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Abstract In this paper, we introduce a new iteration scheme, named as the S**-iteration
scheme, for approximation of fixed points of Suzuki’s generalized non-expansive mappings. We
also put forward some weak and strong convergence theorems for Suzuki’s generalized non-
expansive mappings in the setting of uniformly convex Banach spaces. We prove the stability
of our instigated scheme and give numerical examples to show that this scheme is faster than
Agarwal, Abbas, Thakur and Ullah iteration schemes. Our results comprehend, improve and
consolidate many results in the existing literature.

1 Introduction

Fixed point theory provides very useful tools to solve most of the nonlinear problems, that have
application in different fields, as they can be easily transformed into a fixed point problem.
After establishing the existence of a fixed point we find its value using iterative processes. Till
now many iterative processes have been developed, all of which can not be covered. Banach
contraction principle [3], which is the most celebrated result in fixed point theory uses Picard
iteration process for approximating the fixed point. The Picard iteration process is useful for
the approximation of the fixed point of the contraction mappings but when one is dealing with
nonexpansive mappings then it may fail to converge to the fixed point even if the fixed point is
unique.

In 1953, Mann [14] introduced a new iterative scheme to approximate the fixed points of
nonexpansive mappings. For a nonempty subset C of a Banach space X, let T : C → C be a
mapping. In this iterative scheme the sequence (tn) is generated by t0 ∈ C as:

tn+1 = (1− αn)tn + αnTtn for all n ≥ 0, (1.1)

where αn ∈ (0, 1). But the Mann iterative scheme fails to converge to the fixed points of pseudo-
contractive mappings.

In 1974, Ishikawa [11] introduced a two step Mann iterative scheme to approximate fixed
points of pseudo-contractive mappings, where the sequence (tn) is generated by t0 ∈ C as:

tn+1 = (1− αn)tn + αnTsn
sn = (1− βn)tn + βnTtn

}
, (1.2)

for all n ≥ 0, where αn, βn ∈ (0, 1).
Many authors studied Mann and Ishikawa iterative schemes for approximation of fixed point of
nonexpansive mappings (for instance [12],[20] and [27]).

In 2000, Noor [15] established another iterative scheme, where the sequence (tn) is gener-
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ated by t0 ∈ C as:

tn+1 = (1− αn)tn + αnTsn
sn = (1− βn)tn + βnTrn
rn = (1− γn)tn + γnTtn

 , (1.3)

for all n ≥ 0, where αn, βn, γn ∈ (0, 1).
In 2007, Agarwal et al. [2] introduced a two-step iteration process for nearly asymptotically

nonexpansive mappings, where the sequence (tn) is generated from arbitrary t0 ∈ C by

tn+1 = (1− αn)Ttn + αnTsn
sn = (1− βn)tn + βnTtn

}
, (1.4)

for all n ≥ 0, where αn, βn ∈ (0, 1). This process converges faster than Mann iteration process
for contraction mappings.

In 2014, Abbas and Nazir [1] developed an iterative scheme which is faster than Agarwal et
al.’s [2] scheme, where a sequence (tn) is formulated from arbitrary t0 ∈ C by

tn+1 = (1− αn)Tsn + αnTrn
sn = (1− βn)Ttn + βnTrn
rn = (1− γn)tn + γnTtn

 , (1.5)

for all n ≥ 0, where αn, βn, γn ∈ (0, 1).
In 2016, Thakur et al. [23] developed an iterative procedure, where a sequence (tn) is

generated iteratively by arbitrary t0 ∈ C and

tn+1 = (1− αn)Trn + αnTsn
sn = (1− βn)rn + βnTrn
rn = (1− γn)tn + γnTtn

 , (1.6)

for all n ≥ 0, where αn, βn, γn ∈ (0, 1).
In 2018, Ullah and Arshad [26] developed a new iteration process which converges faster

than all the aforementioned process, where the sequence (tn) is constructed by taking arbitrary
t0 ∈ C and

tn+1 = Tsn
sn = T((1− αn)rn + αnTrn)

rn = (1− βn)tn + βnTtn

 , (1.7)

for all n ≥ 0, where αn, βn ∈ (0, 1).

Recently, many iterative schemes have been given by eminent mathematicians leading
to faster convergence to the fixed point (see, for instance [25], [13], [6], [24], [10]).

In this paper, we introduce a new three-step iteration process which is faster than Agar-
wal, Abbas, Thakur, and Ullah iteration processes and prove the convergence results using our
iterative scheme for Suzuki’s generalized non-expansive mappings in the context of uniformly
convex Banach spaces. We also show that our process is analytically stable. With the help of
examples, we compare the rate of convergence of our iteration process with the aforementioned
iteration processes.

