SOME THEOREMS ON SS-ELEMENTS OF A RING

L. Bhaskar, A.K.S. Chandrasekhar Rao and T. Srinivas

Communicated by Ayman Badawi

MSC 2010 Classifications: 03G05, 06F25, 13E15, 16S50, 13F20.

Keywords and phrases: Ring, Idempotent element, Unit, SS-element, matrix ring and polynomial ring.

Abstract: A characterization of a class of unit elements, using SS-elements of a ring, is obtained. As an immediate consequence, an analogue of familiar Hua identity for SS-elements, is obtained besides some theorems on SS-rings. It is also proved that there exists rings containing an infinitely many SS-elements. Further more, the notion of SBSS-ring(suitable for building SS-elements) is initiated and proved that the matrix ring $M_n(Z_2), n \ge 2$ is an SBSS-ring. Examples are provided for justification as well.

1 Introduction

In the theory of rings, it is quite natural and interesting to observe that there are elements of a ring satisfying the condition $a^2 = a + a$. These elements are called the SS-elements of the ring. The concept of SS-element of a ring was first initiated by W.B.V.K. Swamy[12]. In a ring with unity, we can always find two SS-elements 0(additive identity) and 2(=1+1), which are the trivial SS-elements of the ring. An SS-element of the ring other than 0 and 2 is said to be a non-trivial SS-element. A ring is called an SS-ring if it contains at least one non-trivial SS-element. Examples of SS-rings can naturally be found in the literature. In [9], we have obtained some characterizations and applications of SS-elements of a ring.

In this paper, we shall present a characterization of a class of unit elements of a ring using SS-elements. We shall also present, as an immediate consequence, an analogue of the familiar Hua identity for SS-elements besides some theorems on SS-rings. It is natural and reasonable to raise a question that, does there exist an SS-ring containing an infinitely many SS-elements? we shall prove that the answer in affirmative. Further, we shall also initiate the notion of SBSS-ring(suitable to build SS-elements), which is an analogue of SBI ring (suitable to build idempotent elements, the terminology is due to Kaplansky.I[6]) and prove that the matrix ring $M_n(Z_2)$ is an SBSS-ring. Consequently, there are infinitely many SBSS-rings.

In section-2, we shall give definitions, propositions, theorems and in section-3, we shall present our main results and in section-4 we shall provide examples for justification. For basic definitions, fundamental concepts and elementary results, the reader can refer to Jacobson[6,7], Serge Lang[5] and T. Srinivas and A.K.S. Chandrasekhar Rao[9]. We begin with the following;

2 Section

Definition 2.1. [7] An element $0 \neq a$ in a ring with unity is said to be a unit if there exists an element b in R such that ab = ba = 1. If b = a, in other words, $a^2 = 1$, then a is unit having its own inverse.

Definition 2.2. [6] An element e in a ring R with unity is said to be an idempotent if $e^2 = e$.

Definition 2.3. [6] If e and f are idempotents in a ring R with unity then we say that e and f are orthogonal if and only if ef=0=fe.

Definition 2.4. [7] An element z in a ring R with unity is called nilpotent if $z^n = 0$ for some $n \in Z^+$.

Theorem 2.5. [7](*Hua identity*) Let a and b be elements of a ring with unity such that a, b and ab - 1 are units. Then $a-b^{-1}$ and $(a-b^{-1})^{-1} - a^{-1}$ are units and the following identity holds: $((a-b^{-1})^{-1} - a^{-1})^{-1} = aba - a$.

Remark 2.6. [7] If the characteristic of a ring R with unity is k > 0 then ka = (k1)a = 0, for all a in R. Clearly, k is the smallest positive integer having this property.

Theorem 2.7. [12]An SS-ring contains(always) non-zero divisors of zero.

Theorem 2.8. [3] If a is a nontrivial SS-element of a ring R then it should necessarily satisfy the condition $a^2 \neq a$.

Remark 2.9. [3] The idempotent elements of a ring can not be non-trivial SS-elements and a Boolean algebra regarded as a ring (Boolean ring) is not an SS-ring.

Definition 2.10. [8] Let \sum_{2} be the set of all infinite sequences of 0's and 1's. This set is called the sequence space of 0 and 1 or the symbol space of 0 and 1. More precisely, $\sum_{2} = \{(s_0, s_1, ...)/s_i = 0 \text{ or } 1\}$. We will often refer to elements of \sum_{2} as points in \sum_{2} .

