SOME THEOREMS ON SS-ELEMENTS OF A RING

L. Bhaskar, A.K.S. Chandrasekhar Rao and T. Srinivas
Communicated by Ayman Badawi

MSC 2010 Classifications: 03G05, 06F25, 13E15, 16S50, 13F20.
Keywords and phrases: Ring, Idempotent element, Unit, SS-element, matrix ring and polynomial ring.

Abstract

A characterization of a class of unit elements, using SS-elements of a ring, is obtained. As an immediate consequence, an analogue of familiar Hua identity for SS-elements, is obtained besides some theorems on SS-rings. It is also proved that there exists rings containing an infinitely many SS-elements. Further more, the notion of SBSS-ring(suitable for building SSelements) is initiated and proved that the matrix ring $M_{n}\left(Z_{2}\right), n \geq 2$ is an SBSS-ring. Examples are provided for justification as well.

1 Introduction

In the theory of rings, it is quite natural and interesting to observe that there are elements of a ring satisfying the condition $a^{2}=a+a$. These elements are called the SS-elements of the ring. The concept of SS-element of a ring was first initiated by W.B.V.K. Swamy[12]. In a ring with unity, we can always find two SS-elements 0 (additive identity) and $2(=1+1)$, which are the trivial SS-elements of the ring. An SS-element of the ring other than 0 and 2 is said to be a nontrivial SS-element. A ring is called an SS-ring if it contains at least one non-trivial SS-element. Examples of SS-rings can naturally be found in the literature. In [9], we have obtained some characterizations and applications of SS-elements of a ring.

In this paper, we shall present a characterization of a class of unit elements of a ring using SS-elements. We shall also present, as an immediate consequence, an analogue of the familiar Hua identity for SS-elements besides some theorems on SS-rings. It is natural and reasonable to raise a question that, does there exist an SS-ring containing an infinitely many SS-elements? we shall prove that the answer in affirmative. Further, we shall also initiate the notion of SBSSring(suitable to build SS-elements), which is an analogue of SBI ring (suitable to build idempotent elements, the terminology is due to Kaplansky.I[6]) and prove that the matrix ring $M_{n}\left(Z_{2}\right)$ is an SBSS-ring. Consequently, there are infinitely many SBSS-rings.

In section-2, we shall give definitions, propositions, theorems and in section-3, we shall present our main results and in section-4 we shall provide examples for justification. For basic definitions, fundamental concepts and elementary results, the reader can refer to Jacobson[6,7], Serge Lang[5] and T. Srinivas and A.K.S. Chandrasekhar Rao[9].
We begin with the following;

2 Section

Definition 2.1. [7] An element $0 \neq a$ in a ring with unity is said to be a unit if there exists an element b in R such that $a b=b a=1$. If $b=a$, in other words, $a^{2}=1$, then a is unit having its own inverse.

Definition 2.2. [6] An element e in a ring R with unity is said to be an idempotent if $e^{2}=e$.
Definition 2.3. [6] If e and f are idempotents in a ring R with unity then we say that e and f are orthogonal if and only if ef $=0=\mathrm{fe}$.

Definition 2.4. [7] An element z in a ring R with unity is called nilpotent if $z^{n}=0$ for some $n \in Z^{+}$.

Theorem 2.5. $[7]$ (Hua identity) Let a and b be elements of a ring with unity such that a, b and $a b-1$ are units. Then $a-b^{-1}$ and $\left(a-b^{-1}\right)^{-1}-a^{-1}$ are units and the following identity holds: $\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)^{-1}=a b a-a$.
Remark 2.6. [7] If the characteristic of a ring R with unity is $k>0$ then $k a=(k 1) a=0$, for all a in R. Clearly, k is the smallest positive integer having this property.

