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Abstract In this paper, we introduce and investigate a new unification of the unified family
of Hermite-based Apostol-Bernoulli, Euler and Genocchi polynomials and numbers. We obtain
some summation formulae and general symmetry identities are derived by using different analyt-
ical means and applying generating functions. We give explicit relations for these polynomials
and related to multiple power sums.

1 Introduction

The 2-variable Hermite Kampé de Fériet polynomials (2VHKAFP) H,,(z,y) [2, 3] are defined
as
[%] r,.n—2r

Hn(x,y):n' L. (1.1)
It is easily seen from definition (1.1) that
H,(2z,-1) = H,(z)

and |
H,(z, _§> = He, (),

where H,,(z) and He,,(z) being ordinary Hermite polynomials. Also
H,(z,0) ==z

The generating function for Hermite polynomial H, (X,y) are given by [1, 5]:
. 2 s t"
=3 ) (12)

Recently, Ozarslan [12] introduced the following unification of the Apostol-Bernoulli, Apostol-
Euler and Apostol-Genocchi polynomials. Explicitly Ozarslan studied the following generating

function:
1—k4k @ e n
(@) (e _ (2 ot =3 P t
fa,b (1', t7a, b) = (Bbet—a,b) e = p Pnﬁ(x, k, a,b)a7 (13)

(‘t+bln (ﬂ>’ < 2m k € No;a,b € ®R\{0};,8 € (C) )

(%

For o = 1in (1.3), we get

21 ktk‘
fap(@it,ab) = Zo—ge” ZPHB zik,a, b (1.4)
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(‘t +bln (ﬂ>’ < 2m k € No;a,b € ®R\{0};,8 € (C) .

(%

From (1.3) and (1.4), we have

P} (x1k,a,b) = P, s(z3k,a,b), (n € N).

Which is defined by Ozden and Simsek [14]. Now Ozden et al. [13] introduced many properties
of these polynomials. We give some specific special cases:

1. By substituting a = b = k = 1 and = X into (1.3), one has the Apostol-Bernoulli poly-

nomials Pfll}j(x, 1,1,1) = Br(f‘)(x; A), which are defined by means of the following generating
function

()\ett—l) —ZB (|t+log/\|< 2r) (1.5)

(see for details [7], [8], [9], [13], [14] see also the references cited in each of these earlier works).

For A\ = a = 1 in (1.5), the result reduces to
t o~ tn
—c :ZBn(x)a,|t|< 2 (1.6)
n=0

where B, (z) denotes the classical Bernoulli polynomials (see from example [1]-[21]; see also
the references cited in each of these earlier works).

2. If we substitute b = a« = 1, kK = 0, a = —1 and § = X into (1.3), we have the Apostol-Euler
polynomials Pfl_’ \(230,—1,1) = E} (2, \)
2 ZE (4 TogA < m) (1.7)
et + 1

(see for details [7], [8], [9], [13], [14] see also the references cited in each of these earlier works).

For A = 1 in (1.7), the result reduces to

ZE |t|<7r (1.8)

where F, (x) denotes the classical Euler polynomials (see from example [1], [7], [8], [9], [13],
[14], [15], [16]; see also the references cited in each of these earlier works).

3. By substitutingb =« =1,k = 1,a = —1 and § = X into (1.3), one has the Apostol-Genocchi
polynomials Pfllg(x, 1,—1,1) = 1G,(z; \), which is defined by means of the following gener-
ating function

1 1.
/\et—i—l ZG a:)\ (] t+log\ |< ) (1.9)
(see for details [7], [8], [9], [13], [14] see also the references cited in each of these earlier works)

4. By substituting = = 0 in the generating function (1.3), we obtain the corresponding unification
of the generating functions of Bernoulli, Euler and Genocchi numbers of higher order. Thus we
have

PL)(0s k,a,b) = P%)(k,a,b),n € N,

Very recently, Pathan and Khan [15] introduced 2-variable Hermite-based Apostol type poly-
nomials as follows:
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(a)

Definition 1.1. The generalized Hermite-based Apostol type polynomials ;P B(x y; k,a,b,e)

for nonnegative integer n are defined by

n

Zliktk ¢ mt+yt t
m & ZH ﬂ X y,k a, b 6) (110)

n=0

(|t+bln( )| <2m,k € Nosa,b e ®\{0};a, 5 € C).