3 Main Results

Theorem 3.1. Let R be a ring with unity and of characteristic $\neq 2$ and $0 \neq a$ be an element of R. Then 1 - a is an SS-element of R if and only if a is a unit having its own inverse.

Proof. Let $0 \neq a$ be an element of R, our assertion is that 1 - a is an SS-element if and only if $a^2 = 1$. First assume that 1 - a is an SS-element of R. Then we have $1 - a + 1 - a = (1 - a)(1 - a) = 1 - a - a + a^2$. In view of cancellation laws and commutative axiom under addition, we get $a^2 = 1$. Therefore, a is a unit having its own inverse that means $a^2 = 1$. On the other hand,

 $a^{2} = 1 \Rightarrow a^{2} - a - a + 1 = 1 - a - a + 1$ $\Rightarrow (1 - a)(1 - a) = (1 - a) + (1 - a)$ It is obvious that (1 - a) is an SS-element of R.

Theorem 3.2. (Analogue of Hua identity) In a commutative ring with unity and of characteristic $\neq 2$, if $0 \neq a, 0 \neq b$ be any two elements of R such that 1 - a, 1 - b, 2 - ab are SS-elements then 1 - (a - b) is an SS-element and the identity a - b = aba holds.

Proof. Since 1 - a, 1 - b are SS-elements, we have, in view of theorem(3.1), $a^2 = 1$, $b^2 = 1$. Also, 2 - ab is an SS-element. $\Rightarrow (ab - 1)^2 = 1 \Rightarrow a^2b^2 + 1 - 2ab = 1$ $\Rightarrow 1 + 1 - 2ab = 1$. $\Rightarrow 2ab = 1$(3.2a) Next to prove 1 - (a - b) is an SS element, in view of the theorem 2.5, it is sufficient to show

Next to prove 1 - (a - b) is an SS-element, in view of the theorem 2.5, it is sufficient to show that $(a - b)^2 = 1$. For, $(a - b)^2 = a^2 - 2ab + b^2 = 1 - 1 + 1 = 1$ (in view of 3.2a).

Therefore $(a - b)^2 = 1$. Further, we write $a - b = a - b^{-1}$. Next, $-b = a - b - a = a - b^{-1} - a^{-1} = (a - b^{-1})^{-1} - a^{-1}$ $\Rightarrow b^2 = ((a - b^{-1})^{-1} - a^{-1})^2$ $\Rightarrow ((a - b^{-1})^{-1} - a^{-1})^2 = 1$. Hence $1 - ((a - b^{-1})^{-1} - a^{-1})$ is an SS-element. From the above discussion we have 1 - a is an SS-element $\Leftrightarrow a^{-1} = a$; 1 - b is an SS-element $\Leftrightarrow b^{-1} = b$; $1 - ((a - b^{-1})^{-1} - a^{-1})$ is an SS-element $\Leftrightarrow ((a - b^{-1})^{-1} - a^{-1})^{-1} = (a - b^{-1})^{-1} - a^{-1})$ Let us recall Hua identity (Theorem 2.5), $((a - b^{-1})^{-1} - a^{-1})^{-1} = aba - a$ $\Rightarrow (a - b^{-1})^{-1} - a^{-1} = aba - a$ $\Rightarrow a - b^{-1} - a = aba - a$ $\Rightarrow a - b - a = aba - a$ $\Rightarrow a - b = aba$. This completes the proof.

Next, we present further results on SS-elements of a ring.

Theorem 3.3. Let R be a commutative ring with unity and of characteristic $\neq 2$ and e, f be two non zero SS-elements of R. Then e + f is non-zero SS-element of R if and only if ef = 0.

Proof. Let *e*, *f* be two non-zero SS-elements of a commutative ring R with unity and of characteristic $\neq 2$. Then, we have $e + e = e^2$; $f + f = f^2$. First assume that e + f is an SS-element of R. Then $e + f + e + f = (e + f)(e + f) = e^2 + ef + fe + f^2$. $\Rightarrow ef + ef = 0 \Rightarrow ef = 0$ as R is a ring of characteristic $\neq 2$. In view of (definition 2.3), we have e and f are orthogonal. On the other hand, assume that $ef = 0 \Rightarrow ef + ef = 0$ $\Rightarrow e + f + ef + fe + e + f = e + f + e + f$ $\Rightarrow (e+f)(e+f) = (e+f) + (e+f)$. Hence e+f is an SS-element. This completes the proof.