Theorem 2.7. [12]An SS-ring contains(always) non-zero divisors of zero.
Theorem 2.8. [3] If a is a nontrivial SS-element of a ring R then it should necessarily satisfy the condition $a^{2} \neq a$.
Remark 2.9. [3] The idempotent elements of a ring can not be non-trivial SS-elements and a Boolean algebra regarded as a ring (Boolean ring) is not an SS-ring.
Definition 2.10. [8] Let \sum_{2} be the set of all infinite sequences of $0^{\prime} s$ and $1^{\prime} s$. This set is called the sequence space of 0 and 1 or the symbol space of 0 and 1 . More precisely, $\sum_{2}=$ $\left\{\left(s_{0}, s_{1}, \ldots\right) / s_{i}=0\right.$ or 1$\}$. We will often refer to elements of \sum_{2} as points in \sum_{2}.

3 Main Results

Theorem 3.1. Let R be a ring with unity and of characteristic $\neq 2$ and $0 \neq a$ be an element of R. Then $1-a$ is an SS-element of R if and only if a is a unit having its own inverse.

Proof. Let $0 \neq a$ be an element of R , our assertion is that $1-a$ is an SS-element if and only if $a^{2}=1$. First assume that $1-a$ is an SS-element of R . Then we have $1-a+1-a=$ $(1-a)(1-a)=1-a-a+a^{2}$. In view of cancellation laws and commutative axiom under addition, we get $a^{2}=1$. Therefore, a is a unit having its own inverse that means $a^{2}=1$.
On the other hand,
$a^{2}=1 \Rightarrow a^{2}-a-a+1=1-a-a+1$
$\Rightarrow(1-a)(1-a)=(1-a)+(1-a)$
It is obvious that $(1-a)$ is an SS-element of R .
Theorem 3.2. (Analogue of Hua identity) In a commutative ring with unity and of characteristic $\neq 2$, if $0 \neq a, 0 \neq b$ be any two elements of R such that $1-a, 1-b, 2-a b$ are SS-elements then $1-(a-b)$ is an SS-element and the identity $a-b=a b a$ holds.
Proof. Since $1-a, 1-b$ are SS-elements, we have, in view of theorem(3.1), $a^{2}=1, b^{2}=1$. Also, $2-a b$ is an SS-element. $\Rightarrow(a b-1)^{2}=1 \Rightarrow a^{2} b^{2}+1-2 a b=1$
$\Rightarrow 1+1-2 a b=1$.
$\Rightarrow 2 a b=1 \ldots .$. (3.2a)
Next to prove $1-(a-b)$ is an SS-element, in view of the theorem 2.5 , it is sufficient to show that $(a-b)^{2}=1$. For, $(a-b)^{2}=a^{2}-2 a b+b^{2}=1-1+1=1 \quad$ (in view of 3.2a).

Therefore $(a-b)^{2}=1$. Further, we write $a-b=a-b^{-1}$.
Next, $-b=a-b-a=a-b^{-1}-a^{-1}=\left(a-b^{-1}\right)^{-1}-a^{-1}$
$\Rightarrow b^{2}=\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)^{2}$
$\Rightarrow\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)^{2}=1$.
Hence $1-\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)$ is an SS-element.
From the above discussion we have
$1-a$ is an SS-element $\Leftrightarrow a^{-1}=a$;
$1-b$ is an SS-element $\Leftrightarrow b^{-1}=b$;
$1-(a-b)$ is an SS-element $\Leftrightarrow(a-b)^{-1}=a-b$;
$1-\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)$ is an SS-element $\left.\Leftrightarrow\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)^{-1}=\left(a-b^{-1}\right)^{-1}-a^{-1}\right)$
Let us recall Hua identity (Theorem 2.5),
$\left(\left(a-b^{-1}\right)^{-1}-a^{-1}\right)^{-1}=a b a-a$
$\Rightarrow\left(a-b^{-1}\right)^{-1}-a^{-1}=a b a-a$
$\Rightarrow a-b^{-1}-a=a b a-a$
$\Rightarrow a-b-a=a b a-a$
$\Rightarrow a-b=a b a$. This completes the proof.

Next, we present further results on SS-elements of a ring.
Theorem 3.3. Let R be a commutative ring with unity and of characteristic $\neq 2$ and e, f be two non zero SS-elements of R. Then $e+f$ is non-zero $S S$-element of R if and only if ef $=0$.

