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Abstract In this paper, we introduce and investigate a new unification of the unified family
of Hermite-based Apostol-Bernoulli, Euler and Genocchi polynomials and numbers. We obtain
some summation formulae and general symmetry identities are derived by using different analyt-
ical means and applying generating functions. We give explicit relations for these polynomials
and related to multiple power sums.

1 Introduction

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) [2, 3] are defined
as

Hn(x, y) = n!
[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
. (1.1)

It is easily seen from definition (1.1) that

Hn(2x,−1) = Hn(x)

and
Hn(x,−

1
2
) = Hen(x),

where Hn(x) and Hen(x) being ordinary Hermite polynomials. Also

Hn(x, 0) = xn.

The generating function for Hermite polynomial Hn(x,y) are given by [1, 5]:

ext+yt
2
=
∞∑
n=0

Hn(x, y)
tn

n!
. (1.2)

Recently, Ozarslan [12] introduced the following unification of the Apostol-Bernoulli, Apostol-
Euler and Apostol-Genocchi polynomials. Explicitly Ozarslan studied the following generating
function:

f
(α)
a,b (x; t, a, b) =

(
21−ktk

βbet − ab

)α
ext =

∞∑
n=0

P
(α)
n,β(x; k, a, b)

tn

n!
, (1.3)

(∣∣∣∣t+ b ln
(
β

α

)∣∣∣∣ < 2π, k ∈ N0; a, b ∈ <\{0};α, β ∈ C
)
.

For α = 1 in (1.3), we get

fa,b(x; t, a, b) =
21−ktk

βbet − ab
ext =

∞∑
n=0

Pn,β(x; k, a, b)
tn

n!
, (1.4)
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(∣∣∣∣t+ b ln
(
β

α

)∣∣∣∣ < 2π, k ∈ N0; a, b ∈ <\{0};α, β ∈ C
)
.

From (1.3) and (1.4), we have

P
(1)
n,β(x; k, a, b) = Pn,β(x; k, a, b), (n ∈ N).

Which is defined by Ozden and Simsek [14]. Now Ozden et al. [13] introduced many properties
of these polynomials. We give some specific special cases:

1. By substituting a = b = k = 1 and β = λ into (1.3), one has the Apostol-Bernoulli poly-
nomials P (1)

n,β(x; 1, 1, 1) = B
(α)
n (x;λ), which are defined by means of the following generating

function (
t

λet − 1

)α
ext =

∞∑
n=0

B(α)
n (x;λ)

tn

n!
, (| t+ logλ |< 2π) (1.5)

(see for details [7], [8], [9], [13], [14] see also the references cited in each of these earlier works).

For λ = α = 1 in (1.5), the result reduces to

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, | t |< 2π (1.6)

where Bn(x) denotes the classical Bernoulli polynomials (see from example [1]-[21]; see also
the references cited in each of these earlier works).

2. If we substitute b = α = 1, k = 0, a = −1 and β = λ into (1.3), we have the Apostol-Euler
polynomials P (1)

n,λ(x; 0,−1, 1) = E1
n(x, λ)(

2
λet + 1

)α
ext =

∞∑
n=0

E(α)
n (x;λ)

tn

n!
, (| t+ logλ |< π) (1.7)

(see for details [7], [8], [9], [13], [14] see also the references cited in each of these earlier works).

For λ = 1 in (1.7), the result reduces to

2
et + 1

ext =
∞∑
n=0

En(x)
tn

n!
, | t |< π (1.8)

where En(x) denotes the classical Euler polynomials (see from example [1], [7], [8], [9], [13],
[14], [15], [16]; see also the references cited in each of these earlier works).

3. By substituting b = α = 1, k = 1, a = −1 and β = λ into (1.3), one has the Apostol-Genocchi
polynomials P (1)

n,β(x; 1,−1, 1) = 1
2Gn(x;λ), which is defined by means of the following gener-

ating function
2t

λet + 1
ext =

∞∑
n=0

Gn(x;λ)
tn

n!
, (| t+ logλ |< π) (1.9)

(see for details [7], [8], [9], [13], [14] see also the references cited in each of these earlier works)

4. By substituting x = 0 in the generating function (1.3), we obtain the corresponding unification
of the generating functions of Bernoulli, Euler and Genocchi numbers of higher order. Thus we
have

P
(α)
n,β(0; k, a, b) = P

(α)
n,β(k, a, b), n ∈ N.

Very recently, Pathan and Khan [15] introduced 2-variable Hermite-based Apostol type poly-
nomials as follows:
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Definition 1.1. The generalized Hermite-based Apostol type polynomials HP
(α)
n,β(x, y; k, a, b, e)

for nonnegative integer n are defined by(
21−ktk

βbet − ab

)α
ext+yt

2
=
∞∑
n=0

HP
(α)
n,β(x, y; k, a, b, e)

tn

n!
, (1.10)

(|t+ b ln(
β

α
)| < 2π, k ∈ N0; a, b ∈ <\{0};α, β ∈ C).