For the existence of the expansion, we need

b
() | t |< 27 where @ € Ny, k = 1 and (ﬁ) = I;| t |[< 27n when @ € Ny, k = 2,3,--- and

(g)b L]t <] blog( ) | when o € Ny, k € Nand( ) # lor (# —1); z,y € R,
B eC/{0}, 1o =1.
(i) | ¢ |< 27 when (g)b = 13| t|<| blog (ﬁ) | when (g)b £ lLayeRk=0,a08¢C,
a,bce C1* = 1.
(iii)| t |< 27 when aeng and (g)” = lLayeRkeNBeC, abceC/HO}1o =1

where w =| w | ¥, —7 < § < 7 and log(| w |) + 6.

Table 1. Some special cases of the 2VHBATP HYA‘X) (z,y;k,a,b)

S. No. Values of the parameter Relation between the Name of the resultant Generating functions
2VI-IBATPHP< )(z y:k,a,b) special polynomials and the resultant of
and its special case special polynomials
2
L k—a=b=18=x g P @, 1,1, =g B (@, w0 2-variable Hermite-based ( L ) eTttyt
Ae
S Bl ™
Apostal Bernoulli polynomial => By @y MLy
n=0

IL k+l=—-a=b=1p=2X Hp(a) (z,y:0, =1, 1, \)=g E. Ot)(»L Yy A) 2-variable Hermite-based ( 2t ) a‘f+y12
ot
Apostal Euler polynomial => H E( )(a‘ Y )\)
n=0
jus k=—-2a=b=128=2X HP(,OC) (z,y:1, — 5,1, \)= G(a)@:. yi ) 2-variable Hermite-based ( Ztt ) T‘J”Jt2
%t
Apostal Genocehi polynomial | = > 5 G\, s )\)%
n=0

Note. In the case We note that for A = 1, the result derived above for the 2VHbBP HBy(,a) (z,y; N,
2VHbBEP ; E{”) (z,y; A) and 2VHbBGP ;G\ (z,y; \) give the corresponding results for the
2-variable Hermite-based Bernoulli polynomials (2VHbBP) (of order «) HB,({)‘) (z,y), 2-variable
Hermite-based Euler polynomials (2VHbEP) (of order «) HE}({X)(x, y) and 2-variable Hermite-

based Genocchi polynomials (2VHbGP) (of order «) HG,ELO‘ )(:137y). Again for a = 1, we get
the corresponding results for the 2-variable Hermite-based Bernoulli polynomials (2VHbBP)
1 B (x,y), 2-variable Hermite-based Euler polynomials (2VHbEP) g E,,(z,y) and 2-variable
Hermite-based Genocchi polynomials 2VHbGP) G, (z,y).

Garg et al. [4, 20] introduced the following generalization of the Hurwitz-Lerch zeta func-
tion ®(z, s;a):

(,rr - P"Z
®,77)(2,57a) Z nta (1.11)

(meC,a,veC\Zy,pc € R,p<owhens,ze C(|z| =1);p=o0cand R(s —m+v) >0,
when |z| = 1).
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It is obvious that

e n
O (2, s0) = @ (2, s0) = 3 1.12
a1 (z,85a) (2, 850) nz:: ni(n+a) (1.12)
( see for details [4, 20]).
The multiple power sums are defined by Luo in [10, 11] as follows:
S (m,A) = 3 ( ! ) AR (4D 4, )E
Vlvl/Z?"' 7Vm
0<vy < <wy =1
v+wm+--+uvy=n
(1.13)

From (1.13), we have

1 — \memt ] 3 > n n . Dim tn
(1—Aet ) =A% LD kgblmA) o (1.14)
=0 \k=0 ’

For [ =1, (1.14) reduces to

1-— )\memt 1 ad “ n— m,\) "
T SR ( ( ) (1) kst ) o (1.15)
k=0 ’

n=0

The generalized Stirling numbers of the second kinds S(n, v, a,b, ) of order v are defined in
[17] as follows:

tn bt __ b
anuab@ M. (1.16)
n=0 !
Setting 8 = A\, a = b =1, (1.16) reduces to

ZSTLV/\ r u (1.17)

v!

