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Abstract. We introduce the notion of γ-derivations in rings and obtain commutativity results
in a prime ring R admitting multiplicative γ-derivations. We show that the symmetry of γ with
various conditions on Lie products and Jordan products gives rise to commutativity of R. We
obtain (i) a characterization of Galois field of any characteristic by using Lie product and γ-
derivation, and (ii) a characterization of Galois field of characteristic 2 by using Jordan product
and γ-derivation.

1 Introduction

A derivation d on a ring R is a linear map on R which satisfies the Leibniz rule, that is,
d(xy) = xd(y) + d(x)y for all x, y ∈ R. Derivations on rings and nearrings have been widely
studied in the literature. Posner [23] and Herstein [11, 12, 13] obtained some of the impor-
tant early results on prime rings with derivations. Derivations and commutativity in prime and
semiprime rings with different types of derivations have been widely investigated. Brešar [7]
introduced the notion of generalized derivations. Argaç [2] generalized a well-known result of
Posner [23] on commuting derivations to semiprime rings and obtained some sufficient con-
ditions for a derivation to be commuting on a nonzero ideal of the ring. Recently, Gólbaşi
and Öğirtici [9] obtained certain sufficient conditions for a multiplicative semiderivation on a
semiprime ring to be commuting on an ideal of the ring. Mamouni and Tamekkante [20] studied
commutativity in prime rings admitting two generalized derivations. Birkenmeier, Heatherly and
Lee [6] studied the interconnections between different types of prime ideals in nearrings. Bha-
vanari, Kuncham and Kedukodi [5] introduced the graph of a nearring with respect to an ideal of
the nearring and studied the relation between 3-primeness of the ideal and ideal symmetry of the
corresponding graph. Kedukodi, Kuncham and Bhavanari [15] introduced equiprime, 3-prime
and c-prime fuzzy ideals of nearrings, and subsequently, Koppula, Kedukodi and Kuncham [16]
related the ideas to decision making. Koppula, Kedukodi and Kuncham [17] studied the no-
tion of perfect ideals of seminearrings. Derivations in prime nearrings were first investigated by
Bell and Mason [4] and several other results were obtained by Bell [3], Wang [24], Kamal and
Shaalan [14], among others. Aishwarya, Kedukodi and Kuncham [1] obtained commutativity
results in prime nearrings through permutation identities satisfied by certain subsets and gave a
characterization of Galois field using permutation identities. It is well-known that Galois fields
are extensively used in cryptography and coding theory (Lidl and Niederreiter [19], Mullen and
Mummert [21], etc.). Different classes of codes based on Galois fields are used in various appli-
cations like error detection and correction, data transmission and storage, among many others.
Gómez-Torrecillas, Lobillo, Navarro and Sánchez-Hernández [10] defined differential convolu-
tional codes which are built from a derivation of the rational function field of a Galois field. In
this paper, we introduce γ-derivation on a ring R as a generalization of derivations and provide
natural examples of γ-derivations. The definition of γ-derivation extends the notion of derivation
studied in Zhu and Xiong [25, 26], Li and Pan [18]. We obtain commutativity results in prime
rings using multiplicative γ-derivations satisfying conditions on Lie and Jordan products. These
results generalize the commutativity results obtained by Bell [3], Kamal and Shaalan [14]. Fi-
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nally, we obtain a characterization of Galois fields of any characteristic and a characterization of
Galois fields of characteristic 2 by using γ-derivations.

We would like to point out that one of the consequences of the results on γ-derivations is that
the symmetry of Pascal’s triangle arising due to the well-known discrete combinatorial formula
nCr = nCn−r, naturally induces the commutativity of multiplication in complex numbers.

