Palestine Journal of Mathematics

Vol. 12(1)(2023) , 462-481 © Palestine Polytechnic University-PPU 2023

Bicomplex two-parameter Mittag-Leffler function and
properties with application to the fractional time wave equation

Urvashi Purohit Sharma, Ritu Agarwal and Kottakkaran Sooppy Nisar
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 33E12, 30G35; Secondary 26A33.

Keywords and phrases: Bicomplex numbers, Mittag-Leffler function, bicomplex gamma function, H-function, Maxwell’s
equations.

Abstract. The aim of this paper is to define the bicomplex two-parameter Mittag-Leffler
function, its region of convergence, and analyticity. Various properties, including recurrence
relations, duplication formula, differential, and integral relations are established. Several inter-
esting special cases of the bicomplex two-parameter Mittag -Leffler function have also been de-
veloped. Further, the bicomplex Laplace transform of two-parameter bicomplex Mittag-Leffler
function has been evaluated. The bicomplex solution of the electromagnetic fractional time wave
equation has been obtained for vacuum via the bicomplex Mittag-Leffler function.

1 Introduction

Bicomplex numbers are being studied for quite a long time, and a lot of work has been done in
this area. Cockle [11, 12] introduced tessarines between 1848 and 1850, following which Segre
[48] introduced bicomplex points as a natural completion of the complex projective straight line.
During the last few years, researchers have aimed to establish different algebraic and geometric
properties of bicomplex numbers and their applications (see, e.g., [9, 32, 43, 44, 46, 47]). In the
recent developments, efforts have been done to extend the integral transforms [1, 2], holomor-
phic and meromorphic functions [9, 10], a number of bicomplex functions: like, Polygamma
function [17], Hurwitz Zeta function [18], Gamma and Beta functions [19], Riemann Zeta func-
tion [43], bicomplex analysis and Hilbert space [25, 26, 27, 28, 29, 30] in the bicomplex variable
from their complex counterpart.

Segre [48] defined the set of bicomplex numbers as:

Definition 1.1 (Bicomplex Number). In terms of real components, the set of bicomplex numbers
is defined as

T ={{: ¢ =m0+ 0121 +i2m2 + jos | w0, 71, 72, 73 € R}, (1.1)
and, in terms of complex numbers, it can be written as
T={{:{=2z+Mizn|z, 2 €C}, (1.2)
where iy, i, and j are the imaginary units such that i} = i3 = —1, iyi, = i2i) = j, j*> = 1.

We shall use the notations, zo = Re(¢), =1 = Im;, (), 22 = Im;,(£), 3 = Im;(§).
Segre studied the presence of zero divisors, which he called nullifics. He determined that the
zero-divisors in bicomplex space constitute two ideals called infinite nullifics. The set

NC = Oy = {21 + 2202 | 21 + 23 = 0} (1.3)

of all the zero divisors of T, is called the null-cone [45].

Two non-trivial idempotent elements in T, denoted by e; and e; are defined as follows [40]:
_ldi 145 l—diiy  1—

T2 T2 %7 T2 T2

el ,el—l-ez:l,el.eZZOande%:el, e%:ez.
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Definition 1.2 (Idempotent Representation). Every element of T has a unique idempotent repre-
sentation, defined by

=21+ = (21 —iizm)er + (21 +i122)e2 = &€y + &aen, (1.4)
where £ = (21 — ilzz) and & = (Z1 + i1Z2).

Projection mappings P, : T — 73 C C, P, : T — T, C C for a bicomplex number
€ = 21 + irz, are defined as [44]:

Pi(&) = Pi(z1 +1i222) = Pi[(z1 —1z2)e1 + (21 +i1z2)ea] = (21 — i122) € T, (1.5)
and
Py(§) = Py(21 +i2z2) = Po[(21 — i1 22)er + (21 +irz)ea] = (21 +i122) € T, (1.6)
where
T'={& =z1—uznl|z,2eClandTh ={& = 21 + 0122 |21, 20 € Ch (1.7)

Let U beanopenset,and f: U C T — T (see, e.g., [43,47]) and f(z1 +i222) = fi(21,22) +
12f2(z1, 22)- Then f is T-holomorphic iff f; and f; are holomorphic in U and

ofi _ 0fa of> oh
—— === d —=-—— : 1.8
o 0 M o T o, MU 49
These equations in (1.8) are called the bicomplex Cauchy-Riemann equations.
Also, 5 5
fi . 0f
!
= LY 1.
021 + 1 B2, (1.9)

In the Theorem 1.3, Riley [41] studied about the convergence of the bicomplex power series.

Theorem 1.3. Let

\/II€||2 €11+ - |£|abs = max(|&],1&]), (1.10)

then N (€) is a norm and if ", a,£™ is a power series with component series y .~ b,&l and
Zn 0 n&y, an = bner + cpen both have same radius of convergence R > 0, then Z —o0n&"

converges for N (&) < R and diverges for N(£) > R. Here, [€112 + &> and |€laps =

‘£1||§2|7 617 52 e C.