2 Preliminaries

Throughout this paper, C is a non-empty closed convex subset of a uniformly convex Banach
space X, N denotes the set of all positive integers, T : C → C be a mapping and F (T) denotes
the set of all fixed points of T.
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Definition 2.1. [7] A Banach space X is said to be uniformly convex if for each ε ∈ (0, 2], there
exists a δ > 0 such that for all x, y ∈ X,

‖x‖ ≤ 1,
‖y‖ ≤ 1,
‖x− y‖ > ε

 implies
∥∥∥∥x+ y

2

∥∥∥∥ ≤ δ. (2.1)

Definition 2.2. [16] A Banach space X is said to satisfy Opial property if for each sequence (tn)
in X, converging weakly to p ∈ X, we have

lim sup
n→∞

‖tn − p‖ < lim sup
n→∞

‖tn − q‖, (2.2)

for all q ∈ X such that p 6= q.

Definition 2.3. A mapping T : C→ C is called a contraction if there exists α ∈ (0, 1), such that

‖Tp− Tq‖ ≤ α‖p− q‖, for all p, q ∈ C. (2.3)

Definition 2.4. A mapping T : C → C is called quasi non-expansive if for all p ∈ C and q ∈
F (T), we have

‖Tp− q‖ ≤ ‖p− q‖. (2.4)

In 2008, Suzuki introduced the concept of generalized non-expansive mappings as follows.

Definition 2.5. [21] A mapping T : C → C is called Suzuki’s generalized non-expansive map-
ping if for all p, q ∈ C, we have

1
2
‖p− Tp‖ ≤ α‖p− q‖ implies ‖Tp− Tq‖ ≤ ‖p− q‖. (2.5)

Suzuki [21] proved that the generalized non-expansive mapping is weaker than non-expansive
mapping and stronger than quasi non-expansive mapping and obtained some fixed points and
convergence theorems for Suzuki’s generalized non-expansive mappings. Recently, many au-
thors have studied fixed-point theorems for Suzuki’s generalized non-expansive mappings (e.g.,[22]).

Senter and Dotson [20] introduced a class of mappings satisfying condition (I).

Definition 2.6. A mapping T : C → C is said to satisfy condition (I), if there exists a nonde-
creasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(δ) > 0, for all δ > 0 such that
‖q − Tq‖ ≥ f(d(q, F (T))), for all q ∈ C, where d(q, F (T)) = inf

q∗∈F (T)
‖q − q∗‖.

Proposition 2.7. [21] Let T : C→ C be any mapping. Then
(i) If T is non-expansive, then T is a Suzuki’s generalized non-expansive mapping.
(ii) If T is a Suzuki’s generalized non-expansive mapping and has a fixed point, then T is a quasi
non-expansive mapping.
(iii) If T is a Suzuki’s generalized non-expansive mapping, then

‖p− Tq‖ ≤ 3‖Tp− p‖+ ‖p− q‖, for all p, q ∈ C. (2.6)

Lemma 2.8. [21] Suppose T : C→ C is Suzuki’s generalized non-expansive mapping satisfying
Opial property and (tn) be any real sequence in C. If (tn) converges weakly to p for some p ∈ C
and lim

n→∞
‖Ttn − tn‖ = 0, then Tp = p.

Lemma 2.9. [21] Let X be a uniformly convex Banach space and C a weakly convex compact
subset of X. Assume that T : C→ C is Suzuki’s generalized non-expansive mapping. Then T has
a fixed point.

Lemma 2.10. [19] Let X be a uniformly convex Banach space and (xn) be any real sequence
such that 0 < a ≤ xn ≤ b < 1 for all n ≥ 1. Suppose that (un) and (vn) are any two sequences
of X such that lim sup

n→∞
‖un‖ ≤ r, lim sup

n→∞
‖vn‖ ≤ r and lim sup

n→∞
‖xnun + (1− xn)vn‖ = r hold for

some r ≥ 0. Then, lim sup
n→∞

‖un − vn‖ = 0.
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Definition 2.11. [26] Let X be a Banach space and C a non-empty closed convex subset of X.
Assume that (tn) is a bounded sequence in X. For p ∈ X, we set r(p, (tn)) = lim sup

n→∞
‖tn − p‖.