For the existence of the expansion, we need

(i) | t |< 2π where α ∈ N0, k = 1 and
(
β
a

)b
= 1;| t |< 2π when α ∈ N0, k = 2, 3, · · · and(

β
a

)b
= 1; | t |<| b log

(
β
a

)
| when α ∈ N0, k ∈ N and

(
β
a

)b
6= 1 or (6= −1); x, y ∈ R,

β ∈ C/{0}, 1α = 1.

(ii) | t |< 2π when
(
β
a

)b
= −1; | t |<| b log

(
β
a

)
| when

(
β
a

)b
6= −1, x, y ∈ R, k = 0, α, β ∈ C,

a, b, c ∈ C 1α = 1.

(iii)| t |< 2π when αεn0 and
(
β
a

)b
= −1, x, y ∈ R, k ∈ N, β ∈ C, a, b, c ∈ C/{0} 1α = 1

where w =| w | eiθ,−π ≤ θ < π and log(| w |) + iθ.

Table 1. Some special cases of the 2VHBATP HY
(α)
n (x, y; k, a, b)

S. No. Values of the parameter Relation between the Name of the resultant Generating functions

2VHBATPHP
(α)
n (x, y; k, a, b) special polynomials and the resultant of

and its special case special polynomials

I. k = a = b = 1, β = λ HP
(α)
n (x, y; 1, 1, λ)=HB

(α)
n (x, y;λ) 2-variable Hermite-based

(
t

λet−1

)α
ext+yt

2

Apostal Bernoulli polynomial =
∞∑
n=0

HB
(α)
n (x, y;λ) t

n

n!

II. k + 1 = −a = b = 1, β = λ HP
(α)
n (x, y; 0,−1, 1, λ)=HE

(α)
n (x, y;λ) 2-variable Hermite-based

(
2

λet+1

)α
ext+yt

2

Apostal Euler polynomial =
∞∑
n=0

HE
(α)
n (x, y;λ) t

n

n!

III. k = −2a = b = 1, 2β = λ HP
(α)
n (x, y; 1,− 1

2 , 1, λ)=HG
(α)
n (x, y;λ) 2-variable Hermite-based

(
2t

λet+1

)α
ext+yt

2

Apostal Genocchi polynomial =
∞∑
n=0

HG
(α)
n (x, y;λ) t

n

n!

Note. In the case We note that for λ = 1, the result derived above for the 2VHbBP HB
(α)
n (x, y;λ),

2VHbBEP HE
(α)
n (x, y;λ) and 2VHbBGP HG

(α)
n (x, y;λ) give the corresponding results for the

2-variable Hermite-based Bernoulli polynomials (2VHbBP) (of order α) HB
(α)
n (x, y), 2-variable

Hermite-based Euler polynomials (2VHbEP) (of order α) HE
(α)
n (x, y) and 2-variable Hermite-

based Genocchi polynomials (2VHbGP) (of order α) HG
(α)
n (x, y). Again for α = 1, we get

the corresponding results for the 2-variable Hermite-based Bernoulli polynomials (2VHbBP)
HBn(x, y), 2-variable Hermite-based Euler polynomials (2VHbEP) HEn(x, y) and 2-variable
Hermite-based Genocchi polynomials (2VHbGP) HGn(x, y).

Garg et al. [4, 20] introduced the following generalization of the Hurwitz-Lerch zeta func-
tion Φ(z, s; a):

Φ
(ρ,σ)
µ,ν (z, s; a) =

∞∑
n=0

(µ)ρnzn

(ν)σn(n+ a)s
, (1.11)

(m ∈ C, a, ν ∈ C \ Z−0 , p, σ ∈ R, p < σ when s, z ∈ C(|z| = 1); p = σ and R(s−m+ ν) > 0,
when |z| = 1).
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It is obvious that

Φ
(1,1)
µ,1 (z, s; a) = Φ

∗
µ(z, s; a) =

∞∑
n=0

(µ)nzn

n!(n+ a)s
, (1.12)

( see for details [4, 20]).

The multiple power sums are defined by Luo in [10, 11] as follows:

S
(l)
k (m,λ) =

∑
0 ≤ ν1 ≤ · · · ≤ νm = l

ν1 + ν2 + · · ·+ νm = n

(
l

ν1, ν2, · · · , νm

)
λν1+2ν2+···+mνm(ν1+2ν2+· · ·+mνm)k.