In the following theorem, Ringleb discussed the analyticity of a bicomplex function concern-
ing its idempotent complex component functions (see, e.g., [41]). This theorem plays a crucial
role in discussing the bicomplex functions’ convergence.

Theorem 1.4 (Decomposition theorem of Ringleb [42]). Let f () be analytic in a region U C T,
and let Ty C C and T, C C be the component regions of T, in the &, and &, planes, respectively.
Then there exists a unique pair of complex-valued analytic functions, f1(&1) and f,(&;), defined
in Uy C Ty and U, C T3, respectively, such that

&) = fils)er + fa(&2)ea, €U (1.11)

Conversely, if f1(&1) is any complex-valued analytic function in a region Ty and f>(&;) any
complex-valued analytic function in a region T, then the bicomplex-valued function f(£), defined
by the equation (1.11), is an analytic function of the bicomplex variable & in the product-region
U= U1 Xe U2.

Definition 1.5 (j-Modulus). The j-modulus of ¢ € T is given by (see, e.g. [44])

€] = |21 — i122]e1 + |21 + i122]e2 € D. (1.12)
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Definition 1.6 (Argument). The hyperbolic argument of £ = £1e; + &ep € T is given by (see,
e.g., [31])
arg;(¢) = arg(&1)er + arg(1)ea. (1.13)

Definition 1.7. The idempotent representation of a hyperbolic number w = z; + x5 € D can be
represented as (see, e.g2.[33])

w = wie| + wyey, w; =x|+ Tp, Wy =T — Ty. (1.14)

If wy, wy > 0then w is said to be a non-negative hyperbolic number and this set is represented
by DT. When wy,w; > 0 hyperbolic number w is said to be positive hyperbolic number. This
concept enables the following partial order on hyperbolic numbers to be defined [33].

Definition 1.8. Let u, v € D then partial order on ID is defined as [33]
vifv—ueDandu < vifv—ueD?/{0}. (1.15)

Definition 1.9 (Bicomplex Laplace Transform [24]). Let f(x) be a bicomplex valued function
of exponential order K € R. Then Laplace transform of f(z) for z > 0, is defined as :

Lif(z):€] = f(§) / f(@)e **dz, &=ag+ijar +iras + jaz € T. (1.16)

Here, f(¢) exist and is convergent for all ¢ € D where
D = {¢: H,(&) represent a right half plane : ap > K + |a3|}. (1.17)

Definition 1.10 (Bicomplex Fourier Transform, [8]). Let f(¢) be a continuous function in (—oo, 00)
that satisfies the following estimates:

If(t)] < Crexp(—ayt), > 0,C1 >0, o1 > 0, (1.18)
and
1£ ()] < Chexp(—0at), t <0,C2 > 0, o3 > 0. (1.19)
The Fourier transform of f(¢) is defined as
Q) =FU©) = [ ewaen s, e (120

The Fourier transform f (¢) exists and holomorphic for all ¢ = ag + aji; + aziz + aziji; € Q
where Q is given by

o1+ oo
2

z{EET:oo<ao, a3 < 00; —op+|ag| < a; <oy —|az]; 0 <lap| <
(1.21)

We would require the definition of the bicomplex gamma function defined by Goyal et al.
[19]. In the Euler product form, the bicomplex gamma function is given by

(I

where £ = 2| + 122, = (2’1 — 2122)61 + (Z] + Z1Z2)€2 &rer + &ep, provided that z; # — m+l)

and 2, # i1 (:52) where m, | € NU {0} and the Euler constant v(0 < v < 1) is given by

n—oQ

"
— lim (H, —1 H, =S - 12
v = lim (H, —logn), H, Zk (1.23)
Also,

' =T¢ e + ey, (1.24)
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and in the integral form [19], for p = pie; + paez, p1,p2 € RY,

re= [ e tdp = ( / eplp’f”dpl)el " < / €p2p§21dp2) o (125)
I 0 0

where I' = (71,72) and 7 : 0to 0o, 7, : 0 to co.

The Mittag-Leffler (ML) function arrives intrinsically in the fractional analysis and fractional
modeling. Recently many researchers have worked on various generalizations and the exten-
sions of the Mittag- Leffler function [6, 7, 13, 15, 22]. Efforts have been made by authors to
introduce the Mittag-Leffler function in bicomplex space along with its applications in fractional
calculus and integral transform [4, 5]. The importance of ML function in applied science and
engineering is continuously increasing. It is very useful in the area of fractional order differential
and integral equations.