The asymptotic radius of (tn) relative to C is the set r(C, (tn)) = inf{r(p, (tn)) : p ∈ C} and the
asymptotic center of (tn) relative to C is given by the following set:

A(C, (tn)) = {p ∈ C : r(p, (tn)) = r(C, (tn))}. (2.7)

It is known that, in a uniformly convex Banach space, A(C, (tn)) consists of exactly one point.

Definition 2.12. [8] Let X be a Banach space and T : X → X. Suppose that t0 ∈ X and
tn+1 = f(T, tn) defines an iteration procedure which gives a sequence of points tn ∈ X. Assume
that (tn) converges to the fixed point p. Suppose (sn) be a sequence in X and (εn) be a sequence
in R+ = [0,∞) given by εn = ‖sn+1 − f(T, sn)‖. Then the iteration procedure defined by
tn+1 = f(T, tn) is said to be T-stable or stable with respect to T if lim

n→∞
εn = 0 if and only if

lim
n→∞

sn = p.

Definition 2.13. [17] Let X be a Banach space and T : X → X. Then T is called a contractive
mapping on X if there exist L ≥ 0, b ∈ [0, 1) such that for each p, q ∈ X

‖Tp− Tq‖ ≤ L‖p− Tp‖+ b‖p− q‖. (2.8)

By using (7), Osilike [17] established several stability results most of which are generaliza-
tions of the results of Rhoades [18] and Harder and Hicks [9].

Lemma 2.14. [4] If λ is a real number such that 0 ≤ λ < 1, and (εn) is the sequence of positive
numbers such that

lim
n→∞

εn = 0,

then for any sequence of positive numbers (tn) satisfying

tn+1 ≤ λtn + εn, for n = 1, 2, ...,

we have
lim

n→∞
tn = 0.

3 S**-Iteration Process

We introduce a new iteration scheme by generating the sequence (tn) iteratively, taking arbitrary
t0 ∈ C, as

tn+1 = T((1− µn)Trn + µnTsn)

sn = T((1− νn)rn + νnTrn)

rn = T((1− ξn)tn + ξnTtn)

 . (3.1)

for all n ≥ 0, where (µn), (νn) and (ξn) are real sequences in the interval (0, 1).

We will establish the convergence results for Suzuki’s generalized non-expansive mappings
for S**-iteration process foremost. Then we will show that S**-iteration process converges
faster than all aforementioned iteration processes for contractive mappings due to Berinde [5]
and is stable.

4 Convergence Results for Suzuki’s Generalized Non-expansive Mappings

In this section, we prove some weak and strong convergence results for the sequence generated
by the S**-iteration process for Suzuki’s generalized non-expansive mappings in the setting of
uniformly convex Banach spaces.

Theorem 4.1. Let C be a non-empty closed convex subset of a Banach space X and T : C → C
a Suzuki’s generalized non-expansive mapping with F (T) 6= ∅. For t0 ∈ C, the sequence (tn) is
generated by the S**-iteration process. Then lim

n→∞
‖tn − q‖ exists for all q ∈ F (T).
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Proof. Let q ∈ F (T). From 2.7(ii) and (2.4), we have

‖rn − q‖ = ‖T((1− ξn)tn + ξnTtn)− q‖
≤ ‖(1− ξn)tn + ξnTtn − q‖
≤ (1− ξn)‖tn − q‖+ ξn‖Ttn − q‖
≤ (1− ξn)‖tn − q‖+ ξn‖tn − q‖
= ‖tn − q‖,

(4.1)

‖sn − q‖ = ‖T((1− νn)rn + νnTrn)− q‖
≤ ‖(1− νn)rn + νnTrn − q‖
≤ (1− νn)‖rn − q‖+ νn‖Trn − q‖
≤ (1− νn)‖rn − q‖+ νn‖rn − q‖
= ‖rn − q‖
≤ ‖tn − q‖,

(4.2)

‖tn+1 − q‖ = ‖T((1− µn)Trn + µnTsn)− q‖
≤ ‖(1− µn)Trn + µnTsn − q‖
≤ (1− µn)‖Trn − q‖+ µn‖Tsn − q‖
≤ (1− µn)‖rn − q‖+ µn‖sn − q‖
≤ (1− µn)‖tn − q‖+ µn‖tn − q‖
= ‖tn − q‖.

(4.3)

Hence lim
n→∞

‖tn − q‖ exists for all q ∈ F (T).

Corollary 4.2. Let C be a non-empty closed convex subset of a Banach space X and T a non-
expansive mapping on C with F (T) 6= ∅. For t0 ∈ C, the sequence (tn) be defined by (3.1). Then
lim

n→∞
‖tn − q‖ exists for all q ∈ F (T).