(1.13)
From (1.13), we have(

1− λmemt

1− λet

)(l)

= λ(−l)
∞∑
n=0

(
n∑
k=0

(
n

k

)
(−1)n−kS(l)(m,λ)

k

)
tn

n!
. (1.14)

For l = 1, (1.14) reduces to

1− λmemt

1− λet
=

1
λ

∞∑
n=0

(
n∑
k=0

(
n

k

)
(−1)n−kS(l)(m,λ)

k

)
tn

n!
. (1.15)

The generalized Stirling numbers of the second kinds S(n, ν, a, b, β) of order ν are defined in
[17] as follows:

∞∑
n=0

S(n, ν, a, b, β)
tn

n!
=

(βbet − ab)ν

ν!
. (1.16)

Setting β = λ, a = b = 1, (1.16) reduces to
∞∑
n=0

S(n, ν, λ)
tn

n!
=

(λet − 1)ν

ν!
. (1.17)

In the last ten years many mathematicians studied the Apostol-type Bernoulli polynomials.
Srivastava in [18] and Srivastava et al. in [20, 21] investigated and proved some relations and
theorems for Bernoulli type polynomials and Apostol-Bernoulli-type polynomials. Luo in [10,
11] proved the multiplication theorems for the Apostol-Bernoulli and Apostol-Euler polynomials
of higher-order and multiple alternating sums. Luo et al. [9] gave some symmetry relations be-
tween the Apostol-Bernoulli polynomials and Apostol-Euler polynomials. Ozarslan in [12] de-
fined uniform form of the Apostol-Bernoulli, Euler and Genocchi polynomials P (α)

n (x; ka, a, b)
of order α. He gave the explicit representation of this unified family in terms of a Gaussian
hypergeometric function. Also, he gave the recurrence relations and symmetry properties for the
unified Apostol-type polynomials.

This paper is organized as follows. In Section 2, we give some explicit relation for the
Hermite-based unified Apostol type polynomials. In section 3, we establish some implicit sum-
mation formulae for the Hermite-based unified Apostol type polynomials. In section 4, we prove
the relation between Hurwitz-Lerch zeta function and the unified Apostol-type polynomials and
give some symmetry relations for these Hermite-based unified Apostol-type polynomials.

2 A new class of Hermite-based Apostol-Bernoulli, Euler and Genocchi
(ABEG) polynomials HP

(α)
n,β (x, y; k, a, b)

In this section, we aim to obtain the explicit relations of the polynomials HP
(α)
n,β(x, y; k, a, b).

By the motivation of the Pathan and Khan [15, 16] and Kurt [7, 8], we prove some relations for
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these polynomials and give the relations between the unified family of generalized Apostol-type
polynomials and the Stirling numbers of the second kind S(n, ν, a, b, β) of order ν.

Theorem 2.1. Let a, b > 0 and a 6= b. Then x, y ∈ R and n ≥ 0, we have

HP
(α)
n,λ(x, y; 1, 1, 1) = HB

(α)
n (x, y;λ),HP

(α)
n,λ(x, y; 0, 1,−1) = HE

(α)
n (x, y;λ),

HP
(α)

n,λ2
(x, y; 1,−1

2
, 1) = HG

(α)
n (x, y;λ). (2.1)

HP
(α+γ)
n,β (x+ y, z + u; k, a, b) =

∞∑
m=0

(
n

m

)
HP

(γ)
m,β(z, u; a, b)HP

(α)
n−m,β(x, y; k, a, b). (2.2)

HP
(α)
n,β(x+ z, y; a, b) =

m∑
n=0

(
m

n

)
P

(α)
n−m,β(x; k, a, b)Hm(z, y). (2.3)

Proof. The formula in (2.1) are obvious. Applying Definition (1.10), we have

∞∑
n=0

HP
(α+γ)
n,β (x+ y, z + u; k, a, b)

tn

n!
=
∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!

∞∑
m=0

HP
(γ)
m,β(z, u; k, a, b)

tm

m!

=
∞∑
n=0

n∑
m=0

HP
(γ)
m,β(z, u; k, a, b)HP

(α)
n−m,β(x, y; k, a, b)

tn

(n−m)!
.

Now equating the coefficients of the like powers of t in the above equation, we get the result
(2.1). Again by Definition (1.10) of generalized polynomials, we have(

21−ktk

βbet − ab

)α
e(x+z)t+yt

2
=
∞∑
n=0

HP
(α)
n,β(x+ z, y; k, a, b)

tn

n!
(2.4)

which can be written as(
21−ktk

βbet − ab

)α
extezt+yt

2
=
∞∑
n=0

P
(α)
n,β(x; k, a, b)

tn

n!

∞∑
m=0

Hm(z, y)
tm

m!
. (2.5)

On replacing n by n−m in the above equation and comparing the coefficients of t
n

n! , we get the
desired result (2.3).