Proof. Let e, f be two non-zero SS-elements of a commutative ring R with unity and of characteristic $\neq 2$. Then, we have $e+e=e^{2} ; f+f=f^{2}$.
First assume that $e+f$ is an SS-element of R .
Then $e+f+e+f=(e+f)(e+f)=e^{2}+e f+f e+f^{2}$.
$\Rightarrow e f+e f=0 \Rightarrow e f=0$ as R is a ring of characteristic $\neq 2$.
In view of (definition 2.3), we have e and f are orthogonal.
On the other hand, assume that $e f=0 \Rightarrow e f+e f=0$
$\Rightarrow e+f+e f+f e+e+f=e+f+e+\mathrm{f}$
$\Rightarrow(e+f)(e+f)=(e+f)+(e+f)$. Hence $e+f$ is an SS-element.
This completes the proof.
Theorem 3.4. Let R be a ring with unity and of characteristic $\neq 2$, and $0 \neq u$ be an SS-element and unit then

$$
\begin{aligned}
& (3.4 a): u=2 \\
& (3.4 b): u+u=1 .
\end{aligned}
$$

Proof. Let $0 \neq u$ be an SS-element and a unit in a ring R with unit and of characteristic $\neq 2$. Then, in view of definition 2.1, there exists an element ν in R such that $u \nu=\nu u=1$.
We have $u+u=u^{2} \Rightarrow u \nu+u \nu=u u \nu$
$\Rightarrow 1+1=u \Rightarrow u=2$
Next, it is readily seen that $u \nu u=u$ and $\nu u^{2} \nu=1$
Now, $\nu u^{2} \nu=1 \Rightarrow \nu(u+u) \nu=1$
$\Rightarrow(\nu u+\nu u) \nu=1$
$\Rightarrow \nu u \nu+\nu u \nu=1$
$\Rightarrow u+u=1$. This is completes the proof.
Theorem 3.5. Let R and R^{\prime} be two rings with unity 1 and l^{\prime} respectively. Let $\phi: R \rightarrow R^{\prime}$ be a monomorphism. Then
(3.5a) : $a \in R$ is an SS-element if and only if $\phi(a)$ is an SS element of R^{\prime}
(3.5b) : If the ring R is of characteristic 2 and $0 \neq a \in R$ is an $S S$-element of R then ring R^{\prime} contains nilpotents.

Proof. First we prove (3.5a).
Let $a \in \mathrm{R}$ be an SS-element $\Rightarrow a+a=a^{2}=a a$
$\Rightarrow(a+a)=\phi(a a)$
$\Rightarrow \phi(a)+\phi(a)=\phi(a) \phi(a)$
Therefore, $\phi(a)$ is an SS-element of R^{\prime}.
On the other hand, $\phi(x) \in R^{\prime}$ is an SS-element of R^{\prime}
$\Rightarrow \phi(x)+\phi(x)=\phi(x) \phi(x)$
$\Rightarrow \phi(x+x)=\phi(x x)$
$\Rightarrow x+x=x^{2}$ as ϕ is a monomorphism.
$\Rightarrow x$ is an SS-element of R .
This completes the proof of (3.5a).
Next, we prove (3.5b). Let the ring R be of characteristic 2 and $0 \neq a$ be an SS-element of R .
Then in view of (3.5a), we have $\phi(a)$ is an SS-elements of R^{\prime}. So, $\phi(a)+\phi(a)=\phi(a)^{2}$.
$\Rightarrow \phi(a+a)=\phi(a)^{2}$
$\Rightarrow \phi(o)=\phi(a)^{2}$
$\Rightarrow \phi(a)^{2}=o^{\prime}$
$\Rightarrow \phi(a)$ is nilpotent, where 0^{\prime} is additive identity in R^{\prime}.
This completes the proof of (3.5b).
Corollary 3.6. The homomorphic image of an SS-ring is an SS-ring.

Proof. Obvious.

Lemma 3.7. In a ring R with unity and of characteristic $2,0 \neq a \in R$ is an SS-element if and only if $a^{2}=0$ (a is nilpotent $)$.