2 Preliminaries

Let (R,+, ·) be a ring. For subsets A and B of R, the product of the sets A and B is AB =
{ab | a ∈ A, b ∈ B}. If A = {a} or B = {b}, we write AB simply as aB or Ab respectively. A
non-empty subset K of R is called a subsemigroup of (R, ·) if KK ⊆ K. A non-empty subset
K of R is called a semigroup left ideal (resp. semigroup right ideal) of R if RK ⊆ K (resp.
KR ⊆ K) and a semigroup ideal of R if RK ⊆ K and KR ⊆ K. An element x in R is said to
centralize a subset K of R if xk = kx for all k ∈ K. The set {x ∈ R |xr = rx for all r ∈ R} is
called the multiplicative center of R, and is denoted by Z(R). R is said to be a prime ring if for
all a, b ∈ R, aRb = {0} implies that either a = 0 or b = 0. For a, b ∈ R, [a, b] denotes the Lie
product ab−ba and a◦b denotes the Jordan product ab+ba. ForA,B ⊆ R, [A,B] denotes the set
{[a, b] | a ∈ A, b ∈ B} and A ◦ B denotes the set {a ◦ b | a ∈ A, b ∈ B}. If A = {a} or B = {b},
[A,B] is simply written as [a,B] or [A, b] respectively, and A ◦ B is written as a ◦ B or A ◦ b
respectively. For a natural number t and K ⊆ R, we write tK = {k + k + · · ·+ k︸ ︷︷ ︸

t times

| k ∈ K}. For

more definitions and properties, we refer to Pilz [22], Ferrero and Ferrero [8].
The following definition is from a communicated paper by Aishwarya, Kedukodi and Kun-

cham.

Definition 2.1. Let ∅ 6= K ⊆ R. K is called a {0}-weak semigroup left ideal ({0}-weak semi-
group right ideal) ofR if there exists a nonzero subset I ofK such thatRI ⊆ K (resp. IR ⊆ K).

Note that every non-zero semigroup left ideal (resp. nonzero semigroup right ideal) of R is a
{0}-weak semigroup left ideal of R (resp. {0}-weak semigroup right ideal of R).

Definition 2.2. (Zhu and Xiong [26], Li and Pan [18]) A linear map d from a unital algebra
A over a field F to an A-bimodule M is called a generalized derivation if for all a, b ∈ A,
d(ab) = d(a)b+ ad(b)− ad(1)b, where 1 is the unit of A.

Proposition 2.3. (Bell [3]) Let R be a prime ring. If x ∈ Z(R) \ {0}, then x is not a zero divisor.

Proposition 2.4. (Bell [3]) Let K be a nonzero semigroup left ideal of a prime ring R. If x ∈ R
is such that x centralizes K, then x ∈ Z(R).

Proposition 2.5. (Bell [3]) Let R be a prime ring. If Z(R) contains a nonzero semigroup left
ideal or a nonzero semigroup right ideal, then R is commutative.

3 γ - derivation

Definition 3.1. Let R be a ring and let γ : R × R → R. A function d : R → R is called a
multiplicative γ-derivation on R if for all x, y ∈ R,

d(xy) = x d(y) + x γ(x, y) y + d(x) y.

We say that γ is symmetric if γ(x, y) = γ(y, x) for all x, y ∈ R. It is clear that if γ(x, y) = c
for all x, y ∈ R then γ is symmetric. When γ(x, y) = 0, we get d(xy) = xd(y) + d(x)y, that is,
d is a (usual) multiplicative derivation.

Definition 3.2. Let R be a ring. A multiplicative γ-derivation d on R is called a γ-derivation on
R if d is additive.

First, we give some examples to illustrate the concept and the idea involved.
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Example 3.3. Let F be a field and let F [x] be the polynomial ring over F . Let f(x) be an
element of F [x] with degree at least 2 and let R = F [x]/〈f(x)〉, the quotient ring of F [x] by the
principal ideal generated by f(x). Define d : R→ R by

d
(
p(x) + 〈f(x)〉

)
= x p(x) + 〈f(x)〉

and let γ : R×R→ R be defined by

γ
(
p(x) + 〈f(x)〉, q(x) + 〈f(x)〉

)
= −x+ 〈f(x)〉.