A two-parameter ML function is defined by Wiman [49] (see, also [22]) as follows:
k
z

Ecx,ﬁ(z) = kz:;) m7

Re(x) >0, Re() >0, z, o, € C. (1.26)

For 3 = 1, equation (1.26) reduces to the one parameter (classical) ML function [38, 39] defined
as

e k
z

For each Re(a) > 0, the ML function (1.26) has infinite radius of convergence and it is an
entire function (see, e.g., [16]) of order p and type o where

nlogn 1
= lim su = , 1.28
n—>go log 1 | Re () (1.28)

and
) =1, (1.29)

1 .
o = —1lim sup (n|a,
€p n—00
. _ 1
for the coefficients a,, = okt B)"

2 Bicomplex two-parameter Mittag-Leffler function

Here, we introduce the bicomplex two-parameter Mittag-Lefﬂer function as

Z e T =
where &, &, 3 € T, { = 2z + ir2; and | Imj(x)| < Re(x), [Im;(B)| < Re(p).
For 3 = 1, it reduces to the bicomplex one parameter ML function defined by Agarwal et al. [4]

ZO I( ock +1 *2

for | Im;j ()| < Re(x).
Above definition of bicomplex two-parameter ML function is well justified by the following
theorem:

Theorem 2.1. Let £, &, B € T, £ = 21 +ir20 = e +&en, 6 = xje] + 0aes, B = PBre; + Paes.
Then

Z I( ock: +B)’ (23)

is convergent for | Imj(x)| < Re(x), |Im;( )\ < Re(ﬁ).
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Proof. Consider the series

2 TG T B .

k=0
By using the idempotent representation for (2.4)

8 _
Z T oqk + B! + kzz;) Tk + B2~ Eo.pi(§1)e1 + Eoy g, (82)e2, (2.5)

where § = {1e + &6, x = ey + xzex and B = Bieg + Baea.

Now, Ey, g,(&1) and E, g,(&2) are complex two-parameter ML function convergent for
Re(a;) > 0, Re(f;) > 0 and Re(xz) > 0, Re(B2) > 0, respectively. Since E, g, (£1) and
E,,p,(&) are convergent in 7 and 7>, respectively, by Ringleb decomposition Theorem 1.4,
(2.4) is also convergent in T and is denoted by E ().

Further, let

& = po + 11p1 + i2p2 + 1122p3
= (po +i1p1) + i2(p2 + i1p3) (2.6)

= xje1 + ey,

where & = (po + p3) + i1(p1 — p2) and oy = (po — p3) + i1 (p1 + p2)-
Since Re(ot;) > 0 and Re(xz) > 0,

= po+p3>0andpy—p3 >0
= |psl <po
= |Imj(x)| < Re(x). 2.7
Similarly, let
B =qo+i1q1 +i2q2 + i1i2g3
= (q0 +i1q1) +i2(q2 +4193) (2.8)
= Brer + Paea,

where B1 = (g0 + ¢3) + i1(q1 — q2) and B2 = (g0 — g3) + i1 (g1 + @2)-
Since, Re(31) > 0 and Re(f32) > 0,

= q+¢g>0andg —¢g3 >0

= |ol <

= |[Imj(B)| < Re(p). 2.9)
This completes the proof. O

By substituting the value of the bicomplex gamma function defined by equation (1.22) in the
equation (2.5), we get the following representation for the Mittag-Leffler function:

Theorem 2.2. Let &, &, B € T where £ = 21 + iy20 = &1e1 + &6, & = xjeg + ogen, B =
Bier + Baex with [Imj(ex)| < Re(x), [Im;(B)| < Re(P). Then

Eq, ng (ock + B)er(*kTR) H ((1 + W) exp (—W)) . (2.10)

Remark 2.3. Also, using the integral form of the gamma function, the bicomplex two-parameter
ML function can be represented as

fk

[e%S)
ZO/@ ppock+[3 ldp
T

@2.11)

where I' = (1,72) is as defined in (1.22).



Bicomplex two-parameter Mittag-Leffler function and applications 467

Theorem 2.4. The bicomplex two-parameter ML function satisfies the bicomplex Cauchy - Rie-
mann equations in T.

Proof. By the result (2.5), we have

E“»ﬁ(ﬁ) = Ethﬁl (51)61 + Etxzvﬁz(£2)62
=Eq, g, (21 —i122)e1 + Eq, p,(21 +i122)€2

. 1442 . 1 -1
:Eal,ﬁl(lelZQ)< 21 2> +E“2732(21+2122)( 21 2)

1 ) ) (2.12)
= <2 (Eoclﬁl(zl - Z12’2) + Ea27f52<zl + Z12"2)))
+ i <21 (Eay,pi (21 —i122) — Eqy 5, (21 + Z122)))
= fi(z1, 22) + @2 f2 (21, 22),
where,
1 ) )
fi(z1,22) = 5 (Ea,,p, (21 —i122) + Eq, 8, (21 +1122))
fa(z1,22) = 51 (Eay,pi (21 —i122) = By 3, (21 +1122)) -
Now,
0 1 ) .
G = 3 (g = i2) B (o i)
0 —1q ) .
872 — TI(E/OChBI(Z] 72122)7]E/“2,[32(21 +2122)),
0f2 i1 ) )
3721 ) ( /061,31(21 - 2122) B E/Oéz,ﬁz(zl + lez)) ’
0 1 ) .
67‘2 = 5 (Eixl,ﬁl(zl — lez) —+ ]Eixz,ﬁz(zl + 2122)) .
From the above equations, it can be easily shown that
ofi  0fs fr df1
= = d ——==-— 2.13
0z1 Oz an 02 0z @)

Hence, the bicomplex Cauchy-Riemann equations are satisfied by the bicomplex two-parameter
ML function in T. O

Theorem 2.5. The bicomplex ML function Eo g (&), |Imj(x)| < Re(x) is an entire function in
the bicomplex domain.