Theorem 3.4. Let R be a ring with unity and of characteristic $\neq 2$, and $0 \neq u$ be an SS-element and unit then

(3.4a): u = 2(3.4b): u + u = 1.

Proof. Let $0 \neq u$ be an SS-element and a unit in a ring R with unit and of characteristic $\neq 2$. Then, in view of definition 2.1, there exists an element ν in R such that $u\nu = \nu u = 1$. We have $u + u = u^2 \Rightarrow u\nu + u\nu = uu\nu$ $\Rightarrow 1 + 1 = u \Rightarrow u = 2$ Next, it is readily seen that $u\nu u = u$ and $\nu u^2 \nu = 1$

Now, $\nu u^2 \nu = 1 \Rightarrow \nu (u+u) \nu = 1$ $\Rightarrow (\nu u + \nu u)\nu = 1$ $\Rightarrow \nu u \nu + \nu u \nu = 1$ $\Rightarrow u + u = 1$. This is completes the proof.

Theorem 3.5. Let R and R' be two rings with unity 1 and 1' respectively. Let $\phi : R \to R'$ be a monomorphism. Then (3.5a) : $a \in R$ is an SS-element if and only if $\phi(a)$ is an SS element of R'

(3.5b) : If the ring R is of characteristic 2 and $0 \neq a \in R$ is an SS-element of R then ring \vec{R} contains nilpotents.

Proof. First we prove (3.5a). Let $a \in \mathbb{R}$ be an SS-element $\Rightarrow a + a = a^2 = aa$ $\Rightarrow (a+a) = \phi(aa)$ $\Rightarrow \phi(a) + \phi(a) = \phi(a)\phi(a)$ Therefore, $\phi(a)$ is an SS-element of R'. On the other hand, $\phi(x) \in R'$ is an SS-element of R' $\Rightarrow \phi(x) + \phi(x) = \phi(x)\phi(x)$ $\Rightarrow \phi(x+x) = \phi(xx)$ $\Rightarrow x + x = x^2$ as ϕ is a monomorphism. $\Rightarrow x$ is an SS-element of R. This completes the proof of (3.5a). Next, we prove (3.5b). Let the ring R be of characteristic 2 and $0 \neq a$ be an SS-element of R. Then in view of (3.5a), we have $\phi(a)$ is an SS-elements of R'. So, $\phi(a) + \phi(a) = \phi(a)^2$. $\Rightarrow \phi(a+a) = \phi(a)^2$ $\Rightarrow \phi(o) = \phi(a)^2$ $\Rightarrow \phi(a)^2 = o'$ $\Rightarrow \phi(a)$ is nilpotent, where 0' is additive identity in R'.

This completes the proof of (3.5b).

Corollary 3.6. *The homomorphic image of an SS-ring is an SS-ring.*

П

Proof. Obvious.

Lemma 3.7. In a ring R with unity and of characteristic 2, $0 \neq a \in R$ is an SS-element if and only if $a^2 = 0$ (a is nilpotent).

Proof. Obvious.

Theorem 3.8. Let R be a ring with unity and of characteristic 2 and z be a non zero SS-element of R. If $0 \neq w$ be any element of R then zwz is an SS-element of R.

Proof. In view of the above lemma 3.7, we have $z^2=0$. Let $0 \neq w \in R$. Now, zwz + zwz = 0 as $zwz \in R$ and characteristic of R is 2. Next, $(zwz)(zwz) = (zw)z^2(wz) = 0$. so, zwz + zwz = (zwz)(zwz). Hence, zwz is an SS-element of R.

Theorem 3.9. Let R be a commutative ring with unity and of characteristic 2 and z be a non zero SS-element of R, If w is a non zero element of R then zw is an SS-element of R.

Proof. In view of the lemma 3.7, we have $z^2=0$. Let $0 \neq w \in R$. Now, zw + zw=0 as $zw \in R$. Next, $(zw)(zw) = (wz)(zw) = (wz^2)w=0$ Therefore, zw is an SS-element of R

Theorem 3.10. Let R be a ring with unity and of characteristic 2 and a be a non-zero SS-element of R. Then, there does't exists a non zero element x in R such that a^2 is a factor of x.