Proof. Obvious.
Theorem 3.8. Let R be a ring with unity and of characteristic 2 and z be a non zero SS-element of R. If $0 \neq w$ be any element of R then $z w z$ is an SS-element of R.

Proof. In view of the above lemma 3.7, we have $z^{2}=0$. Let $0 \neq w \in R$.
Now, $z w z+z w z=0$ as $z w z \in \mathrm{R}$ and characteristic of R is 2 .
Next, $(z w z)(z w z)=(z w) z^{2}(w z)=0$. so, $z w z+z w z=(z w z)(z w z)$.
Hence, $z w z$ is an SS-element of R.
Theorem 3.9. Let R be a commutative ring with unity and of characteristic 2 and z be a non zero $S S$-element of R, If w is a non zero element of R then $z w$ is an SS-element of R.

Proof. In view of the lemma 3.7, we have $z^{2}=0$. Let $0 \neq w \in R$.
Now, $z w+z w=0$ as $z w \in R$. Next, $(z w)(z w)=(w z)(z w)=\left(w z^{2}\right) w=0$
Therefore, $z w$ is an SS-element of R
Theorem 3.10. Let R be a ring with unity and of characteristic 2 and a be a non-zero SS-element of R. Then, there does't exists a non zero element x in R such that a^{2} is a factor of x.

Proof. In a contrary way, assume that there exists a nonzero element x in R such that $x=a^{2} y$. In view of the lemma 3.7 we have $x=0$, which is not possible. This completes the proof.

Theorem 3.11. Let R be a commutative ring with unity and of characteristic 2 and $a_{1}, a_{2}, \ldots . ., a_{n}, n \geq 2$ be non zero elements of R. If for some $i(1 \leq i \leq n) a_{i}$ is an SS-element then the product $\prod_{j} a_{j}$ is an SS-element.

Proof. In view of lemma 3.7, $a_{i}{ }^{2}=0$. It readily seen that $\prod_{j} a_{j}+\prod_{j} a_{j}=0$; Using mathematical induction and applying commutative law repeatedly, we can easily see that $\left(\prod_{j} a_{j}\right)\left(\prod_{j} a_{j}\right)=0$. Hence, $\prod_{j} a_{j}$ is an SS-element of R.
This completes the proof.
Definition 3.12. Let R be a ring with unity and $S(R)$ be a ring with unity over the ring R, (the elements of the ring $S(R)$ are formed with elements of R). The ring $S(R)$ is called an SBSS-ring (suitable for building SS-elements) if and only if
(3.12a) the characteristic of the ring R is 2.
(3.12b) $\mathrm{S}(\mathrm{R})$ contains non zero elements a such that $a^{2}=0$.

Theorem 3.13. The matrix ring $M_{n}\left(Z_{2}\right), n \geq 2$ is an SBSS-ring.
Proof. It is readily seen that the characteristic of the field $Z_{2}=\{0,1\}$ is 2 . Therefore the matrix ring $M_{n}\left(Z_{2}\right)$ satisfies (3.12a).
Next, choose a matrix $A=\left[\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ a_{n 1} & a_{n 2} & \ldots & . & a_{n n}\end{array}\right]$ in $M_{n}\left(Z_{2}\right)$ such that the $(i, j)^{t h}$ entry element $p_{i j}=a_{i 1} a_{1 j}+a_{i 2} a_{2 j}+\ldots+a_{i n} a_{n j}=0$ in the matrix

Care must be taken while choosing the entries in the matrix A.
For $\mathrm{t}=1,2, \ldots, \mathrm{n}$., $p_{i j}=\sum a_{i t} a_{t j}=0$ if $a_{i t}=0 ; a_{t j}=0$ or $a_{i t}=1 ; a_{t j}=0$ or $a_{i t}=0 ; a_{t j}=1$ or $a_{i t}=1 ; a_{t j}=1$ such that summation $\sum a_{i z} a_{z j}$ contains an even number of $1^{\prime} s$.