Proof. Let ZZO:O a,&" represents a bicomplex power series where a,,, £ € T, a,, = b,e; +cpea,
& = &1e1 + &e. Then by Ringleb decomposition Theorem 1.4, the series

> ang" = <Z M?) er+ (Z cns§> e, (2.14)

n=0 n=0 n=0

converges iff Y2 b,&7 and Y, ¢, &5 converge in the complex domains (see, e.g., [41]).
Now, from equation (2.5), the idempotent components Ey, g, (&) and E4, g,(&) are complex
ML functions with infinite radius of convergence (say R) for Re(x;) > 0, Re() > 0, respec-
tively [15, p.18]. Thus, Ey, g, (&1) and Eq, g, (&) are convergent respectively for

&1l < R, |&] < R. (2.15)
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Equation (1.10), thus implies

\/IIEII2 €11+ - \ﬁlabs = max(|¢i], [&]) < R. (2.16)

Hence by Theorem 1.3, Eo g (&) converges in the bicomplex domain and has infinite radius of
convergence [41]. As ML function is entire function in the complex domain, the bicomplex ML
function is also an entire function (Riley [41, p.141]). O

Theorem 2.6 (Order and Type). The bicomplex ML function Ey g (€), &, «, B € T, & = po +
iip1 + Gap2 + t1iops, [Imj(er)] < Re(a), |Imi(B)] < Re(B), is an entire function of order
Po — P3j

p= oot
(p%*p3)

Proof. From equation (2.7), the order is given by

and type o = 1.

nl
p =lim sup ogn
n—oo 10g \a I

~ lim sup _tlogn
- IR TogT(an + B)

<lim su nlogn ) + (lim su nlogn )
= —= e —= e
nJ; logT(oin + B1) ] ,HEO logT(oan + B2) 2

1 1
N (Re(oq)) et (Re o
(i)t ()
= el + e
Po+p3 Po — P3

_ Po—D3j
)

(2.17)

)) e [using equation (1.28)]
2

Since |p3| < po, p3 # po.

The type of the bicomplex ML function E g () is given by

I .
o= —lim sup (n|a,|")
ep n—00

| e
= — lim su ‘7
e Ay Py W

1 1 3 1 1 3
= (—1i R +(—1i —
(&am s Ol ) o (Gm o (el )
=l-eg+1-e [using equation (1.29)]
=1.
(2.18)
O

2.1 Some Special Cases

Let £ € T where £ = z| + i222, then for specific values of the parameters «, (3, we obtain
various bicomplex functions as special cases. To mention, a few are:

(1) E (&) =€,

et —1

(i) Ei2(8) = £
(iii) E,, (&) = cosh /¢,
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(iv) Ep1(—€%) = cos¢,

sinh /€
E
() Baae) = =2,
(Vi) Epa(—€2) = %
(vii) Eas(€) = coshé—l’
E_ 1
(vii) By 5(€) = %

Theorem 2.7. Let &, «, € T. Then
(i) E(X,O(f) = onc,(x(f), ‘Imj((x” < RC(OC),

(i) Bop(€) = g 1€l < 1, [1mi(B)] < Re()

Proof. (i) Since

1 1 1
im T = dm pg e+ i g2 =0 e +0 e =0, (2.19)

and from (2.3), we get for f =0

= ok + o) (2.20)

L 2.21)
g 2 ¢
11
- <t
O

Recurrence Relations
Complex two-parameter ML function satisfies following recurrence relations (see, e.g., [20, 22])

1
Ea,p(2) = ﬁJronc ral(2), (2.22)

d
Exp(2) = BEx,p+1(2) + 0xz—

TEaph(2), (2.23)

Eor1(2) = 1(r+2)Eari3(2) +oz(at2(r+1))Eq 143 (2) +2°Eg 1 13(2) HEari2(2), (2.24)
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and
3E14(2) + 52K 4 + 2°E{ 4y = Ei 5 — Ey 3, (2.25)

where Re(«) > 0, Re(f) > 0.
We establish here the recurrence relations for bicomplex ML function.