Theorem 2.2. The Hermite-based unified Apostol-type polynomials satisfy the following rela-
tion

βbHP
(α)
n,β(x+1, y; k, a, b)−abHP (α)

n,β(x, y; k, a, b) = 21−k
HP

(α−1)
n−k,β(x, y; k, a, b)

n!
(n− k)!

. (2.6)

Proof. From (1.10), we have

βb
(

21−ktk

βbet − ab

)α
e(x+1)t+yt2

− ab
(

21−ktk

βbet − ab

)α
ext+yt

2
= 21−ktk

∞∑
n=0

HP
(α−1)
n,β (x, y; k, a, b)

tn

n!

∞∑
n=0

{βbHP (α)
n,β(x+1, y; k, a, b)−abHP (α)

n,β(x, y; k, a, b)} t
n

n!
= 21−k

∞∑
n=0

HP
(α−1)
n,β (x, y; k, a, b)

tn+k

n!

∞∑
n=0

(
βbHP

(α)
n,β(x+ 1, y; k, a, b)− abHP (α)

n,β(x, y; k, a, b)
) tn
n!

= 21−k
∞∑
n=k

HP
(α−1)
n−k,β(x, y; k, a, b)

tn

(n− k)!
.

By comparing the coefficients of t
n

n! , we arrive at the desired result (2.6).
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Theorem 2.3. There is the following relation between the λ-Stirling numbers of second kinds
and Hermite-based unified Apostol type polynomials HP

(α)
n,β(x, y; k, a, b):

abαα!
n∑
r=0

(
n

r

)
HP

(α)
n−r,β(x, y; k, a, b)S

(
r, α,

(
β

a

)b)
= 2(1−k)αHn−kα(x, y)

n!
(n− kα)!

.

(2.7)
Proof. By using equation (1.10) and (1.17), we have

∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!
=

(
21−ktk

βbet − ab

)α
ext+yt

2

=
2(1−k)αtkα

abα
((

β
a

)b
et − 1

)ext+yt2
=

2(1−k)αtkαext+yt
2

abαα!
∞∑
r=0

S

(
r, α,

(
β
a

)b)
tr

r!

∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!
abαα!

∞∑
r=0

S

(
r, α,

(
β

a

)b)
tr

r!
= 2(1−k)αtkα

∞∑
n=0

Hn(x, y)
tn

n!

∞∑
n=0

abαα!
n∑
r=0

(
n

r

)
HP

(α)
n−r,β(x, y; k, a, b)S

(
r, α,

(
β

a

)b)
tn

n!
= 2(1−k)α

∞∑
n=0

Hn−kα(x, y)
tn

(n− kα)!

By comparing the coefficients of t
n

n! , we obtain the desired result (2.7).

Theorem 2.4. There is the following relation between the λ-Stirling numbers of second kinds
and Hermite-based unified Apostol type polynomials HP

(α)
n,β(x, y; k, a, b):

HP
(α−γ)
n−kγ,β(x, y; k, a, b) =

2(k−1)γγ!(n− kγ)!
n!

n∑
r=0

(
n

r

)
HP

(α)
n−r,β(x, y; k, a, b)S (r, γ, a, b, β) .

(2.8)
Proof. From (1.10) and (1.17), we have

∞∑
n=0

HP
(α−γ)
n,β (x, y; k, a, b)

tn

n!
=

(
21−ktk

βbet − ab

)α−γ
ext+yt

2

=

(
21−ktk

βbet − ab

)α
ext+yt

2
(
βbet − ab

21−ktk

)γ
∞∑
n=0

HP
(α−γ)
n,β (x, y; k, a, b)

tn+kγ

n!
= 2(k−1)γ

∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!

∞∑
r=0

S (r, γ, a, b, β)
tr

r!
.

Using Cauchy product, comparing the coefficient of t
n

n! , we get the desired result (2.8).

3 Summation formulae for generalized Hermite-based Apostol type
polynomials

The purpose of this section is to give some interesting generating functions, new results, and
relations for the generalized Hermite-based unified Apostol type polynomials. We begin here
some of these results in the following forms.

