. Hence a € Z(R), showing that S C Z(R).
Hence S = Z(R). i

The following result generalizes the well-known result by Wang [24]: If z € Z(R), then
d(z) € Z(R).

Proposition 3.11. Let v be symmetric and let I' C S. Let d be a multiplicative ~y-derivation on
R. Ifx € Z(R), then d(z) € Z(R).

Proof. Lety € R. We have d(zy) = zd(y) + 2 v(z,y) y + d(z)y and
d(yz) = d(y)z + yy(y, z) z + yd(x). As zy = yx, we get

zd(y) +zy(x,y) y + d(2)y = d(y)z +yy(y, z) = + yd(x).

This gives d(z)y = yd(z), and hence d(z) € Z(R). i

4 ~ - derivation and commutativity of prime rings
In this section, R denotes a prime ring unless specified otherwise.

Proposition 4.1. Let K be a {0}-weak semigroup right (resp. left) ideal of R. If x € R is such
that Kz = {0} (resp. xK = {0}), then z = 0.

Proof. Suppose that K is a {0}-weak semigroup right (resp. left) ideal of R. Let I be a nonzero
subset of K such that IR C K (resp. RI C K). Suppose Kz = {0} (resp. zK = {0}). Then
(IR)xz = {0} (resp. x(RI) = {0}), which implies that (I \ {0}) Rz = {0} (resp. zR(I \ {0}) =
{0}). As R is prime and [ is nonzero, we get z = 0. |

The following result generalizes Proposition 4.2 of Kamal and Shaalan [14] for rings.

Proposition 4.2. Let K be a nonzero semigroup left ideal of R and let V' be a nonzero semigroup
left ideal of R such that VK C V (resp. let V be a semigroup right ideal and a {0}-weak
semigroup left ideal of R such that KV C V). If vk = —kv Vv € V, k € K, then R is
commutative and is of characteristic 2.

Proof. Letv € V, k.l € K. We have kl € K and hence v(kl) = —(kl)v = (—k)(lv) =
(=k)(—vl) = k(vl), that is, (vk)l = (kv)l. This implies (vk — kv)l = 0. By Proposition 4.1,
vk = kv. Now by Lemma 4.1 (iii) in Kamal and Shaalan [14], R is commutative. We have
vk € V and hence —I(vk) = (vk)l = v(kl) = —(kl)v because kl € K. Aslv € V, we have
—(kl)v = —k(lv) = (lv)k, and hence —lvk = lvk. This gives lvk+lvk = (lv+lv)k = (2lv)k =
0. Hence (2lv)K = {0}. By Proposition 4.1, 2iv = (2I)v = 0, hence (2])V = {0}. Again by
Proposition 4.1, 21 = {0}. Hence 2K = {0}. By Proposition 2.8 in Kamal and Shaalan [14],
2R = {0}, that is, R is of characteristic 2. |

Proposition 4.3. Let K be a semigroup left (resp. right) ideal and a {0}-weak semigroup right
(resp. left) ideal of R. If x,y € R are such that tKy = {0}, thenz =0 ory = 0.

Proof. Suppose Ky = {0}. As RK C K (resp. KR C K), tRKy = {0} (resp. xt KRy =
{0}). As R is prime, we get x = 0 or Ky = {0} (resp. K = {0} or y = 0). By Proposition
41, z=0o0ry =0. O
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The following theorem extends Theorem 2.1 of Bell [3] and Theorem 3.4 of Kamal and
Shaalan [14] for rings.

Theorem 4.4. Let K be a nonzero semigroup left (resp. right) ideal of R. Let v be such that
[K, RT K| = {0} (resp. [K, KT R] = {0}). If d is a multiplicative vy-derivation on R such that
{0} # d(K) C Z(R), then R is commutative.

Proof. Suppose K is a nonzero semigroup left ideal of R and [K, RT' K| = {0}. Leta € K
be such that d(a) # 0. Note that d(a) € Z(R). Let k,l € K. Then kl € K and hence
d(kl)1 =1d(kl). This gives

kd() 1+ Ey(k, D) > +d(k) > =1kd(l) + Lk~(k, 1)1+ 1d(E) L.
Asd(K) C Z(R) and [K,RT K| = {0}, we get
k1d(l) + ky(k, ) P +d(k) 1> = 1kd(l) + k(K1) 1> + d(k) 1.

This gives k1d(l) = 1 kd(l), thatis, (kI — Ik)d(l) = 0. Taking | = a, we get (ka — ak)d(a) = 0.
Now by Proposition 2.3, ka = ak. Hence a centralizes K.
As ka € K, we have d(ka) | = ld(ka), that is,

kd(a)l +k~y(k,a)al + d(k)al =1kd(a) + lk~y(k,a)a + 1d(k)a.
This gives
kld(a) +1k~(k,a)a+d(k)la=1kd(a)+1lkvy(k,a)a+dk)la.