Theorem 2.8 (Recurrence Relations). Let £, «, B € T where £ = z1 + i220 = &1e1 + &e,
X = x1e; + xaep, B = (5161 =+ Bzez with |Imj(oc)| < RC(O(), |ImJ(B)| < RC(B) Then

(i) Eoc,ﬁ(f) = ﬁ + onc [3+oc(€>,
(ii) Eo,p(§) = BEx,p11(£) + o€ gEcx p+1(),

(i) Eari1(€) = r(r+ DBocria(€) + ab(ou+2(r + 1)E),3(6) + B, 5(6) + Eauria(©),
(iv) 3E174(§> + SZ]EllA + nglllA = E]72 — E173.
Proof. (i) By using the results (2.5) and (2.22), we have
]E%B (5) = qu,[ﬂl (51)61 + Ea2752(§2)62
1 1
<1—~[5 + £1E0(1761+O(1 (61)) €1 + (I—BZ + €2E£Xz,f52+(xz (62)) € (226)
1
Ry
(ii) By using the results (2.5) and (2.23), we have

E%B(g) :E‘Xhﬁl (51)61 + E“z,ﬁz(€2)€

(I?)lqu Bi+1(&1) +ouéi——

+ fEa,(5+o¢(§)~

é. O(],B]ﬁ'l(fl)) €

2.27)
+ (BzEcxz,ﬁzH(&) + &

—E 2
T oa,Bat1(&1 >€2

=BE«,p11(£) + Oéf Eoc p+1(£)-

dg§
(iii) By using the results (2.5) and (2.24), we have

Ea,r1(§) =Earr1(&)er + Eari1(£2)e2
= (r(r +2)Eors3(&1) + obi (o + 2(r + 1)EY . 3(61) + ETEG 5 (61) + Earia(61)) €
+ (r(r +2)Ea,3(&) + alo (o +2(r + D)EY . 5(6) + EEY 115(6) + Earra(&2)) e
=r(r 4 2)Eari3(8) + af(oe+2(r + 1))E,, . 5(6) + sza ++3(8) + Eari2(8).

(2.28)
(iv) By substituting & = 1 and » = 3 in (iii), the desired result is obtained. O
Duplication Formula
Duplication formula for the complex two-parameter ML function are given by [16, p.7]
Eop(2) + Eap(—2) = 2Es0p(2?), (2.29)
and
Eop(2) = Exp(—2) = 22E0 015 (2%), (2.30)

where Re(x) > 0, Re(f3) > 0.

We establish here, the duplication formula for the bicomplex ML function.
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Theorem 2.9 (Duplication Formula). Let £, «, B € T with |Imj(x)| < Re(wx), |Im;j(B)| <
Re(B). Then

(l) Ecx,ﬁ (5) + EOL,B (_f) = ZEZOL,B(gz)?
(ii) Ecx,ﬁ (f) - Ea,ﬁ(_g) = 2€E2oc,cx+[5(£2)'
Proof. (i) By using the results (2.3) and (2.29), we have

% &)k
Eo,p(§) + Exp(— Zl“cxk—i-ﬁ ZFOLk-FB)

RS G I
_kz::l"(ckarB)

L+ (=DF)
kzz;) ok + B)

2

& & £s
(20c+ [5) T Gar B) T Tla By

- &) &y
- ( 2oc+f5 <<2a>+ﬁ>+r<s<2a>+rs>+"‘>

l\)
+

_ZZF Zock—i—ﬁ)

= 2E2(X,B (g )
2.31)

(i1) By using the results (2.3) and (2.30), we have

Eap(€) ~ Bap(-6) =3 o~y
i P I(ak +B) = T(ak +B)
== (o)
_;F(O(k+f>)

-1

ke
Il
=}

25?: 52)
£ T((20)k + (o + B))

= 26Esa,arp(E%)-

Differential Relation
Complex two-parameter ML function satisfies the following differential relation (see, e.g., [15,

p-581)

d

(dz)m (P 'Eap (%) = 2P 7" B g (%), (m21), (2.33)
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where « > 0, Re(f) > m.
We establish here the differential relation for bicomplex ML function.

Theorem 2.10 (Differential Relation). Let £, 3 € T where £ = z1 + 12 = &1e1 + &ea, p =
Bier + B2z, Re(B) > m + [Imi(B)], o > 0. Then

d

<d§) <5B71E“xf5(5“)> =P Eapom(€%), m> 1 (2.34)

Proof. By using the results (2.3) and (2.33), we have

(jg)m (P "Eap(e)) = (dﬁ)m (6P g, (61)%) 1 + (d g ) (8 Enpa(@)®) 2

= (7 Bapiom(€) e+ (87 Eapaom(€9)) 2

=P B pom(§%), m>1.
(2.35)

Integral Relations
Integral relations for complex two-parameter ML function are given by (see, e.g., [15, p.61])

PR g (N2) = g / t)PteMat, (2.36)

PR,y g1 (A7) FB/ (z — )P~ cosh vV \tdt, (2.37)
smh\ft

B (V) = 5 / 0PI (2.38)

where 3 > 0, A € C.
We establish here the integral relation for bicomplex ML function.