In the last ten years many mathematicians studied the Apostol-type Bernoulli polynomials.
Srivastava in [18] and Srivastava et al. in [20, 21] investigated and proved some relations and
theorems for Bernoulli type polynomials and Apostol-Bernoulli-type polynomials. Luo in [10,
11] proved the multiplication theorems for the Apostol-Bernoulli and Apostol-Euler polynomials
of higher-order and multiple alternating sums. Luo et al. [9] gave some symmetry relations be-
tween the Apostol-Bernoulli polynomials and Apostol-Euler polynomials. Ozarslan in [12] de-

fined uniform form of the Apostol-Bernoulli, Euler and Genocchi polynomials P,(la) (z; ka,a,b)
of order a. He gave the explicit representation of this unified family in terms of a Gaussian
hypergeometric function. Also, he gave the recurrence relations and symmetry properties for the
unified Apostol-type polynomials.

This paper is organized as follows. In Section 2, we give some explicit relation for the
Hermite-based unified Apostol type polynomials. In section 3, we establish some implicit sum-
mation formulae for the Hermite-based unified Apostol type polynomials. In section 4, we prove
the relation between Hurwitz-Lerch zeta function and the unified Apostol-type polynomials and
give some symmetry relations for these Hermite-based unified Apostol-type polynomials.

2 A new class of Hermite-based Apostol-Bernoulli, Euler and Genocchi
(ABEG) polynomials HPr(:Za) (z,y; k,a,b)

In this section, we aim to obtain the explicit relations of the polynomials Hva?g(% y: k,a,b).
By the motivation of the Pathan and Khan [15, 16] and Kurt [7, 8], we prove some relations for
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these polynomials and give the relations between the unified family of generalized Apostol-type
polynomials and the Stirling numbers of the second kind S(n, v, a, b, 3) of order v.

Theorem 2.1. Let a,b > 0 and a # b. Then x,y € R and n > 0, we have

P A)(l‘ v 1, 1,1) = B (2,4 \), g P\ )\(m 0,1, —1) = g EX) (2,3 ),

« 1 «a
HPrsagv)(x+y,z+U;k,a7b) = Z ( ; >HP< )ﬁ(z w4 b)HP( * mp(@ Y3k, a,0). (2.2)
’ m=0 m

Hpi?ﬁ)(x—f-z,y;a, b) = Z( " )Péa) (I k,a, b) m(z y) (23)

n
n=0

Proof. The formula in (2.1) are obvious. Applying Definition (1.10), we have

S uP >(x+y,z+ukab ZH ,y;k:,a,b)ﬁZHP},Z)B(Z,u;k,a,b)M
n=0 m=0
(a) . t"
_ZZH 5 Z U, k a b)HP (.’L',y,k,a7b)m.

n=0m=0
Now equating the coefficients of the like powers of t in the above equation, we get the result
(2.1). Again by Definition (1.10) of generalized polynomials, we have

77/

dl—kgk \©
() (a+2)ttyt? ZH 6 (z + 2,93k, a, b) (2.4)

Bbet —ab
n=0

which can be written as

zl—ktk @ mt thLytk m oo g
et —ab ZP 2k a,b) 3 Hon(2,9)—. (2.5)
" m=0 '

On replacing n by n — m in the above equation and comparing the coefficients of ;—,, we get the
desired result (2.3).

Theorem 2.2. The Hermite-based unified Apostol-type polynomials satisfy the following rela-
tion

B P+ 1y k,a,b) — a’y P (2, 55k, a,b) = 21 * 5 PN (@, gk, a,b) (2.6)

n!
(n—k)!
Proof. From (1.10), we have

n

21-kgk N > 21=kgk NY s kR (el t
B <) eletDityt® _ b () etV = o1k N Pl >(x,y;k,a,b)g

Bhet — ab Bbet — ab —~
e tntk
Z{Bb x—i—l y;k,a,b)—a HP([;(LE yik,a,b)}— =2~ kZ P D (z,y;k,a,b) -
b _ (@) _Al—k "
Z(ﬁ (x—i—ly,kab) a’ g P ﬂ(xy,kab) =2 Z xy,kab)( —r

n=0

By comparing the coefficients of £;, we arrive at the desired result (2.6).

nva
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Theorem 2.3. There is the following relation between the A-Stirling numbers of second kinds
and Hermite-based unified Apostol type polynomials HP( B)(x ys k,a,b):

b
baa‘z ( ) e 7«5(% y;k,a,b)S (7"704 (5) ) — p(I=k)a "ko‘(:”’y)(n_n;m)!~

(2.7)
Proof. By using equation (1.10) and (1.17), we have

oo n 1—k1k @
(@) ) A A wttyt?
Z()Hpn,ﬁ(lz?y’k?aab)a_ <Bbet—ab € !
2(17k)atkaezt+yt2
(@) S ))s
a’® | | =) et — a’®al o, | o =
@ r=0 !
i t 2 B\"\ ¢ S t"
S urteba faer 38 (e (1) ) =20 S
n=0 ’ . '

r=0 n=0

Zabaavz< ) o Tﬁ(x v k,a,b)S <T,a, (5) ) o H(1-k)a ZHn ko (T, Y) (n _tka)

By comparing the coefficients of %, we obtain the desired result (2.7).