For a = p(x) + 〈f(x)〉, b = q(x) + 〈f(x)〉 ∈ R, we have

(i) d(a) + d(b) =
(
x p(x) + 〈f(x)〉

)
+
(
x q(x) + 〈f(x)〉

)
= (x p(x) + x q(x)) + 〈f(x)〉
= x (p(x) + q(x)) + 〈f(x)〉

= d
(
(p(x) + q(x)) + 〈f(x)〉

)
= d(a+ b)

(ii) ad(b) + aγ(a, b)b+ d(a)b =
(
p(x) + 〈f(x)〉

) (
x q(x) + 〈f(x)〉

)
+
(
p(x) + 〈f(x)〉

) (
− x+ 〈f(x)〉

) (
q(x) + 〈f(x)〉

)
+
(
x p(x) + 〈f(x)〉

)(
q(x) + 〈f(x)〉

)
=
(
x p(x)q(x) + 〈f(x)〉

)
−
(
x p(x)q(x) + 〈f(x)〉

)
+
(
x p(x)q(x) + 〈f(x)〉

)
= x p(x)q(x) + 〈f(x)〉

= d
(
p(x)q(x) + 〈f(x)〉

)
= d(ab).

By (i) and (ii), d is a γ-derivation on R.
In particular, when F is a Galois field and R = F [x]/〈xn − 1〉 for some n ≥ 2, the elements

of R can be seen as codewords of length n over the field F . It is well-known that the ideals of R
exactly correspond to the cyclic codes. The function d is the cyclic right shift operation on the
set of codewords. The cyclic right shift operation is a γ-derivation on R.

Example 3.4. A generalized derivation d (refer Definition 2.2) from a unital algebra A over a
field F to anA-bimoduleM is a γ-derivation on F whenA =M = F , where γ(x, y) = −d(1).
Example 3.5. Let R be a ring and let n be a natural number. Consider the ring

Mn(R) =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 | aij ∈ R, 1 ≤ i, j ≤ n


of all matrices of order n× n over R. For c ∈ R, define d1, d2 : Mn(R)→Mn(R) by

d1(


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

) =


c a11 c a12 . . . c a1n

c a21 c a22 . . . c a2n
...

...
. . .

...
c an1 c an2 . . . c ann


and

d2(


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

) =


a11 c a12 c . . . a1n c

a21 c a22 c . . . a2n c
...

...
. . .

...
an1 c an2 c . . . ann c

 .
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Let γ : Mn(R)×Mn(R)→Mn(R) be defined by

γ(A,B) =


−c 0 . . . 0
0 −c . . . 0
...

...
. . .

...
0 0 . . . −c


n×n.

Then d1 and d2 are multiplicative γ-derivations on Mn(R).

Example 3.6. Consider the ring M2(R). For θ ∈ R,

(
cos θ − sin θ
sin θ cos θ

)
is the standard rotation

matrix where θ denotes the polar angle of rotation.
Then d : M2(R)→M2(R) defined by

d(A) =

(
cos θ − sin θ
sin θ cos θ

)
A

is a multiplicative γ-derivation on M2(R), where γ : M2(R)×M2(R)→M2(R) is defined by

γ(A,B) =

(
cos(π + θ) − sin(π + θ)

sin(π + θ) cos(π + θ)

)
=

(
− cos θ sin θ
− sin θ − cos θ

)
,

the matrix corresponding to rotation by a polar angle π+θ. Clearly, d rotates the column vectors
of A by an angle θ in the anticlockwise direction.

Example 3.7. The identity map on a ring R is a (usual) derivation only when the multiplication
in R is trivial. Such a severe restriction is not imposed by γ-derivations. For instance, if R is any
ring with 1 then the identity map is a γ-derivation on R; where γ(x, y) = −1.

