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Abstract Recent studies on K-frames show that parseval K-frames can be used to manage
data loss in signal communication. So the construction of parseval K-frames is desirable and
scaling is the easiest way for this construction. In this paper we deal with K-frames which can
be scaled to parseval K-frames and tight K-frames and we term such K-frames as scalable K-
frames and A-scalable K-frames respectively. We prove some of the results related to scalable
K-frames. Also we give characterization result for scalable K-frames.

1 Introduction

Frames in Hilbert spaces were introduced as a generalization of orthonormal bases, by R. J.
Duffin and A. C. Schaffer in 1956. Frames have their own advantages compared to bases. The
main advantage is the redundancy of frames. Frames span the whole Hilbert space, but the
representation of an element using frames need not be unique. This flexibility makes frames an
important tool in different areas of research, in theory and in application. Frame theory plays an
important role in signal processing, sampling theory, coding and communications and so on. We
refer [7] for an introduction to frame theory.

For different applications in theory and application, some special kinds of frames have been
introduced. One such frame isK-frame. The concept ofK-frames was introduced by L. Gavruta
[6], to study atomic systems with respect to bounded linear operators. K-frames are more general
than classical frames. Although the span limit of K-frames is restricted to range of K, this
generality of K-frames makes K-frames practically important.

G. Kuttyniok, K. A. Okoudjou, F. Philipp, and E. K. Tuley in [4] introduced Scalable frames.
Scalable frames have a wide range of applications. Recent studies on K-frames shows that K-
frames can be used to deal with the problem of data loss in signal communication. Parseval K-
frames and tightK-frames are mainly used for this purpose. So we are interested in constructions
which modify a given K-frame into a parseval K-frame or a tight K-frame. The easiest way to
get a K-frame from a given K-frame is by scaling the vectors. So it is desirable to have a
characterization of K-frames which can be scaled to parseval K-frames or tight K-frames. We
term such K-frames as scalable K-frames and A-scalable K-frames respectively.

Some basic definitions and results related to frames and K-frames are contained in section
2. In section 3 we have proved some lead off results on scalable K-frames. Section 4 contains
our main result which characterizes scalable K-frames. Throughout this paper, H represent a
complex separable Hilbert space, B(H), the space of all linear bounded operators on H . For
K ∈ B(H), we denote R(K) the range of K and D(K) the domain of K. Also, N denote the
finite or countable index set.

2 Preliminaries

In this section we give some basic definitions and results about frames andK-frames. For several
generalizations and applications in frame theory, refer [1, 2, 3, 9, 10].

Definition 2.1. [7] For a separable Hilbert space H , a sequence {fn}n∈N ⊂ H is said to be a
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frame for H if there exist A,B > 0 such that

A‖f‖2 ≤
∑
n∈N
|〈f, fn〉|2 ≤ B‖f‖2

for all f ∈ H . A,B are called lower and upper frame bounds. If A = B then we call it a A-tight
frame and if A = B = 1 we call it a parseval frame.

Definition 2.2. [6]Let K ∈ B(H). We say that {fn}n∈N ⊂ H is a K-frame for H if there exist
constants A,B > 0 such that

A‖K∗f‖2 ≤
∑
n∈N
|〈f, fn〉|2 ≤ B‖f‖2

for all f ∈ H . A,B are called lower and upper K-frame bounds. If∑
n∈N
|〈f, fn〉|2 = A‖K∗f‖2

holds then we call it a A-tight K-frame. If∑
n∈N
|〈f, fn〉|2 = ‖K∗f‖2

holds then we call it a parseval K-frame.

Let {fn}n∈N be any of the two sequences defined above. Then we can define two operators.

TF : H −→ l2(N)

defined by
TF (f) = {〈f, fn〉}n∈N

denote the associated analysis operator. Its adjoint

T ∗F : l2(N) −→ H

defined by
T ∗F ({cn}n∈N ) =

∑
n∈N

cnfn

is called the synthesis operator. From the properties of TF , it follows that the frame operator

SF : H −→ H

defined by
SF f = T ∗FTF =

∑
n∈N
〈f, fn〉fn

for all f ∈ H is a bounded, positive and self-adjoint operator in H. If {fn}n∈N is a frame, then
SF is invertible also. But in the case of K-frames SF is not invertible on H . But if K has closed
range, then SF is invertible on R(K).

Theorem 2.3. [10] {fn}n∈N is a parseval K-frame for H if and only if SF = KK∗.