We apply the principle of mathematical induction. If $n=2$, then $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ in $M_{2}\left(Z_{2}\right)$ are nilpotent and hence $M_{2}\left(Z_{2}\right)$ is SBSS-ring.
Next, let B_{n-1} be a nilpotent in $M_{n-1}\left(Z_{2}\right)$ then augment one row and one column containing all entries equal to zero to the matrix B_{n-1}. Consequently, we get a matrix B_{n} in $M_{n}\left(Z_{2}\right)$, which is nilpotent. Hence $M_{n}\left(Z_{2}\right), n \geq 2$ is an SBSS-ring. This completes the proof.

Corollary 3.14. There exists an infinity of SBSS-rings.
Proof. In view of the theorem 3.13, for $n \geq 2$, the matrix ring $M_{n}\left(Z_{2}\right)$ is an SBSS-ring. Since $n \geq 2$, is arbitrary, there are infinitely many SBSS-rings.

Theorem 3.15. The polynomial ring $P\left(Z_{2}\right)$ is an SBSS-ring. Further we can find infinity many SS-elements in polynomial ring $P\left(Z_{2}\right)$.

Proof. It is readily seen that the polynomial ring $P\left(Z_{2}\right)$ is a ring with unity and the field $Z_{2}=$ $\{0,1\}$ is of characteristic 2 . Now, choose the polynomial $f(x)$ consisting of an even number of terms with coefficients 1 . We can easily see that $f(x) \cdot f(x)=0(x)$, where $0(x)$ is the zero polynomial in the ring $P\left(Z_{2}\right)$. Therefore, the ring $P\left(Z_{2}\right)$ is an SBSS-ring. Further more, it can readily be seen that there are infinity many polynomials consisting of an even number of terms with coefficients 1 . Hence, we can find infinity of SS-elements in the polynomial ring $P\left(Z_{2}\right)$.

Corollary 3.16. The sequence space \sum_{2} of 0 and 1 is an SBSS-ring. Further, we can find infinitely many $S S$-elements in the sequence space \sum_{2}.
Proof. In view of the definition 2.10 , the sequence space $\sum_{2}=\left\{\left(s_{0}, s_{1}, \ldots\right) / s_{i}=0\right.$ or 1$\}$ can be viewed as the set $P\left(Z_{2}\right)$ of polynomials over the field $Z_{2}=\{0,1\}$. It can be readily seen that $\sum_{2}=P\left(Z_{2}\right)$ is a polynomial ring with unity. In view of the theorem 15 , the sequence space \sum_{2} is an SBSS-ring consisting of infinitely many SS-elements.

Corollary 3.17. The set $Z_{2} \times Z_{2} \times \ldots$ is an SBSS-ring consisting of infinitely many SS-elements.
Proof. In view of the corollary 3.16, the proof is obvious.

4 Examples

Example 4.1. Let us consider the ring $R=\{0,1,2\}$ with addition and multiplication defined by the following tables :

+	0	1	2						
0	0	1	2						
1	1	2	0						
2	2	0	1	\quad					
:---:	:---:	:---:	:---:	:---:					
2	1	0	0	0					
2	0	1	2						
0	2	1							

It is obvious that R is a ring with unity and of characteristic $\neq 2$. From the tables, we can see that $1^{2}=1$, then $1-1=1+2=0$ which is an SS-element, next, $2^{2}=1$, then $1-2=1+1=2$ which is an SS-element.
This verification illustrates theorem 3.1.
Next, take $a=1, b=2$, it is obvious that a, b satisfy the hypothesis of theorem 3.2. Now $a-b=1-$ $2=2$, also $a b a=2$. Therefore $a-b=a b a$, this justifies theorem(3.2a). Further more this example justifies theorem 3.4.

In [9], we have given the following example.