Example 3.8. Let R be a ring. Let γ : R × R → R and let f : R → R be a γ-derivation
on R. For an element c ∈ Z(R), the functions dl : R → R defined by dl(x) = f(x) c and
dr : R → R defined by dr(x) = c f(x) are a γl-derivation and a γr-derivation respectively on
R, where γl, γr : R × R → R are defined by γl(x, y) = γ(x, y) c and γr(x, y) = c γ(x, y). The
γl-derivation dl and the γr-derivation dr are induced by the γ-derivation f on R.

In what follows, γ : R×R→ R and the image of γ is denoted by

Γ = {γ(x, y) |x, y ∈ R}.

Proposition 3.9. Let K be a subsemigroup of (R, ·) and let V be a non-empty subset of R such
that KV ⊆ K. If d is a multiplicative γ-derivation on R such that d([V,K]) = {0} (resp.
d(V ◦K) = {0}) and [V,K]ΓV = {0} (resp. (V ◦K)ΓV = {0}), then [v,K]K d(v) = {0} ∀
v ∈ V .

Proof. Let k ∈ K, v ∈ V . We have kv ∈ K and hence

d([v, kv]) = d(v(kv)− (kv)v) = d((vk − kv)v) = d
(
[v, k] v

)
= 0

(resp. d(v ◦ (kv)) = d(v(kv) + (kv)v) = d((vk + kv)v) = d
(
(v ◦ k) v

)
= 0).

This gives
[v, k] d(v) + [v, k] γ([v, k], v) v + d([v, k]) v = 0

(resp. (v ◦ k) d(v) + (v ◦ k) γ(v ◦ k, v) v + d(v ◦ k) v = 0).

Hence we get [v, k] d(v) = 0 (resp. (v ◦ k) d(v) = 0). This implies that vkd(v) = kvd(v) (resp.
vkd(v) = −kvd(v)).

Now let l ∈ K. We have lk ∈ K and hence vlkd(v) = lkvd(v) (resp. vlkd(v) = −lkvd(v)).
As vkd(v) = kvd(v) (resp. vkd(v) = −kvd(v)), we get vlkd(v) = lvkd(v) = 0 (resp.
vlkd(v) = −l(−vkd(v)) = 0). Therefore vlkd(v) = lvkd(v). This gives (vl − lv)kd(v) =
[v, l] k d(v) = {0}. Hence [v,K]K d(v) = {0}.
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Theorem 3.10. Let S := {c ∈ R |xcy = ycx ∀x ∈ Z(R), y ∈ R}. Then S is a subgroup of
(R,+) containing Z(R). If R is prime and Z(R) 6= {0} then S = Z(R).

Proof. As 0 ∈ S, the set S is non-empty. Let a, b ∈ S. Let x ∈ Z(R) and y ∈ R. We have
x(a − b)y = x(ay − by) = xay − xby = yax − ybx = y(ax − bx) = y(a − b)x, showing that
a− b ∈ S. Hence S is a subgroup of (R,+). Now we will show that Z(R) ⊆ S. Let b ∈ Z(R).
Let x ∈ Z(R) and y ∈ R. We have x(by) = x(yb) = (yb)x. Hence b ∈ S, which implies
Z(R) ⊆ S. Suppose R is prime and Z(R) 6= {0}. Let a ∈ S. Let x ∈ Z(R)\{0} and y ∈ R. We
have xay = yax, which implies that xay−yax = 0. This gives ayx−yax = (ay−ya)x = 0. By
Proposition 2.3, we get ay−ya = 0, that is, ay = ya. Hence a ∈ Z(R), showing that S ⊆ Z(R).
Hence S = Z(R).

The following result generalizes the well-known result by Wang [24]: If x ∈ Z(R), then
d(x) ∈ Z(R).

Proposition 3.11. Let γ be symmetric and let Γ ⊆ S. Let d be a multiplicative γ-derivation on
R. If x ∈ Z(R), then d(x) ∈ Z(R).