Definition 2.4. [8] A sequence {an}n∈N is said to be semi-normalized if there exist a, b > 0
such that a ≤ an ≤ b for all n.

Definition 2.5. [3] A sequence {an}n∈N is said to be positively confined if 0 < infn an ≤
supn an < +∞.

Definition 2.6. [4] Diagonal operator Da in l2(N) corresponding to a sequence a = {an}n∈N ⊂
K is defined by

Da{vn}n∈N = {anvn}n∈N .
Da (possibly unbounded) is a self-adjoint operator.

Theorem 2.7. [6] Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H). Then following statements are
equivalent:
(i)R(L1) ⊂ R(L2).
(ii)L1L

∗
1 ≤ λ2L2L

∗
2 for some λ ≥ 0.

(iii)there exists a bounded operator X ∈ L(H1, H2) so that L1 = L2X .

This theorem is called Douglas’ Majorization theorem.
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3 Some results about scalability of K-frames

Definition 3.1. A K-frame {fn}n∈N for H is said to be a scalable K-frame for H if there exist
non-negative scalars {an}n∈N such that {anfn}n∈N is a parseval K-frame for H .

The following example from [5] is a scalable K-frame.

Example 3.2. Let H = C3 and N denote the index set {1, 2, 3}. Let {e1, e2, e3} be the standard
orthonormal basis for H . Let K ∈ B(C3) be defined by

Ke1 = e1,Ke2 = e1,Ke3 = e2.

Then
{fn}n∈N = {Ke1,Ke2,Ke3} = {e1, e1, e2}

is a K-frame for H . Take {an}n∈N = {1, 1, 1}. Then {anfn}n∈N is a parseval K-frame for H
and hence {fn}n∈N is a scalable K-frame for H .

Definition 3.3. A K-frame {fn}n∈N for H is said to be a A-scalable K-frame for H if there
exist non-negative scalars {an}n∈N such that {anfn}n∈N is a A-tight K-frame for H .

All K-frames are not scalable. Also, all scalings of vectors of a K-frame need not result in a
parseval K-frame. But, some particular scalings of a K-frame sometimes give a new K-frame.
The following two results help us to identify two such scalings.

Theorem 3.4. Let {fn}n∈N be a K-frame for H with K-frame bounds A,B and {an}n∈N be a
semi-normalized sequence. Then {anfn}n∈N is also a K-frame.

Proof. Suppose {fn}n∈N is a K−frame for H . Therefore there exist A,B > 0 such that

A‖K∗f‖2 ≤
∑
n∈N
|〈f, fn〉|2 ≤ B‖f‖2

for all x ∈ H . Since {an}n∈N is a semi-normalized sequence, there exist a, b > 0 such that∑
n∈N
|〈f, anfn〉|2 =

∑
n∈N

a2
n|〈f, fn〉|2 ≤ b2B‖f‖2

and ∑
n∈N
|〈f, anfn〉|2 ≥ a2A‖K∗f‖2

where A and B are optimal K-frame bounds for{fn}n∈N . Hence {anfn}n∈N is a K-frame with
bounds A

′
= Aa2 and B

′
= Bb2

Remark 3.5. Let {an}n∈N be a real sequence. In the above result if {gn}n∈N is a K-dual of
{fn}n∈N , then {a−1

n gn}n∈N is a K-dual of {anfn}n∈N , which is evident from the following
fact. ∑

n∈N
〈f, anfn〉a−1

n gn =
∑
n∈N
〈f, fn〉gn = f

for all f ∈ H .

Theorem 3.6. Let {fn}n∈N be a K-frame for H with K-frame bounds A,B and {an}n∈N be a
positively confined sequence. Then {anfn}n∈N is also a K-frame for H .

Proof. We have, ∑
n∈N
|〈f, anfn〉|2 =

∑
n∈N

a2
n|〈f, anfn〉|2

and
(inf

n
an)

2
∑
n∈N
|〈f, fn〉|2 ≤

∑
n∈N

a2
n|〈f, fn〉|2 ≤ (sup

n
an)

2
∑
n∈N
|〈f, fn〉|2

A(inf
n
an)

2‖K∗f‖2 ≤
∑
n∈N
|〈f, anfn〉|2 ≤ B(sup

n
an)

2‖f‖2

for all f ∈ H . Hence {anfn}n∈N is a K-frame for H .
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Remark 3.7. In the case of finite frames, if {fn}n∈N is a K-frame for M -dimensional Hilbert
space HM , then given any non-negative sequence {an}n∈N of scalars, we have {anfn}n∈N is
also a K-frame for HM .