Theorem 3.1. The summation formulae for generalized Hermite-based unified Apostol type
polynomials HP

(α)
n,β(x, y; k, a, b) holds true:

HP
(α)
n+m,β(z, y; k, a, b) =

n,m∑
p,q=0

(
n

p

)(
m

q

)
(z − x)p+qHP (α)

n+m−p−q,β(x, y; k, a, b). (3.1)
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Proof. We replace t by t+ u and rewrite the generating function (1.10) as(
21−k(t+ u)k

βbe(t+u) − ab

)α
ey(t+u)

2
= e−x(t+u)

∞∑
k,l=0

HP
(α)
n+m,β(x, y; k, a, b)

tn

n!
um

m!
(3.2)

Replacing x by z in the above equation and equating the resulting equation to the above
equation, we get

e(z−x)(t+u)
∞∑

n,m=0
HP

(α)
n+m(x, y; k, a, b)

tn

n!
um

m!
=

∞∑
n,m=0

HP
(α)
n+m,β(z, y; k, a, b)

tn

n!
um

m!
(3.3)

On expanding exponential function (3.3) gives
∞∑
N=0

[(z − x)(t+ u)]N

N !

∞∑
n,m=0

HP
(α)
n+m,β(x, y; k, a, b)

tn

n!
um

m!
=

∞∑
n,m=0

HP
(α)
n+m,β(z, y; k, a, b)

tn

n!
um

m!

(3.4)
which on using formula [19,p.52(2)]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!
ym

m!
(3.5)

in the left hand side becomes
∞∑

p,q=0

(z − x)p+qtpuq

p!q!

∞∑
n,m=0

HP
(α)
n+m,β(x, y; k, a, b)

tn

n!
um

m!
=

∞∑
n,m=0

HP
(α)
n+m,β(z, y; k, a, b)

tn

n!
um

m!

(3.6)
Now replacing n by n− p, m by m− q and using the lemma [19,p.100(1)] in the left hand side
of (3.6), we get

∞∑
n,m=0

n,m∑
p,q=0

(z − x)p+q

p!q! HP
(α)
n+m−p−q,β(x, y; k, a, b)

tn

(n− p)!
um

(m− q)!

=
∞∑

n,m=0
HP

(α)
n+m,β(z, y; k, a, b)

tn

n!
um

m!
(3.7)

Finally, on equating the coefficients of the like powers of t and u in the above equation, we get
the required result (3.1).

Remark 3.1. Taking m = 0 in assertion (3.1) of Theorem 3.1, we deduce the following conse-
quence of Theorem 3.1.

Corollary 3.1. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HP

(α)
n,β(x, y; k, a, b) holds true:

HP
(α)
n,β(z, y; k, a, b) =

n∑
p=0

(
n

p

)
(z − x)pHP (α)

n−p,β(x, y; k, a, b). (3.8)

Remark 3.2. Replacing z by z + x in (3.8), we obtain

HP
(α)
n,β(z + x, y; k, a, b) =

n∑
p=0

(
n

p

)
zpHP

(α)
n−p,β(x, y; k, a, b). (3.9)

Theorem 3.2. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HP

(α)
n,β(x, y; k, a, b) holds true:

HP
(α)
n,β(x, y; k, a, b) =

n−2j∑
m=0

[n2 ]∑
j=0

P
(α)
m,β(k, a, b)x

n−2j−myj
n!

m!j!(n− 2j −m)!
(3.10)
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Proof. Applying the definition (1.10) to the term
(

21−ktk

βbet−ab

)α
and expanding the exponential

function ext+yt
2

at t = 0 yields

(
21−ktk

βbet − ab

)α
ext+yt

2
=

( ∞∑
m=0

P
(α)
m,β(k, a, b)

tm

m!

)( ∞∑
n=0

xn
tn

n!

) ∞∑
j=0

yj
t2j

j!



=
∞∑
n=0

(
n∑
k=0

(
n

m

)
P

(α)
m,β(k, a, b)x

n−m

)
tn

n!

 ∞∑
j=0

yj
t2j

j!


Replacing n by n− 2j, we have

∞∑
n=0

P
(α)
n,β(x, y; k, a, b, c)

tn

n!
=
∞∑
n=0

n−2j∑
m=0

[n2 ]∑
j=0

(
n− 2j
m

)
P

(α)
m,β(k, a, b)x

n−m−2jyj

 tn

(n− 2j)!j!
.

(3.11)
Combining (3.11) and (1.10) and equating their coefficients of tn produce the formula

(3.10).

Theorem 3.3. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HP

(α)
n,β(x, y; k, a, b) holds true:

HP
(α)
n,β(x+ 1, y; k, a, b) =

n∑
m=0

(
n

m

)
HP

(α)
m,β(x; k, a, b). (3.12)

Proof. From (1.10), we have(
21−ktk

βbet − ab

)α
e(x+1)t+yt2

=
∞∑
n=0

HP
(α)
n,β(x+ 1, y; k, a, b)

tn

n!
, (3.13)

which can be written as (
21−ktk

βbet − ab

)α
ext+yt

2
et

=

( ∞∑
m=0

HP
(α)
m,β(x; k, a, b)

tm

m!

)( ∞∑
n=0

tn

n!