Proof. Let y ∈ R. We have d(xy) = xd(y) + x γ(x, y) y + d(x)y and
d(yx) = d(y)x+ y γ(y, x)x+ yd(x). As xy = yx, we get

xd(y) + x γ(x, y) y + d(x)y = d(y)x+ y γ(y, x)x+ yd(x).

This gives d(x)y = yd(x), and hence d(x) ∈ Z(R).

4 γ - derivation and commutativity of prime rings

In this section, R denotes a prime ring unless specified otherwise.

Proposition 4.1. Let K be a {0}-weak semigroup right (resp. left) ideal of R. If x ∈ R is such
that Kx = {0} (resp. xK = {0}), then x = 0.

Proof. Suppose that K is a {0}-weak semigroup right (resp. left) ideal of R. Let I be a nonzero
subset of K such that IR ⊆ K (resp. RI ⊆ K). Suppose Kx = {0} (resp. xK = {0}). Then
(IR)x = {0} (resp. x(RI) = {0}), which implies that (I \ {0})Rx = {0} (resp. xR(I \ {0}) =
{0}). As R is prime and I is nonzero, we get x = 0.

The following result generalizes Proposition 4.2 of Kamal and Shaalan [14] for rings.

Proposition 4.2. Let K be a nonzero semigroup left ideal of R and let V be a nonzero semigroup
left ideal of R such that V K ⊆ V (resp. let V be a semigroup right ideal and a {0}-weak
semigroup left ideal of R such that KV ⊆ V ). If vk = −kv ∀ v ∈ V , k ∈ K, then R is
commutative and is of characteristic 2.

Proof. Let v ∈ V , k, l ∈ K. We have kl ∈ K and hence v(kl) = −(kl)v = (−k)(lv) =
(−k)(−vl) = k(vl), that is, (vk)l = (kv)l. This implies (vk − kv)l = 0. By Proposition 4.1,
vk = kv. Now by Lemma 4.1 (iii) in Kamal and Shaalan [14], R is commutative. We have
vk ∈ V and hence −l(vk) = (vk)l = v(kl) = −(kl)v because kl ∈ K. As lv ∈ V , we have
−(kl)v = −k(lv) = (lv)k, and hence−lvk = lvk. This gives lvk+lvk = (lv+lv)k = (2lv)k =
0. Hence (2lv)K = {0}. By Proposition 4.1, 2lv = (2l)v = 0, hence (2l)V = {0}. Again by
Proposition 4.1, 2l = {0}. Hence 2K = {0}. By Proposition 2.8 in Kamal and Shaalan [14],
2R = {0}, that is, R is of characteristic 2.

Proposition 4.3. Let K be a semigroup left (resp. right) ideal and a {0}-weak semigroup right
(resp. left) ideal of R. If x, y ∈ R are such that xKy = {0}, then x = 0 or y = 0.

Proof. Suppose xKy = {0}. As RK ⊆ K (resp. KR ⊆ K), xRKy = {0} (resp. xKRy =
{0}). As R is prime, we get x = 0 or Ky = {0} (resp. xK = {0} or y = 0). By Proposition
4.1, x = 0 or y = 0.
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The following theorem extends Theorem 2.1 of Bell [3] and Theorem 3.4 of Kamal and
Shaalan [14] for rings.

Theorem 4.4. Let K be a nonzero semigroup left (resp. right) ideal of R. Let γ be such that
[K, RΓK] = {0} (resp. [K, K ΓR] = {0}). If d is a multiplicative γ-derivation on R such that
{0} 6= d(K) ⊆ Z(R), then R is commutative.

Proof. Suppose K is a nonzero semigroup left ideal of R and [K,RΓK] = {0}. Let a ∈ K
be such that d(a) 6= 0. Note that d(a) ∈ Z(R). Let k, l ∈ K. Then kl ∈ K and hence
d(kl) l = l d(kl). This gives

k d(l) l+ k γ(k, l) l2 + d(k) l2 = l k d(l) + l k γ(k, l) l+ l d(k) l.