Theorem 2.4. There is the following relation between the A-Stirling numbers of second kinds
and Hermite-based unified Apostol type polynomials HP B)(I y; kya,b):

(=D (1 — 1 &
(a—) 2 7!(n — kv)! n () ,

P ,k b P b) ’k7 7b S b b) 7b7 .
HL gy ﬁ(m ysk,a,b) = E | H n—r,B(m ysk,a,b)S (r,7,a,b, 8)

n!
r=0
(2.8)
Proof. From (1.10) and (1.17), we have

+n zlfktk a—=y N ’
zH gk ab) (ﬁ_)

2l—kyk @ ewt+yt2 5bet —ab\”
Bbet —ab S 1—ktk

tn+k'y
2(k=1)y ZH xy,kab ZSr’y,abﬁ)

ZH J;y,k‘ab)

Using Cauchy product, comparing the coefficient of L, we get the desired result (2.8).

nl

3 Summation formulae for generalized Hermite-based Apostol type
polynomials

The purpose of this section is to give some interesting generating functions, new results, and
relations for the generalized Hermite-based unified Apostol type polynomials. We begin here
some of these results in the following forms.

Theorem 3.1. The summation formulae for generalized Hermite-based unified Apostol type

) (x, 3k, a, b) holds true:

< n m
HP(+)m6(Z yik,a,b) = Z ( ) ( > (z — )p+qu7()+)m as(@ ik, a,b). (3.1)

pag—0 \ P q

polynomials P
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Proof. We replace t by ¢ + u and rewrite the generating function (1.10) as

217k (it + w)” y(t+u)? x(t+u) u™
(Bl et < et S ) oS 6
ke, 1=0

Replacing x by z in the above equation and equating the resulting equation to the above
equation, we get

)(t+ ™

Z Q? ’lL . [ —

Z nb +mzy’kab vmv Z " n+mBZy’k’a’b)nvmv

n,m=0 n,m=0

(3.3)

On expanding exponential function (3.3) gives

= (2 —2)(t + )V o o™
Z NI Z Pn+m [3(33 y: k,a, b) Tl Z HPn+mﬁ(Z y; k,a, b) 1

N=0 ’ n,m=0 n,m=0
(3.4)
which on using formula [19,p.52(2)]
Zf x“’ - f: Fn+m) =Y (3.5)
S~ n! m!
in the left hand side becomes
(oo} (oo} oo
(z — z)PtatPyud u™ () ] " u™
Z T Z H nerﬁ .13 y,k a b)nfiv— HPn+m,B(Z’y’k’a’b)ﬂﬁ
p,q=0 n,m=0 n,m=0
(3.6)

Now replacing n by n — p, m by m — ¢ and using the lemma [19,p.100(1)] in the left hand side
of (3.6), we get

S S A LA . o
Z Z 7.Hpn+mfp7q,6(l‘7y’ k7 a, b) (n _ p)' (m _

q)!

=y HP(L+)77LB(Z X b)——‘

n,m=0

(3.7)

Finally, on equating the coefficients of the like powers of ¢ and w in the above equation, we get
the required result (3.1).

Remark 3.1. Taking m = 0 in assertion (3.1) of Theorem 3.1, we deduce the following conse-
quence of Theorem 3.1.

Corollary 3.1. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HPy(la/;(x, y; k, a,b) holds true:

HP([g(z v k,a,b) = i<n>(z—m) HP() s(, Yk, a,b). (3.3)

=0\ P
Remark 3.2. Replacing z by z + z in (3.8), we obtain

#P) (2 +a, ik ab) = Y ( " ) PP Sz, k,a,b). (3.9)
p
p=0
Theorem 3.2. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HPéf’g(x, y; k, a, b) holds true:

o3

n—2j L]

HP(E(fcy,kab Z Pf:gkab)”zj My

n'

(3.10)

1il(n — 27 —
o e m!jl(n — 25 —m)!
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ﬁbet_ab