Proof. From Proposition 2.7(i) and Theorem 4.1, we get our result.

Now we give an example to show that the class of Suzuki’s generalized non-expansive map-
pings is bigger than the class of non-expansive mappings.

Example 4.3. Define T : [2, 3]→ [2, 3] by

T (x) =

{
5− x, if x ∈ [2, 15

7 ),
x+18

7 , if x ∈ [ 15
7 , 3].

(4.4)

Then T is a Suzuki’s generalized non-expansive mapping, but T is not a non-expansive mapping.

Proof. Take x = 214
100 and y = 15

7 , then

‖x− y‖ = ‖214
100
− 15

7
‖ = 2

700
,

and

‖Tx− Ty‖ = ‖5− 214
100
− 141

49
‖

=
43

2450
>

2
700

= ‖x− y‖

Thus, T is not a non-expansive mapping. Now we show that T is a Suzuki’s generalized non-
expansive mapping. Consider the following cases:
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Case I. If either x, y ∈ [2, 15
7 ) or x, y ∈ [ 15

7 , 3], then in both the cases T is non-expansive
mapping and hence T is Suzuki’s generalized non-expansive mapping.

Case II. Let x ∈ [2, 15
7 ), then 1

2‖x − Tx‖ = 1
2‖x − (5 − x)‖ = 1

2‖2x − 5‖ ∈ ( 5
14 ,

1
2 ]. For

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have 1

2(5− 2x) ≤ |x− y| which gives two possibilities:

(a) Let x > y, then y ∈ [2, 15
7 ] since we have taken x ∈ [2, 15

7 ]. This situation is already in-
cluded in Case I.

(b) Let x < y, then 1
2(5− 2x) ≤ y − x which implies y ≥ 5

2 and hence y ∈ [ 5
2 , 3]. Now,

‖Tx− Ty‖ = ‖y + 18
7

− 5 + x‖ = ‖y + 7x− 17
7

‖ < 1
7
,

and

‖x− y‖ = |x− y| > |15
7
− 5

2
| = 5

14
>

1
7

Hence 1
2‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case III. Let x ∈ [ 15
7 , 3], then 1

2‖x − Tx‖ = 1
2‖

x+18
7 − x‖ = 1

2‖
18−6x

14 ‖ ∈ [0, 18
49 ]. For

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have 18−6x

14 ≤ |x− y| which gives two possibilities:

(a) Let x < y, then y ∈ [ 15
7 , 3] since we have taken x ∈ [ 15

7 , 3]. This situation is already in-
cluded in Case I.

(b) Ley x > y, then 18−6x
14 ≤ x− y, i.e. y ≤ 20x−18

14 =⇒ y ≤ 87
49 and y ≤ 3, so y ∈ [2, 3]. Since

y ∈ [2, 3] and y ≤ 20x−18
14 =⇒ 14y+18

20 ≤ x. As x ∈ [ 46
20 , 3] and y ∈ [ 15

7 , 3] is already included in
Case I, so we consider x ∈ [ 46

20 , 3] and y ∈ [2, 15
7 ). Then

‖Tx− Ty‖ = ‖x+ 18
7

− 5 + y‖ = ‖x+ 7y − 17
7

‖ < 1
7
,

and

‖x− y‖ = |x− y| > |46
20
− 15

7
| = 11

70
>

1
7

Hence 1
2‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Thus T is Suzuki’s generalised non-expansive mapping.

Using Matlab, we obtain Table 1 and Figure 1 for comparison of the rate of convergence of
our iterative scheme with other iterative processes. We take the initial guess t0 = 2.1 and control
sequences µn = νn = ξn = 0.8.
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Table 1. Comparison of the rate of convergence with different iteration schemes
Step Agarwal Abbas Thakur Ullah S**-iteration

1 2.10000000000000 2.10000000000000 2.10000000000000 2.10000000000000 2.10000000000000

2 2.95028571428571 2.96886530612244 2.98323265306122 2.99833236151603 2.99982116975069

3 2.99679393586005 2.99882432491223 2.99966015569703 2.99999663832975 2.99999996134254

4 2.99979324157791 2.99995560541184 2.99999311196036 2.99999999322345 2.99999999999164

5 2.99998666619155 2.99999832361893 2.99999986039168 2.99999999998634 2.99999999999999

6 2.99999914010541 2.99999993669828 2.99999999717038 2.999999999999973 3.00000000000000