)

=
∞∑
n=0

n∑
m=0

(
n

m

)
HP

(α)
m,β(x; k, a, b)

tn

n!
. (3.14)

Combining (3.13) and (3.14) and equating their coefficients of tn leads to formula (3.12).

Theorem 3.4. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HP

(α)
n,β(x, y; k, a, b) holds true:

HP
(α)
n,β(x, y; k, a, b) =

n∑
m=0

(
n

m

)
P

(α−1)
n−m,β(k, a, b)HP

(α)
m,β(x, y; k, a, b, e) (3.15)

Proof. By the definition of generalized Hermite-based polynomials, we have(
21−ktk

βbet − ab

)(
21−ktk

βbet − ab

)α
ext+yt

2
=

(
21−ktk

βbet − ab

) ∞∑
n=0

HP
(α)
n (x, y; k, a, b)

tn

n!

(
21−ktk

βbet − ab

)α
ext+yt

2
=

(
21−ktk

βbet − ab

) ∞∑
m=0

HP
(α)
m,β(x, y; k, a, b)

tm

m!
.
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Now replacing n by n − m in the above equation and equating the coefficients of tn leads to
formula (3.15).

Theorem 3.5. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HP

(α)
n,β(x, y; k, a, b) holds true:

HP
(α)
n,β(x+ 1, y; k, a, b) =

n∑
m=0

(
n

m

)
HP

(α)
m,β(x, y; k, a, b). (3.16)

Proof. By the definition of generalized polynomials, we have

∞∑
n=0

HP
(α)
n,β(x+ 1, y; k, a, b)

tn

n!
−
∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!

=

(
21−ktk

βbet − ab

)α
ext+yt

2
(et − 1)

=

( ∞∑
m=0

HP
(α)
m,β(x, y; k, a, b)

tm

m!

)( ∞∑
n=0

tn

n!

)
−
∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!

=
∞∑
n=0

n∑
m=0

HP
(α)
m,β(x, y; k, a, b)

tn

(n−m)!
−
∞∑
n=0

HP
(α)
n,β(x, y; k, a, b)

tn

n!
.

Finally, equating the coefficients of the like powers of tn, we get (3.16).

4 Some symmetry identities for Hermite-based unified generalized
Apostol-type polynomials

In this section, we give general symmetry identities for the generalized unified Apostol-type
polynomials P (α)

n,β(x; k, a, b) and Hermite-based generalized unified Apostol type polynomials

HP
(α)
n,β(x, y; k, a, b) by applying the generating function ( 1.3) and (1.10). These results extend

some known summation and identities studied by Ozarslan [12], Pathan and Khan [15, 16], Khan
[5], Khan and Hiba [6], Kurt [7, 8]. Also we prove the relation between for the unified Apostol-
type polynomials and Hurwitz-Lerch zeta function.

Theorem 4.1. The following symmetry relations for the Hermite-based unified Apostol-type
polynomials hold true;

c−1∑
m=0

(
β

a

)bm n∑
l=0

(
n

l

)
HPn−l,β(dx, d

2z; k, a, b)cn−k−l(dm)l

=
d−1∑
m=0

(
β

a

)bm n∑
l=0

(
n

l

)
HPn−l,β(cx, c

2z; k, a, b)dn−k−l(cm)l. (4.1)

Proof. Let us consider

f(t) =
21−ktk

βbedt − ab
ecdxt+c

2d2yt2 βbdecdt − abd

βbect − ab
(4.2)

=
1
dk

(
21−ktk

βbedt − ab

)
ecdxt+c

2d2yt2
ab(d−1)

(
1− (βa )

bdedct

1− (βa )
bect

)

= ab(d−1)d(−k)
∞∑
n=0

HPn,β(cx, c
2z; k, a, b)

(dt)n

n!

d−1∑
m=0

(
β

a

)bm
ectm
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= ab(d−1)d(−k)
∞∑
n=0

HPn,β(cx, c
2z; k, a, b)

(dt)n

n!

d−1∑
m=0

(
β

a

)bm ∞∑
l=0

(cm)l
tl

l!

f(t) = ab(d−1)d(−k)
∞∑
n=0

d−1∑
m=0

(
β

a

)bm( n∑
l=0

(
n

l

)
HPn−l,β(cx, c

2z; k, a, b)dn−l(cm)l
)
tn

n!
.

(4.3)
On the similar lines, we can show that

f(t) = ab(d−1)c(−k)
∞∑
n=0

c−1∑
m=0

(
β

a

)bm( n∑
l=0

(
n

l

)
HPn−l,β(dx, d

2z; k, a, b)cn−l(dm)l
)
tn

n!
.

(4.4)
On comparing the coefficients of t

n

n! in (4.3) and (4.4), we arrive at the desired result (4.1).