As d(K) ⊆ Z(R) and [K,RΓK] = {0}, we get

k l d(l) + k γ(k, l) l2 + d(k) l2 = l k d(l) + k γ(k, l) l2 + d(k) l2.

This gives k l d(l) = l k d(l), that is, (kl− lk)d(l) = 0. Taking l = a, we get (ka− ak)d(a) = 0.
Now by Proposition 2.3, ka = ak. Hence a centralizes K.

As ka ∈ K, we have d(ka) l = l d(ka), that is,

k d(a) l+ k γ(k, a) a l + d(k) a l = l k d(a) + l k γ(k, a) a + l d(k) a.

This gives

k l d(a) + l k γ(k, a) a+ d(k) l a = l k d(a) + l k γ(k, a) a+ d(k) l a.

Hence we get k l d(a) = l k d(a), that is, (kl − lk) d(a) = 0. By Proposition 2.3, kl = lk, that
is, kl − lk = [k, l] = 0. Therefore [K,K] = {0}.

Let x ∈ R. As xa ∈ K, we have d(xa) l = l d(xa), that is,

x d(a) l+ x γ(x, a) a l + d(x) a l = l x d(a) + l x γ(x, a) a + l d(x) a,

which gives

x l d(a) + x γ(x, a) a l+ l d(x) a = l x d(a) + x γ(x, a) a l+ l d(x) a

because K is a semigroup left ideal of R. Thus we have x l d(a) = l x d(a), and hence (xl −
lx)d(a) = 0. By Proposition 2.3, xl = lx. Hence K ⊆ Z(R). Now by Proposition 2.5, R is
commutative.

The proof is analogous for the other case.

Theorem 4.5. Let K be a nonzero semigroup ideal of R and let A be a nonzero semigroup
left (resp. right) ideal of R. Let γ be symmetric, Γ ⊆ Z(R) and [A,K]Γ = {0}. If d is
a multiplicative γ-derivation on R such that d([A,K]) = {0} and d(A) 6= {0}, then R is
commutative.

Proof. As [A,K]Γ = {0}, we get [A,K]ΓA = {0}. Let a ∈ A be such that d(a) 6= 0. By
Proposition 3.9, we have [a,K]Kd(a) = {0}. Now using Proposition 4.3, we get [a,K] =
{0}, that is, a centralizes K. By Proposition 2.4, we have a ∈ Z(R). As γ is symmetric, by
Proposition 3.11 we get d(a) ∈ Z(R). Let y ∈ A, k ∈ K. We have ka ∈ K and hence
d([y, ka]) = 0. This gives

d(yka− kay) = d(yka− kya) = d((yk − ky)a) = d([y, k] a) = 0.

Therefore,
d([y, k] a) = [y, k] d(a) + [y, k] γ([y, k], a) a+ d([y, k]) a = 0.

This gives [y, k] d(a) = 0. Now by Proposition 2.3, we get [y, k] = 0. Hence y centralizes K.
Now by Proposition 2.4, y ∈ Z(R), and henceA ⊆ Z(R). By Proposition 2.5,R is commutative.
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Example 4.6. Let n be a natural number. The function d on the ring of complex numbers C
defined by d(0) = 0 and d(reiθ) = r(log r)neiθ for r 6= 0, is a multiplicative γ-derivation on C,
where γ : C×C→ C is defined by

γ(r1e
iθ1 , r2e

iθ2) =


n−1∑
k=1

nCk (log r1)
n−k (log r2)

k if n ≥ 2, r1 6= 0 and r2 6= 0

0 otherwise.