7 2.99999994454557 2.99999999760966 2.99999999994264 3.00000000000000 3.00000000000000

8 2.99999999642375 2.99999999990973 2.99999999999883 3.00000000000000 3.00000000000000

9 2.99999999976936 2.99999999999659 2.99999999999997 3.00000000000000 3.00000000000000

10 2.99999999998512 2.99999999999987 3.00000000000000 3.00000000000000 3.00000000000000

11 2.99999999999904 2.99999999999999 3.00000000000000 3.00000000000000 3.00000000000000

12 2.99999999999993 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000

13 2.99999999999999 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000

14 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000

15 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000 3.00000000000000

Figure 1. Graphical representation of convergence of iterative schemes.

Theorem 4.4. Let C be a non-empty closed convex subset of a uniformly convex Banach space X
and T : C→ C a Suzuki’s generalized non-expansive mapping. For arbitrary t0 ∈ C the sequence
(tn) is generated by the S**-iteration process. Then F (T) 6= ∅ if and only if lim

n→∞
‖Ttn−tn‖ = 0.

Proof. Suppose that F (T) 6= ∅ and let q ∈ F (T). Then by previous theorem, lim
n→∞

‖tn−q‖ exists
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and (tn) is bounded. Let
lim

n→∞
‖tn − q‖ = c. (4.5)

From (4.1) and (4.5), we have

lim sup
n→∞

‖rn − q‖ ≤ lim sup
n→∞

‖tn − q‖ = c. (4.6)

By Proposition 2.7(ii), we have

lim sup
n→∞

‖Ttn − q‖ ≤ lim sup
n→∞

‖tn − q‖ = c. (4.7)

On the other hand
‖tn+1 − q‖ = ‖T((1− µn)Trn + µnTsn)− q‖

≤ ‖(1− µn)Trn + µnTsn − q‖
≤ (1− µn)‖rn − q‖+ µn‖sn − q‖
≤ (1− µn)‖rn − q‖+ µn‖rn − q‖
≤ (1− µn)‖tn − q‖+ µn‖rn − q‖.

This implies that

‖tn+1 − q‖ − ‖tn − q‖
µn

≤ [‖rn − q‖ − ‖tn − q‖]

‖tn+1 − q‖ − ‖tn − q‖ ≤
‖tn+1 − q‖ − ‖tn − q‖

µn

≤ [‖rn − q‖ − ‖tn − q‖]
‖tn+1 − q‖ ≤ ‖rn − q‖.

Therefore,
c ≤ lim inf

n→∞
‖rn − q‖. (4.8)

From (4.6) and (4.8), we get

c = lim
n→∞

‖rn − q‖

= lim
n→∞

‖(1− ξn)tn + ξnTtn − q‖

= lim
n→∞

‖(1− ξn)(tn − q) + ξn(Ttn − q)‖. (4.9)

From (4.5), (4.7), (4.9) and Lemma 2.10, we have lim
n→∞

‖Ttn − tn‖ = 0.

Conversely, suppose that (tn) is bounded and lim
n→∞

‖Ttn − tn‖ = 0. Let q ∈ A(C, (tn)).
From Proposition 2.7(iii), we get

r(Tq, (tn)) = lim sup
n→∞

‖tn − Tq‖

≤ lim sup
n→∞

[3‖Ttn − tn‖+ ‖tn − q‖]

≤ lim sup
n→∞

‖tn − q‖

= r(q, (tn)).

This shows that Tq ∈ A(C(tn)). Since X is uniformly convex, A(C(tn)) is singleton. Thus,
Tq = q, i.e. F (T) 6= ∅.

Theorem 4.5. Let C be a non-empty closed convex subset of a uniformly convex Banach space
X with the Opial property and T : C→ C a Suzuki’s generalized non-expansive mapping. For
arbitrary t0 ∈ C, let the sequence (tn) be generated by the S**-iteration process with F (T) 6= ∅.
Then (tn) converges weakly to a fixed point of T.
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Proof. Since F (T) 6= ∅, so by Theorem 4.1 and 4.4, we have that (tn) is bounded and lim
n→∞

‖Ttn−
tn‖ = 0. As X is uniformly convex so it is reflexive, thus by Eberlin’s theorem, there exists a
subsequence of (tn), say (tni

) which converges weakly to some q1 ∈ X. Now, C is a closed and
convex subset of X so by Mazur’s theorem q1 ∈ C. By Lemma 2.8, q1 ∈ F (T). Next we show
that (tn) converges weakly to q1. Let us assume that it is not true. So there exists a subsequence
of (tn), say (tnj