Theorem 4.2. The Hermite-based unified Apostol-type polynomials satisfy the following rela-
tion:

ck
n∑
l=0

(
n

l

)
HPn−l,β(c

2y, c2z; k, a, b)dn−lcl
d−1∑
m=0

(
β

a

)bm
(m+ dx)l

= dk
n∑
l=0

(
n

l

)
HPn−l,β(d

2y, d2z; k, a, b)cn−ldl
c−1∑
m=0

(
β

a

)bm
(m+ cx)l. (4.5)

Proof. Let us consider

f(t) =
21−ktk

βbedt − ab
ecd(x+y)t+c

2d2zt2 βbdecdt − abd

βbect − ab

=
ab(d−1)

dk

(
21−k(dt)k

βbedt − ab

)(
1− (βa )

bdecdt

1− (βa )
bect

)
ecd(x+y)t+c

2d2zt2

=
ab(d−1)

dk

∞∑
n=0

HPn,β(c
2y, c2z; k, a, b)

dntn

n!

d−1∑
m=0

(
β

a

)bm
e(m+dx)ct

f(t) =
ab(d−1)

dk

∞∑
n=0

n∑
l=0

(
n

l

)(
HPn−l,β(c

2y, c2z; k, a, b)dn−lcl
d−1∑
m=0

(
β

a

)bm
(m+ dx)l

)
tn

n!
.

(4.6)
In a similar manner

f(t) =
21−ktk

βbect − ab
ecd(x+y)t+c

2d2zt2 βbdecdt − abd

βbedt − ab

f(t) =
ab(d−1)

dk

∞∑
n=0

n∑
l=0

(
n

s

)(
HPn−l,β(d

2y, d2z; k, a, b)cn−ldl
c−1∑
m=0

(
β

a

)bm
(m+ cx)l

)
tn

n!
.

(4.7)
By comparing the coefficients of t

n

n! in (4.6) and (4.7), we get the result (4.5).

Theorem 4.3. For all c, d, r ∈ N, s, p ∈ N0, we have the following symmetry relation between
Hurwitz-Lerch zeta function and Hermite-based unified Apostol type polynomials:

n−kα∑
p=0

(
n− kα
p

)
dn−kα−p

p∑
s=0

(
p

s

) r∑
s=0

(
r

s

)
(−α)r−sS(α)

s

(
d,

(
β

a

)α)
cpHPp−r,β

(
dy, d2z; k, a, b

)
cp

×Φ
∗
a

[(
β

a

)b
, p+ kα− n, cx

]
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=
n−kα∑
p=0

(
n− kα
p

)
dn−kα−p

p∑
s=0

(
p

s

) r∑
s=0

(
r

s

)
(−α)r−sS(α)

s

(
c,

(
β

a

)b)
dpHPp−r,β

(
cx, c2z; k, a, b

)

×Φ
∗
a

((
β

a

)b
, p+ kα− n, dy

)
. (4.8)

Proof. We now use

g(t) =
(2(1−k)(α+1)tk(α+1))α(βbdecdt − abd)ecd(x+y)t+c2d2zt2

(βbect − ab)α+1(βbedt − ab)α+1

g(t) =
tkα2(1−k)αecdxt

(βbedt − ab)α+1

(
βbdecdt − abd

βbect − ab

)α
(ct)k21−k

βbect − ab
ecdyt+c

2d2zt2

=
2(1−k)αabdα−bα−bβ−αbtkα

ck(−1)α+1

∞∑
m=0

(
m+ α

m

)(
βb

ab

)m
edt(m+cx)

∞∑
n=0

n∑
s=0

(
n

s

)
(−α)n−s

×S(α)
s

(
d,

(
β

a

)b)
cr
tr

r!

∞∑
n=0

HPp−r,β(dy, d
2z; k, a, b)cn

tn

n!

=
∞∑

n=kα

n!
(n− kα)!

2(1−k)αab(dα−α−1)β−αb

ck(−1)α+1

n−kα∑
p=0

(
n− kα
p

)
dn−kα−p

p∑
s=0

(
p

s

)

×
r∑
s=0

(
r

s

)
(−α)r−sS(α)

s

(
d,

(
β

a

)α)
cpHPp−r,β

(
dy, d2z; k, a, b

)
cpΦ

∗
a

[(
β

a

)b
, p+ kα− n, cx

]
tn

n!
.

(4.9)
Using a similar plan, we get

g(t) =
(2(1−k)(α+1)tk(α+1))α(βbdecdt − abd)ecd(x+y)t+c2d2zt2

(βbect − ab)α+1(βbedt − ab)α+1

g(t) =
∞∑

n=kα

n!
(n− kα)!