Proof. In a contrary way, assume that there exists a nonzero element x in R such that $x = a^2 y$. In view of the lemma 3.7 we have x = 0, which is not possible. This completes the proof.

Theorem 3.11. Let R be a commutative ring with unity and of characteristic 2 and $a_1, a_2, \dots, a_n, n \ge 2$ be non zero elements of R. If for some $i(1 \le i \le n)a_i$ is an SS-element then the product $\prod a_j$ is

an SS-element.

Proof. In view of lemma 3.7, $a_i^2 = 0$. It readily seen that $\prod a_j + \prod a_j = 0$; Using mathematical induction and applying commutative law repeatedly, we can easily see that $(\prod a_j)$ $(\prod a_j) = 0$. Hence, $\prod a_j$ is an SS-element of R.

This completes the proof.

Definition 3.12. Let R be a ring with unity and S(R) be a ring with unity over the ring R, (the elements of the ring S(R) are formed with elements of R). The ring S(R) is called an SBSS-ring (suitable for building SS-elements) if and only if

(3.12a) the characteristic of the ring R is 2.

(3.12b) S(R) contains non zero elements a such that $a^2 = 0$.

Theorem 3.13. The matrix ring $M_n(Z_2)$, $n \ge 2$ is an SBSS-ring.

Proof. It is readily seen that the characteristic of the field $Z_2 = \{0, 1\}$ is 2. Therefore the matrix ring $M_n(Z_2)$ satisfies (3.12a).

Next, choose a matrix $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$ in $M_n(Z_2)$ such that the $(i, j)^{th}$ entry element $p_{ij} = a_{i1}a_{1j} + a_{i2}a_{2j} + \dots + a_{in}a_{nj} = 0$ in the matrix

$$A^{2} = \begin{bmatrix} \sum_{a_{1k}a_{k1}} \sum_{a_{1k}a_{k2}} \dots \sum_{a_{1k}a_{kn}} a_{i_{k}a_{k2}} \dots \sum_{a_{2k}a_{kn}} a_{i_{k}a_{k1}} \\ \sum_{a_{2k}a_{k1}} \sum_{a_{nk}a_{k1}} \sum_{a_{nk}a_{k2}} \dots \sum_{a_{nk}a_{kn}} a_{i_{k}a_{kn}} \end{bmatrix}, i=1,2,...,n, j=1,2,...,n \text{ and } k=1,2,...,n$$

Care must be taken while choosing the entries in the matrix A.

For t=1,2,...,n., $p_{ij} = \sum a_{it}a_{tj} = 0$ if $a_{it} = 0$; $a_{tj} = 0$ or $a_{it} = 1$; $a_{tj} = 0$ or $a_{it} = 0$; $a_{tj} = 1$ or $a_{it} = 1$; $a_{tj} = 1$ such that summation $\sum a_{iz} a_{zj}$ contains an even number of 1's.

We apply the principle of mathematical induction. If n=2, then $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ in $M_2(Z_2)$ are nilpotent and hence $M_2(Z_2)$ is SBSS-ring.

Next, let B_{n-1} be a nilpotent in $M_{n-1}(Z_2)$ then augment one row and one column containing all entries equal to zero to the matrix B_{n-1} . Consequently, we get a matrix B_n in $M_n(Z_2)$, which is nilpotent. Hence $M_n(Z_2)$, $n \ge 2$ is an SBSS-ring. This completes the proof.

Corollary 3.14. There exists an infinity of SBSS-rings.

Proof. In view of the theorem 3.13, for $n \ge 2$, the matrix $\operatorname{ring} M_n(Z_2)$ is an SBSS-ring. Since $n \ge 2$, is arbitrary, there are infinitely many SBSS-rings.

Theorem 3.15. The polynomial ring $P(Z_2)$ is an SBSS-ring. Further we can find infinity many SS-elements in polynomial ring $P(Z_2)$.

Proof. It is readily seen that the polynomial ring $P(Z_2)$ is a ring with unity and the field $Z_2 = \{0, 1\}$ is of characteristic 2. Now, choose the polynomial f(x) consisting of an even number of terms with coefficients 1. We can easily see that f(x).f(x) = 0(x), where 0(x) is the zero polynomial in the ring $P(Z_2)$. Therefore, the ring $P(Z_2)$ is an SBSS-ring. Further more, it can readily be seen that there are infinity many polynomials consisting of an even number of terms with coefficients 1. Hence, we can find infinity of SS-elements in the polynomial ring $P(Z_2)$.