Proof. Applying the definition (1.10) to the term (&)a and expanding the exponential

function e®t+¥t at t = 0 yields

zliktk “ wttyt? - (a) " — n " = ‘th
(ﬂbet—ab) = ZP’”’ﬁ(k’a’b)m PE n! Zy]?‘

m=0

- - L () n—m |2 S 'tzj

= E E P (k,a,b)x ) — E Y —
m,B\" | |

n=0 (k—o ( m ) n j=0 J:

Replacing n by n — 24, we have

00 n—2j [%]

tn n—2j () i i tm
;k,a,D, P o(k,a,b)z™ Ty
> resianaly =30 (52073 ) Atk )

— 21517
n=0 n=0 \ m=0 j=0 m n 2‘7)'7

(3.11)
Combining (3.11) and (1.10) and equating their coefficients of ¢t produce the formula
(3.10).

Theorem 3.3. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HPT(fg(x, y; k, a, b) holds true:

P+ 1yika,0) =Y ( :1 )Hpgjg(z;k,a,b). (3.12)

m=0

Proof. From (1.10), we have

27Kk \® (z4+1)t+yt* t"
(m_b> SR ZH S+ Lysk,ab)—, (3.13)
ﬂ : ezt+yt26t
Bbet — gb

(ZH ﬂxkab)m) (ZZ)
n=0
= Z Z < ) (‘ffa(w;k,a»b)%- (3.14)

n=0m=0

which can be written as

Combining (3.13) and (3.14) and equating their coefficients of ¢" leads to formula (3.12).

Theorem 3.4. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HPiaB)(x, y; k, a, b) holds true:

= n
HP(g(g; y k,a,b) = Z<m>Prg mﬂ(kab)HP( g(aj y; k,a,b,e) (3.15)
m=0

Proof. By the definition of generalized Hermite-based polynomials, we have

217ktk Zlfktk @ ot tz 21 ktk e tn
<Bb€t _ab> <5bet _ ab) e = (Bbef _ab> ZHP r y;k,a,b)m

zlfktk o zt+yt 21 ktk 0 m
(Bbet_ab> € _<5bet_ab)zH 5zy’kab)
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Now replacing n by n — m in the above equation and equating the coefficients of ¢" leads to
formula (3.15).

Theorem 3.5. The following summation formulae for generalized Hermite-based unified Apos-
tol type polynomials HP( B)(x y; k,a, b) holds true:

n

pr(fg(an Lysk,a,b) =) < nm )HP(Q;B(”" yik,a,b). (3.16)

m=0

Proof. By the definition of generalized polynomials, we have

’ﬂ

ZH ﬂx—i—ly,kab—.fZH Bxy,kab)
n=0

zlfktk‘ @
- <ﬁbet — ab) e - 1)

= (Z prz/)g(x,y;k,a,b);::> <Z ) ZH (x y;k,a,b)%

m=0 n=0

n

_ZZH Bxy,kab ZH Bxy,k:ab)

n=0m=0

Finally, equating the coefficients of the like powers of ¢, we get (3.16).

4 Some symmetry identities for Hermite-based unified generalized
Apostol-type polynomials

In this section, we give general symmetry identities for the generalized unified Apostol-type

polynomials P(O‘)(:n' k,a,b) and Hermite-based generalized unified Apostol type polynomials

HP( g(x y; k, a,b) by applying the generating function ( 1.3) and (1.10). These results extend
some known summation and identities studied by Ozarslan [12], Pathan and Khan [15, 16], Khan
[5], Khan and Hiba [6], Kurt [7, 8]. Also we prove the relation between for the unified Apostol-
type polynomials and Hurwitz-Lerch zeta function.

Theorem 4.1. The following symmetry relations for the Hermite-based unified Apostol-type
polynomials hold true;

c—1

— bm n
Z (5) Z ( 7 ) HPn—l”ﬁ(dJ;’dzz;k’a,b)cnfkfl(dm)l
1=0

m=0

d—1 bm n
= Z <§) Z ( ln ) Hpn—l.ﬂ(czchZ;kaavb)dnikil(cm)l' (41)
m=0

1=0
Proof. Let us consider
1—kk bd cdt bd
2 13 cdzt+ctd>yt? B € —a

1O = groa e Bt —ab

= 1 ﬂ pedut+c?d’yt® b(d—1) ﬂ
dk /Bbedt _ ab ( ) ect

oo d—1 bm
—_ —_ dt)n /B ctm
abld=1) 4( k)§ :HPnﬁ(c:c,czz;k,a,b) ( - Z <a) ot

n=0 m=0

(4.2)
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bd—1) 1(—F) 2 (@) &= (B ot
=a d ZHPnﬁ(cx,c 23k, a,b) - Z o Z(cm) m
n=0 m=0