2(1−k)αab(dα−α−1)β−αb
n−kα∑
p=0

(
n− kα
p

)
dn−kα−p

p∑
s=0

(
p

s

)

×
r∑
s=0

(
r

s

)
(−α)r−sS(α)

s

(
c,

(
β

a

)b)
dpHPp−r,β

(
cx, c2z; k, a, b

)
Φ
∗
a

((
β

a

)b
, p+ kα− n, dy

)
tn

n!
.

(4.10)
On comparing the coefficients of t

n

n! in (4.9) and (4.10), we arrive at the desired result (4.8).

Acknowledgement. The author Waseem A. Khan thanks to Prince Mohammad bin Fahd Uni-
versity, Saudi Arabia for providing facilities and support.

References
[1] Andrews, L. C, Special functions for engineers and mathematicians, Macmillan. Co., New York, 1985.

[2] Bell, E. T, Exponential polynomials, Ann. of Math., 35(1934), 258-277.

[3] Dattoli, G, Lorenzutta, S and Cesarano, C, Finite sums and generalized forms of Bernoulli polynomials,
Rendiconti di Mathematica, 19(1999), 385-391.

[4] Garg, M, Jain, K, Srivastava, H.M, A generalization of the Hurwitz-Lerch zeta functions, Integral Trans.
Spec. Func., 19(2008) 65-79.

[5] Khan, W. A, Some properties of Hermite-based Apostol type polynomials, Kyungpook Math. J., 55(2015),
597-614.

[6] Khan, W. A, Haroon, H, Some symmetric identities for the generalized Bernoulli, Euler and Genocchi
polynomials associated with Hermite polynomials, Springer Plus (2016) 5:1920.



Symmetric identities for the generalized Hermite-based 461

[7] Kurt, V, Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums,
Adv. Difference Eq., 32 (2013), 2013:32.

[8] Kurt, V, Some symmetry identities for the unified Apostol-type polynomials and multiple power sums,
Filomat, 30(3)(2016), 583-592. (2013), 2013:32.

[9] Luo, Q. M, Srivastava, H.M, Some series identities involving the Apostol-type and related polynomials,
Comp. Math. Appl., 62 (2011), 3591-3602.

[10] Luo, Q. M, The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of
higher order, Integral Trans. Spec. Func., 20(2009), 377-391.

[11] Luo, Q. M, The multiplication formulas for Apostol-type polynomials and multiple alternating sums,
Math. Notes, 91(2012), 46-57.

[12] Ozarslan, M. A, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comp. Math. Appl.,
62(2011) 2482-2462.

[13] Ozden, H, Simsek, Y, Srivastava, H. M, A unified presentation of the generating function of the general-
ized Bernoulli, Euler and Genocchi polynomials, Comp. Math. Appl., 60(2010), 2779-2789.

[14] Ozden, H, Simsek, Y, Modification and unification of the Apostol-type numbers and polynomials, Appl.
Math. Comp., 235(2014), 338-351.

[15] Pathan, M. A and Khan, W. A, Some implicit summation formulas and symmetric identities for the gen-
eralized Hermite-based polynomials, Acta Universitatis Apulensis, 13(2014), 113-136.

[16] Pathan, M. A and Khan, W. A, Some implicit summation formulas and symmetric identities for the gen-
eralized Hermite-Bernoulli polynomials, Mediterr. J. Math., 12(2015), 679-695.

[17] Simsek, Y, Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian
type polynomials and their applications, Fixed Point Theory Appl., 2013(2013) 87.

[18] Srivastava, H. M, Some generalization and basic (or q..) extension of the Bernoulli, Euler and Genocchi
polynomials, Appl. Math. Inform. Sci., 5(2011), 390-444.

[19] Srivastava, H. M and Manocha, H. L, A treatise on generating functions, Ellis Horwood Limited. Co. New
York, 1984.

[20] Srivastava, H. M, Garg, M, Choudhary, S, A new generalization of the Bernoulli and related polynomials,
Russian J. Math. Phys., 20(2010), 251-261.

[21] Srivastava, H. M, Kurt, B, Simsek, Y, Some families of Genocchi type polynomials and their interpolation
functions, Integral Trans. Spec. Func., 23(2012), 919-938.

Author information
Waseem A. Khan, Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University,
P.O Box 1664, Al Khobar 31952,, Saudi Arabia.
E-mail: wkhan1@pmu.edu.sa

Received: Jnauary 3rd, 2021

Accepted: May 8th, 2021


	1 Introduction
	2 A new class of Hermite-based Apostol-Bernoulli, Euler and Genocchi (ABEG) polynomials HPn,()(x,y;k,a,b)
	3 Summation formulae for generalized Hermite-based Apostol type polynomials
	4 Some symmetry identities for Hermite-based unified generalized Apostol-type polynomials