), such that (tnj
) converges weakly to q2 ∈ C, with q1 6= q2. Using Lemma 2.8,

we have q2 ∈ F (T). Now, since lim
n→∞

‖tn − q‖ exists for all q ∈ F (T). Using Theorem 4.4 and
Opial property, we have

lim
n→∞

‖tn − q1‖ = lim
i→∞
‖tni
− q1‖

< lim
i→∞
‖tni
− q2‖

= lim
n→∞

‖tn − q2‖

= lim
j→∞
‖tnj

− q2‖

< lim
j→∞
‖tnj − q1‖

= lim
n→∞

‖tn − q1‖,

which is a contradiction. Hence q1 = q2. This shows that (tn) converges weakly to a fixed point
of T.

Theorem 4.6. Let C be a non-empty closed convex subset of a uniformly convex Banach space
X and T : C → C be a Suzuki’s generalized non-expansive mapping. Let (tn) be defined by the
iteration process (3.1) and F (T) 6= ∅. Then the sequence (tn) converges to a point of F (T) if
and only if lim infn→∞ d(tn, F (T)) = 0, where d(tn, F (T)) = inf{‖tn − q‖ : q ∈ F (T)}.

Proof. It is obvious that if the sequence (tn) converges to a point of F (T) then

lim inf
n→∞

d(tn, F (T)) = 0.

Now, suppose that lim infn→∞ d(tn, F (T)) = 0. From Theorem 4.1, we have lim
n→∞

‖tn − q‖
exists for all q ∈ F (T), so lim

n→∞
d(tn, F (T)) exists and lim infn→∞ d(tn, F (T)) = 0 by assump-

tion. Now, we will prove that (tn) is a cauchy sequence in C. For a given ε > 0, there exists
N ∈ N such that for all n ∈ N,

d(tn, F (T)) < ε/2.

In particular, inf{‖tn − q‖ : q ∈ F (T)} < ε/2. Hence, there exists q*∈ F (T) such that
‖tn − q*‖ < ε/2. Now, for all m,n ∈ N

‖tm+n − tn‖ ≤ ‖tm+n − q∗‖+ ‖tn − q∗‖ ≤ 2‖tn − q∗‖ < ε,

which shows that (tn) is a cauchy sequence in C. Also C is given to be a closed subset of
X, therefore there exists q ∈ C such that lim

n→∞
tn = q. Now, lim

n→∞
d(tn, F (T)) = 0 gives

d(q, F (T)) = 0 which implies that q ∈ F (T).

Corollary 4.7. Let C be a non-empty closed convex subset of a uniformly convex Banach space
X and T : C → C a non-expansive mapping. Let (tn) be defined by the iteration process
(3.1) and F (T) 6= ∅. Then the sequence (tn) converges to a point of F (T) if and only if
lim infn→∞ d(tn, F (T)) = 0, where d(tn, F (T)) = inf{‖tn − q‖ : q ∈ F (T)}.

Theorem 4.8. Let C be a non-empty closed convex compact subset of a uniformly convex Banach
space X and T : C→ C a Suzuki’s generalized non-expansive mapping. For arbitrary t0 ∈ C, let
the sequence (tn) be generated by the S**-iteration process with F (T) 6= ∅. Then (tn) converges
strongly to a fixed point of T.
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Proof. From Lemma 2.9, we get F (T) 6= ∅ and so by Theorem 4.4, we get lim
n→∞

‖Ttn− tn‖ = 0.

By the compactness of C, there exists a subsequence of (tn), say (tni), converging strongly to q
for some q ∈ C. Now, by using Proposition 2.7(iii), we get

‖tni − Tq‖ ≤ 3‖Ttni − tni‖+ ‖tni − q‖. (4.10)

Taking limit i→∞, we get Tq = q, i.e. q ∈ F (T). By using Theorem 4.1, lim
n→∞

‖tn − q‖ exists

for all q ∈ F (T). Thus, (tn) converges strongly to q.

Theorem 4.9. Let C be a non-empty closed convex subset of a uniformly convex Banach space
X and T : C→ C a Suzuki’s generalized non-expansive mapping. For arbitrary t0 ∈ C, let the
sequence (tn) be generated by the S**-iteration process with F (T) 6= ∅. If T satisfies condition
(I), then (tn) converges strongly to a fixed point of T.