Theorem 3.8. Let T ∈ B(H). Then {fn}n∈N is a scalable K-frame for R(T ∗) if and only if
{Tfn}n∈N is a scalable TK-frame for H .

Proof. Suppose {fn}n∈N is a scalableK-frame forR(T ∗). This implies that there exist {an}n∈N
such that ∑

n∈N
|〈g, anfn〉|2 = ‖K∗g‖2

for all g ∈ R(T ∗),where g = T ∗f for some f ∈ H .This implies,∑
n∈N
|〈T ∗f, anfn〉|2 = ‖K∗(T ∗f)‖2

for all f ∈ H , which implies ∑
n∈N
|〈f, anTfn〉|2 = ‖(TK)∗f‖2

for all f ∈ H .Hence {Tfn}n∈N is a scalable TK-frame for H .
Conversely suppose that {Tfn}n∈N is a scalable TK-frame for H . This implies∑

n∈N
|〈f, anTfn〉|2 = ‖(TK)∗f‖2

for all f ∈ H . This implies ∑
n∈N
|〈T ∗f, anfn〉|2 = ‖K∗T ∗f‖2

for all f ∈ H . That is ∑
n∈N
|〈g, anfn〉|2 = ‖K∗g‖2

for all g ∈ R(T ∗). Hence {fn}n∈N is a scalable K-frame for R(T ∗).

Remark 3.9. (1)If T ∈ B(H) and {fn}n∈N is a scalable K-frame for H , then {Tfn}n∈N is a
scalable TK-frame for H .
(2)Let {fn}n∈N be a scalable K-frame for H . Then,∑

n∈N
|〈f, anKfn〉|2 =

∑
n∈N
|〈K∗f, anfn〉|2 = ‖K∗(K∗f)‖2 = ‖(K2)∗f‖2

for all f ∈ H . This implies that {anKfn}n∈N is a parseval K2-frame for H . In general,
{anKsfn}n∈N is a parseval Ks+1-frame for H and hence {Ksfn}n∈N is a scalable Ks+1-frame
for H .

Theorem 3.10. Suppose {fn}n∈N is a scalable frame for H .Let T ∈ B(H). Then {Tfn}n∈N is
a scalable T -frame for H

Theorem 3.11. Let T ∈ B(H). Then {fn}n∈N is a scalable frame for R(T ∗) if and only if
{Tfn}n∈N is a scalable T -frame for H .

Proof. suppose {fn}n∈N is a scalable frame for R(T ∗). Then,∑
n∈N
|〈g, anfn〉|2 = ‖g‖2
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for all g ∈ R(T ∗) where g = T ∗f for some f ∈ H . This implies∑
n∈N
|〈T ∗f, anfn〉|2 = ‖T ∗f‖2

for all f ∈ H and ∑
n∈N
|〈f, anTfn〉|2 = ‖T ∗f‖2

for all f ∈ H . Hence {Tfn}n∈N is a scalable T -frame for H . Conversely suppose {Tfn}n∈N is
a scalable T -frame for H . Then, ∑

n∈N
|〈f, anTfn〉|2 = ‖T ∗f‖2

for all f ∈ H . This implies ∑
n∈N
|〈T ∗f, anfn〉|2 = ‖T ∗f‖2

for all f ∈ H . That is, ∑
n∈N
|〈g, anfn〉|2 = ‖g‖2

for all g ∈ R(T ∗). Hence {fn}n∈N is a scalable frame for R(T ∗).

Theorem 3.12. Let {fn}n∈N be a scalable K-frame. Then {fn}n∈N is a scalable (KK∗)
1
2 -

frame.

Proof. Suppose {fn}n∈N is a scalable K-frame for H . This implies,∑
n∈N
|〈f, anfn〉|2 = ‖K∗f‖2

for all f ∈ H . Let S be the frame operator of {anfn}n∈N . Then S = KK∗. So we get
〈S 1

2S
1
2
∗
f, f〉 = 〈KK∗f, f〉 for all f ∈ H and ‖S 1

2
∗
f‖2 = ‖K∗f‖2 for all f ∈ H . Thus we

obtain ∑
n∈N
|〈f, anfn〉|2 = ‖S

1
2
∗
f‖2

for all f ∈ H . Thus {anfn}n∈N is a parseval S
1
2 -frame and hence is a parseval (KK∗)

1
2 -frame.