Theorem 2.11 (Integral Relations). Let £, A € T, A ¢ NC where £ = 2z + irzo = &1e1 +
&en, [3 > 0. Then

(i) €PEy (M) = gy [ (6 — )P~ eMdL,
(ii) €PEa 1 (AE?) = g fis (€ — )P~ cosh v/Atdt,

_,sinh VAt gt
VA

Proof. (i) By using the results (2.5) and (2.36), we have

(iii) £P1Ey pa(NE2) = o5 [y (€ —1)P

EPE) g1 (N) = (§FE1,3+1(/\151)) er + (5{51531,5“()\252)) e

1 £ 1 &
) (FB/O (& -0 A‘tdt> er + (Fﬁ/ («Ez—t)'s‘lekztdt) € (2.39)

1Bl
FB/ dt-
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(i1) By using the results (2.5) and (2.37), we have

PRy g1 (NE?) = (SFEz,ml(Alﬁf)) e+ (52[3E2,6+1(>‘2£%)) €

&1 &
(FI[S / (€, —t)P~1cosh \mtdt) el + (I}ﬁA (&3 — t)P~1cosh \/Etdt> e

1 /5
= — — )P~ cosh VAt dt.
A
(2.40)
(iii) By using the results (2.5) and (2.38), we have

1By g o (AE) = (P Bapia(nigD)) 1 + (€7 B pia(atd)) 2

1 \p_1sinhy/Apt 1 [& _\p_1sinh /gt
(FB/ (& —1) —x dt) 1+<m/ (&2—1) 0 dt

6 .
= %/ (£—t)}‘“5m%tdt
0
(2.41)

O

Theorem 2.12. Let &, «, p € T where & = 21 + ir2p = &1e1 + e, X = x1e; + e, =
Bier + Boes with | Imj(x)| < Re(x), |Im;(B)| < Re(P) and r € N. Then

r RN o NI S
B prralé) =Ea,p 1; Fon 7B (2.42)
Proof. We have
Z I'(on —|— B) nZ:r I'(an + B)
e €k+r
— 2. m [putn =k + ] 2.43)

fk
=& ;r(ak+o¢r+ B)
= fTEoc,f3+roc(f)~
O

We obtain the following special cases of the Theorem 2.12 for » = 2, 3 and 4, respectively where
E=21+im = &le] + &er, 00 = e + xaen, B = Bie; + Poer with [Imj(x)| < Re(x) and
[ Tm;(B)| < Re(p),

) €Eapr20(6) = Eop(§) — 15 — mara

.. 2
(i) EEopi3a(é) =Eap(é) — 1 — F(Bioc) - r(ﬁizaw

2 3
(iil) E*Eapraa() = Eop(€) — 75 — F([Sioc) - F([3£+20¢) - F(Bi&x)‘
2.2 Bicomplex Laplace transform of the two-parameter Mittag-Leffler function and

Caputo fractional derivative

Here, we define the bicomplex Laplace transform of the bicomplex two-parameter ML function
and Caputo fractional derivative (CFD), that would be required in the sequel.

>62
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Bicomplex Laplace transform of the two-parameter ML function

The Laplace transform (LT) of the two-parameter ML function in complex space is given by
(see, e.g., [15, 16])

B—1 R R o\ B—1 75 _ s* P
LitP~ Ex g(At%);s] = e " Eop(MM)PTdt = — X (2.44)
0

S% —

where Re(x) > 0, Re(f) >0, Re(s) >0, [As™%| < 1, a, B, A, s € C.

Theorem 2.13. Let s, &, B, A € T where s = sje; + saez. Bicomplex Laplace transform of the
two-parameter ML function is given by

5B

s% — )\’

LitP~ By g (At); 5] :/ et Eop (M) tP~1at = (2.45)
0

where | Imj (0] < Re(at), | Imj(B)] < Re(B), |Imj(s)| < Re(s), [As~]; < 1.

Proof. Writing the bicomplex Laplace transform in idempotent components we have

L[tﬁilE%B()\t(x);s] = L[tﬁlilEo(hﬁl()\]tm);S[] el +L[tﬁzilE(XbﬁzO\zt“z);SQ] €

%) o0
_/ €~ By g, (Mt )P dt ey +/ €% By, (Aot )Pt 3
O 0

=P 00—
= S;Xll —7\161 + 35‘22 _)\262, Aisy X < 1, [Aas;, 2 < 1
s%—B
TSN
(2.46)
where
As™%; = |Ais; e + [Aas; Per [ from equation (1.12) |
< leeg+1-ep=1.
(2.47)
|
Bicomplex Laplace transform of Caputo fractional derivative
For a function f € AC|[a, b] the Caputo fractional derivative of order p is defined as [23]
Cpr(t) = F(nl_ . [ ; f(:;/(;)lndﬂ n—l<p<nneN,t>0. (2.48)