Proof. By Theorem 4.4, lim
n→∞

‖tn − q‖ exists for all q ∈ F (T) and so lim
n→∞

d(tn, F (T)) exists.
Let lim

n→∞
‖tn − q‖ = α, for some α ≥ 0. If α = 0, then we are done. Suppose α > 0, from

condition (I) and the hypothesis, we have

f(d(tn, F (T))) ≤ ‖Ttn − tn‖. (4.11)

As F (T) 6= ∅, by Theorem 4.1 we have lim
n→∞

‖Ttn − tn‖ = 0. Hence (4.11) implies that

lim
n→∞

f(d(tn, F (T))) = 0. (4.12)

Since f is a nondecreasing function, by equation (4.12) we get lim
n→∞

d(tn, F (T)) = 0. Thus, we

have a subsequence (tnk
) of (tn) and a sequence (zk) of F (T) such that

‖tnk
− zk‖ <

1
2k
, for all k ∈ N. (4.13)

From equation (4.13),

‖tnk+1 − zk‖ ≤ ‖tnk
− zk‖ <

1
2k
,

‖zk+1 − zk‖ ≤ ‖zk+1 − tk+1‖+ ‖tk+1 − zk‖

≤ 1
2k+1 +

1
2k

<
1

2k−1 .

Letting i → ∞, we get 1
2k−1 → 0. Hence (zk) is a cauchy sequence in F (T), so it converges to

q. As F (T) is closed, q ∈ F (T) and therefore (tnk
) converges strongly to q. Since lim

n→∞
‖tn− q‖

exists, we have tn → q ∈ F (T). Hence proved.

In the next theorem we prove that our iteration process is T-stable.

Theorem 4.10. Let X be a Banach Space and T : X → X a mapping. Suppose T has a fixed
point q and (tn) be a sequence in X satisfying (3.1). Then (3.1) is T-stable.

Proof. Let (wn) be an arbitrary sequence in X and the sequence which is generated by (3.1) is
tn+1 = f(T, tn) converging to a unique fixed point q and εn = ‖wn+1 − f(T, wn)‖. We show
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that lim
n→∞

εn = 0 if and only if lim
n→∞

wn = q. First, assume that lim
n→∞

εn = 0 and

‖wn+1 − q‖ = ‖wn+1 − f(T, wn) + f(T, wn)− q‖
≤ ‖wn+1 − f(T, wn)‖+ ‖f(T, wn)− q‖
≤ ‖wn+1 − T((1− µn)Tun + µnTvn)‖+ ‖T((1− µn)Tun + µnTvn)− q‖
≤ εn + b[(1− µn)‖Tun − q‖+ µn‖Tvn − q‖]

≤ εn + b2[(1− µn)‖un − q‖+ µn‖vn − q‖]

≤ εn + b2[(1− µn)‖T((1− ξn)wn + ξnTwn)− q‖
+ µn‖T((1− νn)un + νnTun)− q‖]

≤ εn + b3[(1− µn)‖(1− ξn)wn + ξnTwn − q‖+ µn‖(1− νn)un + νnTun − q‖]

≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))‖un − q‖]

≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖
+ µn(1− νn(1− b))‖T((1− ξn)wn + ξnTwn)− q‖]

≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖
+ µn(1− νn(1− b))b‖(1− ξn)wn + ξnTwn − q‖]

≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖
+ bµn(1− νn(1− b))(1− ξn(1− b))‖wn − q‖]

= εn + b3[(1− µn)(1− ξn(1− b)) + bµn(1− νn(1− b))(1− ξn(1− b))]‖wn − q‖.
(4.14)

Since b ∈ [0, 1) and (µn), (νn) and (ξn) are in [0, 1], we have

b3[(1− µn)(1− ξn(1− b)) + bµn(1− νn(1− b))(1− ξn(1− b))] < 1. (4.15)

Hence by Lemma 2.14, we have lim
n→∞

‖wn − q‖ = 0, which gives lim
n→∞

wn = q. Conversely,
suppose that lim

n→∞
wn = q. Then

εn = ‖wn+1 − f(T, wn)‖
= ‖wn+1 − q + q − f(T, wn)‖
≤ ‖wn+1 − q‖+ ‖T((1− µn)Tun + µnTvn)− q‖
≤ ‖wn+1 − q‖+ b[(1− µn)‖Tun − q‖+ µn‖Tvn − q‖]

≤ ‖wn+1 − q‖+ b2[(1− µn)‖un − q‖+ µn‖vn − q‖]

≤ ‖wn+1 − q‖+ b2[(1− µn)‖T((1− ξn)wn + ξnTwn)− q‖
+ µn‖T((1− νn)un + νnTun)− q‖]