Corollary 3.16. The sequence space \sum_2 of 0 and 1 is an SBSS-ring. Further, we can find infinitely many SS-elements in the sequence space \sum_2 .

Proof. In view of the definition 2.10, the sequence space $\sum_2 = \{(s_0, s_1, ...)/s_i = 0 \text{ or } 1\}$ can be viewed as the set $P(Z_2)$ of polynomials over the field $Z_2 = \{0, 1\}$. It can be readily seen that $\sum_2 = P(Z_2)$ is a polynomial ring with unity. In view of the theorem 15, the sequence space \sum_2 is an SBSS-ring consisting of infinitely many SS-elements.

Corollary 3.17. *The set* $Z_2 \times Z_2 \times ...$ *is an SBSS-ring consisting of infinitely many SS-elements.*

Proof. In view of the corollary 3.16, the proof is obvious.

4 Examples

Example 4.1. Let us consider the ring $R = \{0, 1, 2\}$ with addition and multiplication defined by the following tables :

+	0	1	2			0	1	2
0	0	1	2	-	0	0	0	0
1	1	2	0		1	0	1	2
2	2	0	1		2	0	2	1

It is obvious that R is a ring with unity and of characteristic $\neq 2$. From the tables, we can see that $1^2 = 1$, then 1-1=1+2=0 which is an SS-element, next, $2^2 = 1$, then 1-2=1+1=2 which is an SS-element.

This verification illustrates theorem 3.1.

Next, take a=1, b=2, it is obvious that a, b satisfy the hypothesis of theorem 3.2. Now a - b=1-2=2, also aba = 2. Therefore a-b = aba, this justifies theorem(3.2a). Further more this example justifies theorem 3.4.

In [9], we have given the following example.

Example 4.2. Let $G=\{e, a\}$ be a cyclic group of order 2 and $Z_2 = \{0, 1\}$ be a field of characteristic 2. $Z_2(G)=\{0, a, e, e + a\}$ is a group algebra with respect to the operations defined by following tables :

+	0	a	e	e+a		0	a	e	e+a
0	0	a	e	e+a	0	0	0	0	0
a	a	0	e + a	e	a	0	e	e	e + a
e	e	e + a	0	a	e	0	a	e	e + a
e + a	e+a	e	a	0	e + a	0	e + a	e + a	0

This example illustrates lemma 3.7, theorem 3.8 and theorem 3.9.

Example 4.3. Let $Z_3 = \{0, 1, 2\}$ be a prime field of characteristic 3 and let $G = \{g : g^2 = 1\}$ be a group. $Z_3(G) = \{0, 1, 2, g, 2g, 1+g, 1+2g, 2+2g\}$ is a group algebra with respect to the operations defined by the following tables

+	0	1	2	g	2g	1+g	2+g	1+2g	2+2g
0	0	1	2	g	2g	1+g	2+g	1+2g	2+2g
1	1	2	0	1+g	1+2g	2+g	g	2+2g	2g
2	2	0	1	2+g	2+2g	g	1+g	2g	1+2g
g	g	1+g	2+g	2g	0	1+2g	2+2g	1	2
2g	2g	1+2g	2+2g	0	g	1	2	1+g	2+g
1+g	1+g	2+g	g	1+2g	1	2+2g	2g	2	0
2+g	2+g	g	1+g	2+2g	2	2g	1+2g	0	1
1+2g	1+2g	2+2g	2g	1	1+g	2	0	2+g	g
2+2g	2+2g	2g	1+2g	2	2+g	0	1	g	1+g

•	0	1	2	g	2g	1+g	2+g	1+2g	2+2g
0	0	0	0	0	0	0	0	0	0
1	0	1	2	g	2g	1+g	2+g	1+2g	2+2g
2	0	2	1	2g	g	2+2g	1+2g	2+g	1+g
g	0	g	2g	1	2	1+g	1+2g	2+g	2+2g
2g	0	2g	g	2	1	2+2g	2+g	1+2g	1+g
1+g	0	1+g	2+2g	1+g	2+2g	2+2g	0	0	1+g
2+g	0	2+g	1+2g	1+2g	2+g	0	2+g	1+2g	0
1+2g	0	1+2g	2+g	2+g	1+2g	0	1+2g	2+g	0
2+2g	0	2+2g	1+g	2+2g	1+g	1+g	0	0	2+2g

It is obvious that $1^2 = 1$ and 1-1=1+2=0. Therefore, 1-1 is an SS-element.