oo d—1 bm n n
10 =4 a 0S5 () (S ) pcnsten sty ) £

n=0 m=0 =0
(4.3)
On the similar lines, we can show that

oo c—1 bm n n
_ b(d—1) (k) é n 2. n—l )
ft)=a c gmz::() <a) (lz(; ( l > wPn_15(de,d" 2z k,a,b)c" " (dm) ) E
(4.4)
On comparing the coefficients of % in (4.3) and (4.4), we arrive at the desired result (4.1).

Theorem 4.2. The Hermite-based unified Apostol-type polynomials satisfy the following rela-

tion: o
n — bm
K n 2.2 n—1 1 B l
P, _ ; -
c ;:0 ( l )H —1,8(cy, "z k,a,b)d" "¢ E (a) (m + dx)

m=0
n n c—1 ﬂ bm
=" Po_i5(d%y, d*z k,a,b)c" " d! <> m + cz)'. 4.5
;(l)H 1La(d%y ) mZ:Oa ( ) (4.5)
Proof. Let us consider
cdt _ bd

1-k4k bd
f(t) _ 2 t ecd(z+y)t+czd2zt2 p*e a
- Bledt — gb Bbect — b

qbld—=1) (2‘—’“(dt)’f ) (1 - (f)bd@c‘“> ecd(zty)t+cid zt?

dk Bbedt — gb 1— (g)be“

b(d—1) g g1 -
_a ZHPn,B(czy,c2z;k,a,b) Z <B> o(m+da)et

d* n! a
n=0 m=0

a’) S~ n 2 2 e (B |t

ft) = 7 ;; I aPn_15(cy,c 2z k,a,b)d" "¢ n;) <a> (m + dx) =
(4.6)

In a similar manner
() = 2 et f —a
Bbect — gb Bbedl — b

ab(d_l) S ) n - c—1 6 bm o

ft) = Tdk ZZ s a P, 5(d*y, 2k, a,b)c" " d! Z (a) (m + cx)! —
(4.7)

By comparing the coefficients of % in (4.6) and (4.7), we get the result (4.5).

Theorem 4.3. For all ¢,d,r € N, s,p € Ny, we have the following symmetry relation between
Hurwitz-Lerch zeta function and Hermite-based unified Apostol type polynomials:

n—ka p r *
T L s -

p=0 s=0 s=0

B\"
x P [<> ,p—l—kan,cx‘|
a
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n—ka p T b
s (O (s o2 s
p=

5=0 s=0
B\"
xP* (() D+ ka — n7dy> . (4.3)
a

(2(lfk)(oz+1)tk(a+1))a(ﬂbdecdt _ abd)ecd(m+y)t+c2d2ztz
9(t) = (Bbect — ab)ati(Bhedt — gb)artl

— (&7 —
oo thao(l k)aecdmt 5bd€Cdt _ qgbd (Ct)kzl k cdyts Pt
IV = (Bedt — gbyatt \  Bhect — b Bbect — qb©

Z(I—k)aabda—ba—bﬁ—abtka o m-+« ﬁb (ke o n n_s
- k(= 1)t Z (ab) " ZZ

m=0 m

o B\ ot Lt
xS (d, (a c EZHPp_n@(dy,dzz;k,a,b)c o

n=0

> n 2(17k)aab(da7a71)ﬁfabn_ka n— ka . P D
— n—ka—p
> a2 (1)) ()

Proof. We now use

n=ko p=0
XZ a) sl é i cpHP_Tﬁ(dydz,Z'kab)cqu* A bp—b—kozfncx ﬁ
a p—r, 9 s vy Wy a a ) ) n'
(4.9)
Using a similar plan, we get
(2(]—k)(a+1)tk(a+1))a(Bbdecdt _ abd)ecd(w+y)t+czd2zt2
g(t) = (Bbect — qb)otl(Bhedt — gb)atl
(t)—io: n! " o=k bdaa IB ozbnzk:o{ —ka qn—ke— pZ
= (n—ka)!
n=ka
XZ )8l (2 b &Py Py_yp (ca, P2k, a,b) D p bp—i—kafndy ﬁ.
a p—r, } s vy Uy a a ) .
(4.10)

On comparing the coefficients of 7 in (4.9) and (4.10), we arrive at the desired result (4.8).
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