Hence we get kld(a) = lkd(a), that is, (kl — lk)d(a) = 0. By Proposition 2.3, kl = [k, that
is, kl — Ik = [k, 1] = 0. Therefore [K, K| = {0}.
Let x € R. As xa € K, we have d(za) | =l d(za), that is,

zd(a)l+zv(x,a)al + d(z)al =lzd(a) + lzy(z,a)a + 1d(z)a,
which gives
zld(a) +zy(z,a)al +1d(z)a=1xd(a) +zvy(z,a)al+1d(z)a

because K is a semigroup left ideal of R. Thus we have z!d(a) = [z d(a), and hence (zl —
lz)d(a) = 0. By Proposition 2.3, 21 = [z. Hence K C Z(R). Now by Proposition 2.5, R is
commutative.

The proof is analogous for the other case. O

Theorem 4.5. Let K be a nonzero semigroup ideal of R and let A be a nonzero semigroup
left (resp. right) ideal of R. Let v be symmetric, I C Z(R) and [A,K|T" = {0}. Ifd is
a multiplicative ~y-derivation on R such that d([A, K]) = {0} and d(A) # {0}, then R is
commutative.

Proof. As [A, K|T = {0}, we get [A, K]T' A = {0}. Let a € A be such that d(a) # 0. By
Proposition 3.9, we have [a, K| Kd(a) = {0}. Now using Proposition 4.3, we get [a, K] =
{0}, that is, a centralizes K. By Proposition 2.4, we have a € Z(R). As v is symmetric, by
Proposition 3.11 we get d(a) € Z(R). Lety € A, k € K. We have ka € K and hence
d([y, ka]) = 0. This gives

d(yka — kay) = d(yka — kya) = d((yk — ky)a) = d([y, k] a) = 0.
Therefore,

d([y, k] a) = [y, k] d(a) + [y, k] v([y, k], @) a + d([y, k]) a = 0.

This gives [y, k] d(a) = 0. Now by Proposition 2.3, we get [y, k] = 0. Hence y centralizes K.
Now by Proposition 2.4, y € Z(R), and hence A C Z(R). By Proposition 2.5, R is commutative.
O
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Example 4.6. Let n be a natural number. The function d on the ring of complex numbers C
defined by d(0) = 0 and d(re'?) = r(logr)™e? for r # 0, is a multiplicative y-derivation on C,
where v : C x C — C is defined by

n—1

(€0 ryet®) = g::] nCy (logr,)" % (logr,)k ifn>2,r, #0andr, #0

0 otherwise.

For n > 2, the coefficients of powers of logr,, logr, are binomial coefficients which can be
computed as the interior part of the well-known Pascal’s triangle as shown in Figure 1. It follows
easily from the symmetry of Pascal’s triangle that - is symmetric. The ring C is prime and all
conditions of Theorem 4.5 hold with K = A = C. Using Theorem 4.5, we conclude that
symmetry of ~ induces commutativity of C through the derivation d.

1 - —= Oth row
1st row
2nd row
3rd row

nth row

Figure 1. Symmetry of v (symmetry of Pascal’s triangle) induces commutativity of C

Now we give a characterization of Galois fields in terms of Lie product and ~y-derivation.
Theorem 4.7. Suppose
(1) R is finite;

(2) there exist a nonzero semigroup ideal K of R, a nonzero semigroup left (resp. right) ideal
A of R, afunctiony: R x R — R and a multiplicative ~-derivation d on R such that

(a) ~yis symmetric, ' C Z(R) and [A, K]T = {0},
(b) d([A, K]) = {0} and d(A) # {0}.

Then R is a Galois field. Conversely, if R is a Galois field, then the conditions (1), (2a), (2b)
hold in R.

Proof. Let conditions (1), (2a), (2b) hold. By Theorem 4.5, R is a commutative ring. Let
a,b € R be such that ab = 0. Then for € R, arb = abr = Or = 0. This gives aRb = {0}. As
R is prime, we get either a = 0 or b = 0. Hence R is an integral domain. As R is finite, R is a
Galois field.

Conversely, suppose that R is a Galois field with ¢ = p” elements. Then we have R =
{0,,02, ..., 0971}, where a is a root of a primitive polynomial and a9~! = 1. Hence the
condition (/) holds. It is clear that as R has no nonzero zero divisors, R is prime. Consider
the map d : R — R defined by d(0) = 0 and d(a*) = o*~! for 1 < k < g — 1. Define
v:RxR — Rbyy(z,y) = —a~!'. Letx,y € R. (i) Letx = 0 ory = 0. Then we
have zd(y) + xv(z,y)y + d(z)y = 0+0+0 = 0 = d(0) = d(zy). (ii)) Let z # 0 and
y # 0. Then z = o” and y = o for some r, s where 1 < r,s < g — 1. This gives zd(y) +
xv(x,y)y—!—d(:v)y — arasfl_'_ar(_afl)as_._arflas — ar“'s’l—ar"'s’l—i—aT"'s’l ="t =
d(a"%) = d(a"a®) = d(zy). Hence d is a multiplicative -derivation on R. Note that v is
symmetric and I' C R = Z(R). By choosing K = A = R, we have [A, K|[" = {0}I" = {0},
d([A, K]) = d({0}) = {0} and d(A) = d(R) # {0}. Hence the conditions (2a), (2b) hold.

|
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The following results extend Theorem 4.3 and Corollary 4.4 of Kamal and Shaalan [14] for
rings.