For n ≥ 2, the coefficients of powers of log r1, log r2 are binomial coefficients which can be
computed as the interior part of the well-known Pascal’s triangle as shown in Figure 1. It follows
easily from the symmetry of Pascal’s triangle that γ is symmetric. The ring C is prime and all
conditions of Theorem 4.5 hold with K = A = C. Using Theorem 4.5, we conclude that
symmetry of γ induces commutativity of C through the derivation d.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

· · · ... ···

1 nC1
nC2 · · · · · · nCn−1 1

· · · ... ···

− − − −−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−

−−−−

0th row
1st row
2nd row
3rd row

...

nth row
...

Figure 1. Symmetry of γ (symmetry of Pascal’s triangle) induces commutativity of C

Now we give a characterization of Galois fields in terms of Lie product and γ-derivation.

Theorem 4.7. Suppose

(1) R is finite;

(2) there exist a nonzero semigroup ideal K of R, a nonzero semigroup left (resp. right) ideal
A of R, a function γ : R×R→ R and a multiplicative γ-derivation d on R such that

(a) γ is symmetric, Γ ⊆ Z(R) and [A,K]Γ = {0};
(b) d([A,K]) = {0} and d(A) 6= {0}.

Then R is a Galois field. Conversely, if R is a Galois field, then the conditions (1), (2a), (2b)
hold in R.

Proof. Let conditions (1), (2a), (2b) hold. By Theorem 4.5, R is a commutative ring. Let
a, b ∈ R be such that ab = 0. Then for r ∈ R, arb = abr = 0r = 0. This gives aRb = {0}. As
R is prime, we get either a = 0 or b = 0. Hence R is an integral domain. As R is finite, R is a
Galois field.

Conversely, suppose that R is a Galois field with q = pn elements. Then we have R =
{0, α, α2, . . . , αq−1}, where α is a root of a primitive polynomial and αq−1 = 1. Hence the
condition (1) holds. It is clear that as R has no nonzero zero divisors, R is prime. Consider
the map d : R → R defined by d(0) = 0 and d(αk) = αk−1 for 1 ≤ k ≤ q − 1. Define
γ : R × R → R by γ(x, y) = −α−1. Let x, y ∈ R. (i) Let x = 0 or y = 0. Then we
have xd(y) + xγ(x, y)y + d(x)y = 0 + 0 + 0 = 0 = d(0) = d(xy). (ii) Let x 6= 0 and
y 6= 0. Then x = αr and y = αs for some r, s where 1 ≤ r, s ≤ q − 1. This gives xd(y) +
xγ(x, y)y+d(x)y = αrαs−1+αr(−α−1)αs+αr−1αs = αr+s−1−αr+s−1+αr+s−1 = αr+s−1 =
d(αr+s) = d(αrαs) = d(xy). Hence d is a multiplicative γ-derivation on R. Note that γ is
symmetric and Γ ⊆ R = Z(R). By choosing K = A = R, we have [A,K]Γ = {0}Γ = {0},
d([A,K]) = d({0}) = {0} and d(A) = d(R) 6= {0}. Hence the conditions (2a), (2b) hold.
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The following results extend Theorem 4.3 and Corollary 4.4 of Kamal and Shaalan [14] for
rings.

Proposition 4.8. Let K be a semigroup left ideal and a {0}-weak semigroup right ideal of R.
Let A be a non-empty subset of R such that KA ⊆ K. If d is a multiplicative γ-derivation on
R such that d(A ◦K) = (A ◦K)Γ = {0} and d(A) 6= {0}, then A ⊆ Z(R). Further, if A is a
nonzero semigroup left (resp. right) ideal of R, then R is commutative.