≤ ‖wn+1 − q‖+ b3[(1− µn)‖(1− ξn)wn + ξnTwn − q‖+ µn‖(1− νn)un + νnTun − q‖]

≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))‖un − q‖]

≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖
+ µn(1− νn(1− b))‖T((1− ξn)wn + ξnTwn)− q‖]

≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖
+ µn(1− νn(1− b))b‖(1− ξn)wn + ξnTwn − q‖]

≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖
+ bµn(1− νn(1− b))(1− ξn(1− b))‖wn − q‖]

= ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b)) + bµn(1− νn(1− b))(1− ξn(1− b))]‖wn − q‖.
(4.16)
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Taking limit as n→∞ in (4.16) gives lim
n→∞

εn = 0.

Now, we give another example to reconfirm that the convergence of our iteration scheme is
faster than other iteration schemes.

Example 4.11. Let X = R, C = [1, 30] and T : C → C be a mapping defined by Tt =√
t2 − 7t+ 42 for all t ∈ C. For t0 = 10 and µn = νn = ξn = 3/4, n = 1, 2, 3, ... . From

Table 2 we can see that all the iteration procedures are converging to q∗ = 6.

Table 2. Comparison of the rate of convergence with different iteration schemes
Step Agarwal Abbas Thakur Ullah S**-iteration

1 10.0000000000000 10.0000000000000 10.0000000000000 10.0000000000000 10.0000000000000

2 7.85879965424009 7.48299381981887 7.19365372863816 6.50327292180584 6.17058820431927

3 6.68921521738991 6.39390416650416 6.23393093417649 6.03083955536974 6.00307677148481

4 6.21650474463483 6.08687765191737 6.03851294451616 6.00170547093161 6.00005334404782

5 6.06293951132202 6.01810044948545 6.00610953889799 6.00009371908266 6.00000092420172

6 6.01781666894804 6.00372234157488 6.00096320048653 6.00000514824794 6.00000001601188

7 6.00500351572644 6.00076340654292 6.00015170386309 6.00000028280202 6.00000000027741

8 6.00140196803230 6.00015647717348 6.00002388960866 6.00000001553478 6.00000000000481

9 6.00039257571411 6.00003206977691 6.00000376193069 6.00000000085335 6.00000000000008

10 6.00010990841270 6.00000657250009 6.00000059239429 6.00000000004688 6.00000000000000

11 6.00003076923152 6.00000134698623 6.00000009328476 6.00000000000258 6.00000000000000

12 6.00000861382931 6.00000027605478 6.00000001468962 6.00000000000014 6.00000000000000

13 6.00000241142726 6.00000005657536 6.00000000231318 6.00000000000001 6.00000000000000

14 6.00000067507432 6.00000001159469 6.00000000036426 6.00000000000000 6.00000000000000

15 6.00000018898567 6.00000000237625 6.00000000005736 6.00000000000000 6.00000000000000

16 6.00000005290615 6.00000000048699 6.00000000000903 6.00000000000000 6.00000000000000

17 6.00000001481097 6.00000000009981 6.00000000000142 6.00000000000000 6.00000000000000

18 6.00000000414629 6.00000000002046 6.00000000000022 6.00000000000000 6.00000000000000

19 6.00000000116075 6.00000000000419 6.00000000000004 6.00000000000000 6.00000000000000

20 6.00000000032495 6.00000000000086 6.00000000000001 6.00000000000000 6.00000000000000

21 6.00000000009097 6.00000000000018 6.00000000000000 6.00000000000000 6.00000000000000

22 6.00000000002547 6.00000000000004 6.00000000000000 6.00000000000000 6.00000000000000

23 6.00000000000713 6.00000000000001 6.00000000000000 6.00000000000000 6.00000000000000

24 6.00000000000199 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

25 6.00000000000056 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

26 6.00000000000016 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

27 6.00000000000004 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

28 6.00000000000001 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

29 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

30 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

31 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

32 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

33 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

34 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

35 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000
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Figure 2. Graphical representation of convergence of iterative schemes.

Figure 2 and Table 2 show that our iterative scheme (3.1) converges faster than Agarwal,
Abbas, Thakur and Ullah iterative schemes for Suzuki’s generalized non-expansive mappings.
The number of iterations in which these iterative schemes attain the fixed point is given in Table
3.

Table 3. Number of iterations in which the fixed point is attained.

Iterative method Number of iterations

Agarwal 29

Abbas 24

Thakur 21

Ullah 14

S**-iteration 10
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