Let s = sje; + spea = ag + a1i) + aziz + azitia € T and f(¢) be a real-valued function of
exponential order K € R. Then the bicomplex Laplace transform of Caputo fractional derivative
of order y is given by

n—1
L(°D"f(t);s) = s"F(s) = Y _ " *1f0(0), n—1<p<neN, (2.49)
k=o
where F'(s) is bicomplex Laplace transform of f(¢) (see, e.g [24]). F'(s) is convergent for all
seD,

D = {s: H,(s) represent a right half plane : a9 > K + |as]}. (2.50)

Since the bicomplex Laplace transform of f(¢) convergent for all s € D, bicomplex Laplace
transform of Caputo fractional derivative is also convergent for all s € D.
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3 Bicomplex Solution For Fractional Electromagnetic Wave Equation in
Vaccum

Motivated by the work of Gémez [14], we use the following result for replacing the ordinary
derivative in electromagnetic wave equation by the fractional derivative

o 1 9%
ot = ogl-xgtx’

where ¢ has the dimension of time. When o = 1, the above expression reduces to the ordinary
derivative.
The Maxwell’s equations in vacuum for electromagnetic field are (see, e.g., [3])

0<a<l, 3.1)

oH
VXE = g (3.2)
OE
vxH = eoa, 3.3)
v.E = 0, (3.4)
v.H = 0, (3.5)
(3.6)

where complex valued vectors E, H represent the intensities of electric and magnetic fields, re-
spectively. Here L is permeability and € is the permittivity of free space.

The bicomplex vector field F is (see, e.g., [3] ) defined by

F= e E+ixy/io H, 3.7
and the bicomplex Maxwell’s vector equations are given as
. OF 1
V X F = 2257 E =V Ho€o, (38)
v.F = 0. 3.9

Assume that the time derivative is fractional and the space derivative is ordinary, using Caputo
fractional derivative and the result (3.1) we get the bicomplex fractional Maxwell’s vector equa-
tions as follows
1 O%F 1
AV (L el vr C Wo€p, O< < (3.10)
v.F = 0. (3.11)

Assuming that the wave is traveling in x-direction, i.e., a vanishing z-component, then above
equations (3.10) and (3.11) reduce to the following system of bicomplex differential equations:

or, . 1 0%F,

Tor  Peol« gre (3.12)
OF, ) 1 O%F,
— = _= .1
Ox 2o« ppe (3.13)
JF, OF,
= _ ZZY 3.14
ay 5% . (3.14)
OF, JF,
— =0. 3.15
By +t 5 (3.15)

Putting @), = i» F, in equations (3.12) and (3.13), respectively, we obtain
0Q. 1 0%F,
dr col-x gt (3.16)
F 1 @

OF, = g Qz. (3.17)

Ox col-a Pt
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Differentiating (3.16) and (3.17) and using (3.17) and (3.16), respectively therein, we get

0? 1 82"‘
0? 1 97

where 0 < & < 1 and initial conditions are: F,(z,0) = Ajhi(x) and F (x 0) = Bygi(z).
Taking the bicomplex Fourier transform of (3.18) with respect to z, we get

2

dt—mﬁy(g, t) + o T2%E1E, (€,t) = 0. (3.20)

where F,(¢,t) is the Fourier transform of F,(x,t).
Fourier transform of initial conditions are given by 7, (¢,0) = Ay (€) and £V (£,0) = B3, (€).
By taking the bicomplex Laplace transform of (3.20) with respect to t, we get
1
2y (65) = 3SR 0) + PP EE (6,5) = 0.

k=0

S

1
= (20c+620_2 20(5 Ff, ZSZ(Xle 50)_0
k=0

= (82“4-020'2_2“6 )ﬁy(fas) _SZOc—IFy(§7O) 20( 2F (5 O) =0.
= (%4 FoP2) Fy(€,5) = Mg R (€) + Bist 2 (€).

~ g2o—1 _ g2ox—2
= Fy(&s)=A4A ( — ) hi(€) + By <_> a1(¢). (3.21)

820‘+620'2 2cx€2 520c+020-2 2(x§2

Taking the bicomplex inverse Laplace transform of (3.21) with respect to s with the help of
equation (2.46), we get

Fy(&,t) = A1 Ban 1 (=20 %E %) 0y (€) 4 Bit Bana(—P0”2*E2%) 51 (). (3.22)
Since Ey 1 () = E« (&), hence from equation (3.22), we get
Fy(6,t) = Ay Baa(—P0? 2% %) Ry (€) + Bit Eag o (—20? 2%E2%) g1 (€). (3.23)

Taking the bicomplex inverse Fourier transform, (3.23) gives

™

1 R
F,(x,t) = > / e NS (€, )dE, (3.24)
r
where I' = (1, 72) is a closed contour in the bicomplex space, v; and +, are closed contours in

the complex space along the horizontal lines {—p < Im;(Py,&) < ¢} and {—p < Im;(P,¢) <
q}, respectively. Thus,