That is {fn}n∈N is a scalable (KK∗)
1
2 -frame.

Theorem 3.13. Let {fn}n∈N and {gn}n∈N be scalable K-frames for H with scalings a =
{an}n∈N and b = {bn}n∈N respectively. Suppose the analysis operators TaF and TbG of the
scaled frames satisfy T ∗aFTbG = 0. Then {anfn + bngn}n∈N is a 2c2-scalable K-frame. In
particular, {anfn + bngn}n∈N is a scalable K-frame.

Proof. For all f ∈ H we have, ∑
n∈N
|〈f, anfn〉|2 = ‖K∗f‖2

and ∑
n∈N
|〈f, bngn〉|2 = ‖K∗f‖2.

Also since, T ∗aFTbG = 0, we get,
∑

n∈N anbn〈f, gn〉fn = 0.
Take cn = c for all n where c > 0. Then {cn}n∈N is a non-negative sequence and∑

n∈N
|〈f, cn(anfn + bnfn)〉|2 =

∑
n∈N
|〈f, cnanfn〉|2 +

∑
n∈N
|〈f, cnbnfn|2+

∑
2Re〈f, cnanfn〉〈f, cnbngn〉 = 2c2‖K∗f‖2.

Therefore, {anfn + bngn}n∈N is a 2c2-scalable K-frame.
If we take c = 1√

2
, then {anfn + bngn}n∈N is a scalable K-frame.
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4 Main results

Theorem 4.1. Let {fn}n∈N be aK-frame forH with analysis operator TF and let a = {an}n∈N
be a sequence of non-negative scalars. Then if G = {anfn}n∈N is a K-frame for H then
R(TF ) ⊂ D(Da) and Da|R(TF ) is bounded.

Proof. Suppose {anfn}n∈N is a K-frame for H and let TG be the corresponding analysis oper-
ator. Then, for any f ∈ H ,

TGf = {〈f, anfn〉}n∈N = {an〈f, fn〉}n∈N = DaTF f.

Thus TG = DaTF and R(TF ) ⊂ D(Da).
Now let v ∈ R(TF ) so that v = TF f for some f ∈ H .
Consider,

‖Dav‖ = ‖DaTF f‖ = ‖TGf‖ ≤ A1‖f‖2 ≤ A1‖T−1
F v‖ ≤ A1‖TF ‖−1‖v‖

Thus we get, Da|R(TF ) is bounded.

Theorem 4.2. Let {fn}n∈N be aK-frame forH with analysis operator TF and let a = {an}n∈N
be a sequence of non-negative scalars. Then the following conditions are equivalent.
(i)G = {anfn}n∈N is a K-frame for H .
(ii)There exist a diagonal operator Da in l2(N) such that R(TF ) ⊂ D(Da) and Da|R(TF ) is
bounded and R(K) ⊆ R(DaT

∗
F ). In particular, in this case frame operator of G = {anfn}n∈N

is given by SG = T ∗FD
2TF .

Proof. Suppose G = {anfn}n∈N is a K-frame for H . Then R(TF ) ⊂ D(Da) and Da|R(TF ) is
bounded follows from the proof of Theorem 4.1. Since {anfn} is a K-frame, we have

A‖K∗f‖2 ≤
∑
n∈N
|〈f, anfn〉|2 =

∑
n∈N
|an〈f, fn〉|2 = ‖an{〈f, fn〉}n∈N‖2 = ‖DaTF f‖2.

Using Douglas’ Majorization theorem, we get, R(K) ⊆ R((DaTF )∗).
To prove the converse, let v ∈ R(TF ). Then v = TF f for some f ∈ H . Since Da|R(TF ) is
bounded, we have,

‖Dav‖ ≤ α‖v‖

for some α > 0 and for all v ∈ R(TF ). That is,

‖DaTF f‖2 ≤ α‖TF f‖2 ≤ α‖TF ‖2‖f‖2.

and we get, ∑
n∈N
|〈f, anfn〉|2 ≤ B‖f‖2

where B = α‖TF ‖2. Also since R(K) ⊆ R(DaT
∗
F ), we get

A‖K∗f‖2 ≤
∑
n∈N
|〈f, anfn〉|2.

Hence {anfn}n∈N is a K-frame for H . Also,

SG = T ∗GTG = (DaTF )
∗(DaTF ) = T ∗FD

2
aTF .