Proof. As (A ◦K)Γ = {0}, we get (A ◦K)ΓA = {0}. Let a ∈ A be such that d(a) 6= 0. By
Proposition 3.9, we have [a,K]K d(a) = {0}. Then by Proposition 4.3, we get [a,K] = {0},
that is, a centralizes K. By Proposition 2.4, a ∈ Z(R). Let y ∈ A, k ∈ K. We have ka ∈ K and
hence d(y◦ka) = 0. This gives d(yka+kay) = d(yka+kya) = d((yk+ky)a) = d((y◦k)a) = 0.
Thus we have

(y ◦ k) d(a) + (y ◦ k) γ(y ◦ k, a) a+ d(y ◦ k) a = 0,

which gives
(y ◦ k) d(a) = 0. (1)

Let l ∈ K. Then we have lk ∈ K. Using Equation (1), we get (y ◦ lk) d(a) = 0. This gives

ylk d(a) = −lky d(a) = (−l)(ky)d(a) = −l(−ykd(a)) = lyk d(a).

Therefore, we have
(ylk − lyk) d(a) = (yl − ly) k d(a) = 0.

Hence (yl − ly)K d(a) = {0}. As d(a) 6= 0, by Proposition 4.3, we get yl − ly = 0. Hence y
centralizesK. Now by Proposition 2.4, y ∈ Z(R) and hence A ⊆ Z(R). Suppose A is a nonzero
semigroup left (resp. right) ideal of R. By Proposition 2.5, R is commutative.

Theorem 4.9. Let K be a nonzero semigroup left (resp. right) ideal of R and let ∅ 6= A be a
nonzero subset of R such that KA ⊆ K. Let γ be symmetric and Γ ⊆ S. If d is a multiplicative
γ-derivation on R such that d(A ◦ K) = (A ◦ K)Γ = {0} and d(A) 6= {0}, then R is of
characteristic 2. Further, if A is a nonzero semigroup left (resp. right) ideal of R, then R is
commutative.

Proof. By Proposition 4.8, we haveA ⊆ Z(R). Let a ∈ A be such that d(a) 6= 0. Let y ∈ A\{0}
and k ∈ K. By Equation (1) in the proof of Proposition 4.8, we have (y ◦ k) d(a) = 0. Also we
have a ∈ Z(R). Hence by Proposition 3.11, d(a) ∈ Z(R). By Proposition 2.3, we get y ◦ k = 0
because d(a) 6= 0. Hence yk + ky = 0. As y ∈ Z(R), we get

ky + ky = (k + k)y = 0.

Now Proposition 2.3 gives k + k = 2k = 0. Hence 2K = {0}. By Proposition 2.8 in Kamal
and Shaalan [14], we get 2R = {0}. Hence R is of characteristic 2. Suppose A is a nonzero
semigroup left (resp. right) ideal of R. As A ⊆ Z(R) by Proposition 4.8, R is commutative by
Proposition 2.5.

Now we give a characterization of Galois fields of characteristic 2 in terms of Jordan product
and γ-derivation.

Theorem 4.10. Suppose

(1) R is finite;

(2) there exist a nonzero semigroup left (resp. right) ideal K of R, a nonzero semigroup left
(resp. right) ideal A of R, a function γ : R×R→ R and a multiplicative γ-derivation d on
R such that

(a) KA ⊆ K;

(b) γ is symmetric, Γ ⊆ S and (A ◦K)Γ = {0};
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(c) d(A ◦K) = {0} and d(A) 6= {0}.

Then R is a Galois field of characteristic 2. Conversely, if R is a Galois field of characteristic 2,
then the conditions (1), (2a), (2b), (2c) hold in R.

Proof. Let conditions (1), (2a), (2b), (2c) hold. By Theorem 4.9, R is a commutative ring of
characteristic 2. Now as in the proof of Theorem 4.7, R is a Galois field. Conversely, suppose
that R is a Galois field of characteristic 2 with q elements. Then q = 2n for some n ≥ 1. As R is
of characteristic 2, for any a, b ∈ R, the Jordan product of a and b coincides with the Lie product
of a and b. That is, a ◦ b = ab+ ba = ab − ba = [a, b]. Now, the rest of the proof follows from
Theorem 4.7.
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