Fy(z,t) :% /r e (A Bao (— PP 2XE %) Ry (€) + BitEan o (—2a? 2%E22%) 5y (€)) d€
=4 / (67" Ean (~ 0?2222y (€)) d
+ %Bl / (7" tBan o~ 0?24 %) 51 (€)) dé
7%141/( TRy (0TI *) Ry (€)) dE

+ 21 B1t/( T B o (—P TN g1 (€)) dE.
u r
(3.25)
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Using the result [35, p.23, Eq. (A.8)] for0 < o < 1

F7! [Baa(=?0? 24 7%); €] = F! [Baa(—K17%);¢] = %M“(m,t) = %t—“Ma <x|
(3.26)

where k2 = 20272%¢2 and M (|z|, t) is M-Wright function, details can be found in [34, 35].
Further using the result [21, P.6, Eq. (25)], for o« > 0

—1 2 22022, _ 1 2,1 |l“ <17%)a(27 OC),(l,%)
F (E2cx,2( co 5 t )’5) - mH:;’:; l%“%’( (1’%)’(1’1)’(17%) . (327)

Here, H?:Y (z) is the H-function. Background material on H-function can be found in many
books (see, e.g., [36, 37]).

F,(z,t) %t My (|x>*h1(x)

3.28
+Bl H2,l |£B‘ (17%)1(27 0(),(1, %) *91(93) ( )
2|z| (Fo?=2)1 /2 (1, 5), (1,1), (1, 3) ’
where * denotes the convolution of two functions.
Similarly,
Fz(xvt) = _iQQz(xvt)a (329)
and hence,
LAy T
F.(z,t) =—1, 7t M <|tcx|) * hy ()
(3.30)
|| (1,3), (2,00, (1, 3)
— 1By —— Hz’1 —‘ 2 2 * g
3013 | @ my a1, 1), (), 1,4y | F0)
Therefore, wave traveling in z-direction with vector field F, is
F, =F,(z,t)§ + F.(x,t)2. (3.31)
A4 — T 2,1 T (lal)7(a )a lvl N
- :< B M () * (o) + Bt i | e (1,2%),( 11), 1,%2 @ )9
(

—ia <’§2t°‘M“ (%) #h1(z) + Brgl Hyy [wzlﬂuzw ((
Similarly, for the wave traveling in y-direction with vector field F}, and initial conditions

F, (yao) = h2(y)a Qz(yvo) = CZhZ(y) and Fa(tl)(yao) = DIQZ(y)7 Q(zl>(y>0) = DZQZ(y)a

we get

_ Cl —x |y| t 2,1 ‘yl (la%)(27 O()(l,%)

) = G () a0 [W‘(Lé)(l,l)(l,;) )

(3.32)
and

Fat) =~ i Gt () o)
‘ Wl (LY@, (1Y) (333
2,0 g 1y 2 ) ) ’ i)
12D22| ‘H33 [(CZUZ—ZW)I/Zt“‘(l,;),(1,1),(1,; ] *92(y)
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Therefore, wave traveling in y-direction with vector field F, is
Fy=F.(y, t)2+ Fy(y,t). (3.34)

Since (3.34) is the solution of bicomplex Maxwell’s equations, it satisfies the equations (3.10)
and (3.11). So we obtain the values of C, and D, in terms of C; and D;.
To find the wave traveling in z-direction with initial conditions

FI(Z,O) = th3(z)7 Qy(zvo) = R2h3(2) and Fél)(z,O) = 3193(2)7 Qg)(zvo) = 5293(2)»

proceeding in a similar way, we get

Fi(at) =0 (L’ﬂ) ¥ ha(2)

C [ E e o
i il ) () |
and
Fy(5,t) = — inRo bt~ M, ('Z|> B (2)
2 e
R YN B I NCRO N O o0
RSt [W’(Li),(l,l),u,f) 1 e
Therefore, the wave traveling in z-direction with vector field F, is
F, = Fy(z,t)2 + Fy(z,t)]. (3.37)

Since (3.37) is the solution of bicomplex Maxwell’s equations, it satisfies the equations (3.10)
and (3.11). So we obtain the values of R, and .5, in terms of Ry and Sj.

Now, by applying the superposition principle on equations (3.31), (3.34), and (3.37), we
obtain the solution of equations (3.10) and (3.11) as

F=(Fu(y,t) + Fu(2,0)) & + (Fy(z,t) + Fy(2,0) § + (F.(z,t) + F.(y,t)) 2. (3.38)

4 Conclusion

In this paper, the bicomplex two-parameter ML function has been defined, which is an extension
of the complex two-parameter ML function. Various properties, including recurrence relations,
duplication formula, differential and integral relations are established. Here, bicomplex Laplace
transform of Caputo fractional derivative and two-parameter bicomplex Mittag-Leffler function
have been evaluated. The electromagnetic fractional time wave equation for vacuum is solved us-
ing bicomplex analysis. The results obtained are interesting and found to involve two-parameter
bicomplex Mittag-Leffler function and H-function. The bicomplex analysis is emerging as a
great tool for solving problems of mathematical physics.
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