Theorem 4.3. Let {fn}n∈N be aK-frame forH with analysis operator TF and let a = {an}n∈N
be a sequence of non-negative scalars. Also assume that infn ‖fn‖ > 0. Then the following
conditions are equivalent.
(i)G = {anfn}n∈N is a K-frame for H .
(ii)Dc is bounded and R(K) ⊆ R(DaT

∗
F ).



SCALABILITY AND K-FRAMES 499

Proof. Suppose {anfn}n∈N is a K-frame. Then there exist A,B > 0 such that

A‖K∗f‖2 ≤
∑
n∈N
|〈f, fn〉|2 ≤ B‖f‖2

for all x ∈ H .From the right inequality we get Da is bounded and from the left inequality we get
R(K) ⊆ R(DaT

∗
F ).

Conversely suppose, Da is bounded and R(K) ⊆ R(DaT
∗
F ). Then using Theorem 4.2 we get

{anfn}n∈N is a K-frame for H .

Theorem 4.4. Let {fn}n∈N be a K-frame for H . If {fn}n∈N is a scalable K-frame for H , then
there exist a non-negative diagonal operator D in l2(N) such that KK∗ = T ∗FD

2TF .

Proof. Suppose {fn}n∈N is a scalable K-frame for H . This implies that, there exist a =
{an}n∈N where an ≥ 0 such that {anfn}n∈N is a parseval K-frame. Then by Theorem 4.2
frame operator of {anfn}n∈N is SG = T ∗FD

2
aTF . But frame operator of parseval K-frame is

KK∗. Thus we obtain T ∗FD
2TF = KK∗ where D = Da.

Remark 4.5. Using Theorem 4.2 it is clear that, if there exist a semi-normalized diagonal oper-
ator Da in l2(N) such that KK∗ = T ∗FD

2TF , then {fn}n∈N is a scalable K-frame for H .

Theorem 4.6. Let {fn}n∈N be a K-frame for H such that infn ‖fn‖ > 0. Then the following
conditions are equivalent.
(i){fn}n∈N is a scalable K-frame for H .
(ii)There exist a non-negative bounded diagonal operatorD in l2(N) such thatKK∗ = T ∗FD

2TF .

Proof. (i)implies(ii) holds from Theorem 4.3 and Theorem 4.4. Conversely suppose that there
exist a non-negative bounded diagonal operator D in l2(N) such that KK∗ = T ∗FD

2TF . Then
for all f ∈ H ,

〈T ∗FD2TF f, f〉 = 〈KK∗f, f〉.
This implies

‖DTF f‖2 = ‖K∗f‖2

and we get ∑
n

|an〈f, fn〉|2 = ‖K∗f‖2.

Thus {fn}n∈N is a scalable K-frame for H .

To provide an illustration of the above theorem we use the same K-frame given in Example
3.2

Example 4.7. We have

{fn}n∈N = {Ke1,Ke2,Ke3} = {e1, e1, e2}

is a K-frame for H = C3. Take {an}n∈N = {1, 1, 1}. Then {anfn}n∈N is a scalable
K-frame for H . Here infn ‖fn‖ > 0. Let D : C3 −→ C3 be the diagonal operator defined by
D({vn}n∈N ) = {anvn}n∈N where an ≥ 0. We have,

TF
∗D2TF (f) =

∑
j∈J

aj
2〈f,Kej〉Kej

= (a1
2 + a2

2)〈f, e1〉e1 + 〈f, e2〉e2

= 2〈f, e1〉e1 + 〈f, e2〉e2,

and

KK∗(f) = K(K∗f)

= K(
∑
j∈J
〈f,Kei〉ei)

=
∑
j∈J
〈f,Kei〉Kei

= 2〈f, e1〉e1 + 〈f, e2〉e2.
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That is, there exist a non-negative bounded diagonal operator D in l2(N) such that KK∗ =
T ∗FD

2TF . Now for the converse, suppose there exist a non-negative bounded diagonal operator
D in l2(N) such that KK∗ = T ∗FD

2TF . This implies that

(a1
2 + a2

2)〈f, e1〉e1 + a3
2〈f, e2〉e2 = 2〈f, e1〉e1 + 〈f, e2〉e2

and we get a1
2 + a2

2 = 2 and a3
2 = 1. Then taking {an}n∈N = {a1, a2, a3} = {1, 1, 1} we get

{anfn}n∈N is a scalable K-frame.
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