Next, $2^2=1$, and 1-2=1+1=2. Therefore 1-2 is an SS-elements.

Next, $g^2 = 1$ and 1 - g = 1 + 2g. Therefore 1 - g is an SS-element as 1 + 2g is an SS-element. Next, $(2g)^2 = 1$ and 1 - 2g = 1 + g. Therefore 1 - 2g is an SS-element as 1 + g is an SS-element. Hence the example 3 illustrates theorem 3.1.

To illustrate theorem 3.2. Take a = g, b = 2g then 1 - a = 1 - g = 1 + 2g; 1 - b = 1 - 2g = 1 - 2g1 + g, 2 - ab = 2 - g(2g) = 2 - 2 = 2 + 1 = 0 are obviously SS-elements.

Now 1 - (a - b) = 1 - (g - 2g) = 1 - (g + g) = 1 - 2g = 1 + g is an SS-element. Next, g-2g = g+g = 2g; g(2g)(g) = 2g Therefore a-b = g-2g = g(2g)(g) = aba. Further more, the example 3, illustrates theorem 3.4.

the matrix ring $M_4(Z_2)$.

```
\begin{smallmatrix}0&0&0\\0&0&0\end{smallmatrix}
                                                                ŏ
                             0
1
0
                                                             00000
                 000
                                                                  \overset{\circ}{0}
                                                                                    \overset{\circ}{0}_{0}
                                                                                                          \tilde{0} \tilde{0} \tilde{0}
Likewise
                           Ó
                             Ó
                                                                Ó
                                      Lŏŏ
                                                            etc, are SS-elements in the matrix ring M_6(Z_2).
```

References

- [1] Foster Alfred. L, The theory of Boolean like rings, Ame Math. Soc, Trans, 59, pp.166-187, 1946.
- [2] Alan Doerr and Kenneth Levasseur, *Applied Discrete Structures for Computer Science*, Asia students Edition, New Delhi, India, 1986.
- [3] C.S Rao A.K.S, A note on SS-rings, Math edu., India, 2000.
- [4] Lambek. J, Lectures on Rings and Modules, Waltham, Massachusatts, Blasdell, 1966.
- [5] Serge. L, Algebras, Addision wesley publishing company reading Massachusetts, USA, 2002.
- [6] Nathan Jacobsm, Structure of rings, Math.Soc.Coll.Pub. Amer, 37, 1956.
- [7] Nathan Jacobsam, Besic algebra, Hindustan Publishing Corporation India, 1, 1984.
- [8] Holmgren Richard. A, A first course in Discrete Dynamical System, Springer-Verlag, New york, 2001
- [9] Srinivas. T and Chandrasekhar Rao. A.K.S, SS-elements and their applications, Southeast Asian Bull. Math, Hong Kong, 33, pp.361-366, 2009.
- [10] Srinivas. T and Chandra Sekhar Rao. A.K.S, A Generalization of Foster's Boolean like rings, Acta Ciencia Indica, XXXIII M, pp.1371-1376 ,2007.
- [11] Srinivas. T, Narasimha Swamy. P and Chandra Sekhar Rao. A.K.S, *Central SS-elements of a Ring*, Acta Ciencia Indica, XXXV M(1), pp.301-306, 2009.
- [12] Vasantha Kanda Swamy. W.B, On SS-rings, Math. India, 1998.

Author information

L. Bhaskar, Department of Mathematics, Kakatiya University, Warangal-506009, Telangana, INDIA. E-mail: bhaskarlavudya12260gmail.com

A.K.S. Chandrasekhar Rao, Department of Mathematics, D.N.R. College, Post graduate Course and Research Center, Bhimavaram-534-202, A.P, INDIA. E-mail: chandhrasekhar-6@yahoo.co.in

T. Srinivas, Department of Mathematics, Kakatiya University, Warangal-506 009, Telangana, INDIA. E-mail: thotasrinivas.srinivas@gmail.com

Received: August 28th, 2021

Accepted: March 31st, 2022