Proposition 4.8. Let K be a semigroup left ideal and a {0}-weak semigroup right ideal of R.
Let A be a non-empty subset of R such that KA C K. If d is a multiplicative ~-derivation on
R such that d(Ao K) = (Ao K)T" = {0} and d(A) # {0}, then A C Z(R). Further, if Ais a
nonzero semigroup left (resp. right) ideal of R, then R is commutative.

Proof. As (Ao K)I' = {0}, we get (Ao K)I' A = {0}. Let a € A be such that d(a) # 0. By
Proposition 3.9, we have [a, K| K d(a) = {0}. Then by Proposition 4.3, we get [a, K| = {0},
that is, a centralizes K. By Proposition 2.4, a € Z(R). Lety € A, k € K. We have ka € K and
hence d(yoka) = 0. This gives d(yka+kay) = d(yka+kya) = d((yk+ky)a) = d((yok)a) = 0.
Thus we have
(yok)d(a) + (yok)v(yok,a)a+d(yok)a=0,

which gives

(y o k)d(a) = 0. M
Let ! € K. Then we have [k € K. Using Equation (1), we get (y o lk) d(a) = 0. This gives

ylk d(a) = —=lky d(a) = (=1)(ky)d(a) = —l(—ykd(a)) = lyk d(a).

Therefore, we have
(ylk — lyk)d(a) = (yl —ly) kd(a) = 0.

Hence (yl — ly) K d(a) = {0}. As d(a) # 0, by Proposition 4.3, we get yl — ly = 0. Hence y
centralizes K. Now by Proposition 2.4, y € Z(R) and hence A C Z(R). Suppose A is a nonzero
semigroup left (resp. right) ideal of R. By Proposition 2.5, R is commutative.

o

Theorem 4.9. Let K be a nonzero semigroup left (resp. right) ideal of R and let ) # A be a
nonzero subset of R such that KA C K. Let y be symmetric and I C S. If d is a multiplicative
y-derivation on R such that d(Ao K) = (Ao K)I' = {0} and d(A) # {0}, then R is of
characteristic 2. Further, if A is a nonzero semigroup left (resp. right) ideal of R, then R is
commutative.

Proof. By Proposition 4.8, we have A C Z(R). Leta € Abesuchthatd(a) # 0. Lety € A\{0}
and k € K. By Equation (1) in the proof of Proposition 4.8, we have (y o k) d(a) = 0. Also we
have a € Z(R). Hence by Proposition 3.11, d(a) € Z(R). By Proposition 2.3, we gety o k = 0
because d(a) # 0. Hence yk + ky = 0. Asy € Z(R), we get

ky+ky=(k+k)y=0.

Now Proposition 2.3 gives k + k = 2k = 0. Hence 2K = {0}. By Proposition 2.8 in Kamal
and Shaalan [14], we get 2R = {0}. Hence R is of characteristic 2. Suppose A is a nonzero
semigroup left (resp. right) ideal of R. As A C Z(R) by Proposition 4.8, R is commutative by
Proposition 2.5.

|

Now we give a characterization of Galois fields of characteristic 2 in terms of Jordan product
and -derivation.
Theorem 4.10. Suppose
(1) R is finite;
(2) there exist a nonzero semigroup left (resp. right) ideal K of R, a nonzero semigroup left
(resp. right) ideal A of R, a functiony : R x R — R and a multiplicative ~y-derivation d on
R such that
(a) KACK;
(b) v is symmetric, T C S and (Ao K)T" = {0};



440 Aishwarya S., Kedukodi Babushri Srinivas and Kuncham Syam Prasad

(c) d(Ao K) = {0} and d(A) # {0}.

Then R is a Galois field of characteristic 2. Conversely, if R is a Galois field of characteristic 2,
then the conditions (1), (2a), (2b), (2¢) hold in R.

Proof. Let conditions (1), (2a), (2b), (2c) hold. By Theorem 4.9, R is a commutative ring of
characteristic 2. Now as in the proof of Theorem 4.7, R is a Galois field. Conversely, suppose
that R is a Galois field of characteristic 2 with ¢ elements. Then ¢ = 2" for some n > 1. As R is
of characteristic 2, for any a, b € R, the Jordan product of a and b coincides with the Lie product
of a and b. That is, a o b = ab + ba = ab — ba = [a, b]. Now, the rest of the proof follows from
Theorem 4.7. O
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