Example 4.2. Let $\mathrm{G}=\{e, a\}$ be a cyclic group of order 2 and $Z_{2}=\{0,1\}$ be a field of characteristic 2. $Z_{2}(G)=\{0, a, e, e+a\}$ is a group algebra with respect to the operations defined by following tables :

+	0	a	e	$e+a$
0	0	a	e	$e+a$
a	a	0	$e+a$	e
e	e	$e+a$	0	a
$e+a$	$e+a$	e	a	0

\cdot	0	a	e	$e+a$
0	0	0	0	0
a	0	e	e	$e+a$
e	0	a	e	$e+a$
$e+a$	0	$e+a$	$e+a$	0

This example illustrates lemma 3.7, theorem 3.8 and theorem 3.9.
Example 4.3. Let $Z_{3}=\{0,1,2\}$ be a prime field of characteristic 3 and let $G=\left\{g: g^{2}=1\right\}$ be a group. $Z_{3}(G)=\{0,1,2, g, 2 g, 1+g, 1+2 g, 2+2 g\}$ is a group algebra with respect to the operations defined by the following tables

+	0	1	2	g	2 g	$1+\mathrm{g}$	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$
0	0	1	2	g	2 g	$1+\mathrm{g}$	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$
1	1	2	0	$1+\mathrm{g}$	$1+2 \mathrm{~g}$	$2+\mathrm{g}$	g	$2+2 \mathrm{~g}$	2 g
2	2	0	1	$2+\mathrm{g}$	$2+2 \mathrm{~g}$	g	$1+\mathrm{g}$	2 g	$1+2 \mathrm{~g}$
g	g	$1+\mathrm{g}$	$2+\mathrm{g}$	2 g	0	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$	1	2
2 g	2 g	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$	0	g	1	2	$1+\mathrm{g}$	$2+\mathrm{g}$
$1+\mathrm{g}$	$1+\mathrm{g}$	$2+\mathrm{g}$	g	$1+2 \mathrm{~g}$	1	$2+2 \mathrm{~g}$	2 g	2	0
$2+\mathrm{g}$	$2+\mathrm{g}$	g	$1+\mathrm{g}$	$2+2 \mathrm{~g}$	2	2 g	$1+2 \mathrm{~g}$	0	1
$1+2 \mathrm{~g}$	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$	2 g	1	$1+\mathrm{g}$	2	0	$2+\mathrm{g}$	g
$2+2 \mathrm{~g}$	$2+2 \mathrm{~g}$	2 g	$1+2 \mathrm{~g}$	2	$2+\mathrm{g}$	0	1	g	$1+\mathrm{g}$

\cdot	0	1	2	g	2 g	$1+\mathrm{g}$	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	g	2 g	$1+\mathrm{g}$	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	$2+2 \mathrm{~g}$
2	0	2	1	2 g	g	$2+2 \mathrm{~g}$	$1+2 \mathrm{~g}$	$2+\mathrm{g}$	$1+\mathrm{g}$
g	0	g	2 g	1	2	$1+\mathrm{g}$	$1+2 \mathrm{~g}$	$2+\mathrm{g}$	$2+2 \mathrm{~g}$
2 g	0	2 g	g	2	1	$2+2 \mathrm{~g}$	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	$1+\mathrm{g}$
$1+\mathrm{g}$	0	$1+\mathrm{g}$	$2+2 \mathrm{~g}$	$1+\mathrm{g}$	$2+2 \mathrm{~g}$	$2+2 \mathrm{~g}$	0	0	$1+\mathrm{g}$
$2+\mathrm{g}$	0	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	$1+2 \mathrm{~g}$	$2+\mathrm{g}$	0	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	0
$1+2 \mathrm{~g}$	0	$1+2 \mathrm{~g}$	$2+\mathrm{g}$	$2+\mathrm{g}$	$1+2 \mathrm{~g}$	0	$1+2 \mathrm{~g}$	$2+\mathrm{g}$	0
$2+2 \mathrm{~g}$	0	$2+2 \mathrm{~g}$	$1+\mathrm{g}$	$2+2 \mathrm{~g}$	$1+\mathrm{g}$	$1+\mathrm{g}$	0	0	$2+2 \mathrm{~g}$

It is obvious that $1^{2}=1$ and $1-1=1+2=0$. Therefore, $1-1$ is an SS-element.
Next, $2^{2}=1$, and $1-2=1+1=2$. Therefore $1-2$ is an SS-elements.
Next, $g^{2}=1$ and $1-g=1+2 g$. Therefore $1-g$ is an SS-element as $1+2 g$ is an SS-element.
Next, $(2 g)^{2}=1$ and $1-2 g=1+g$. Therefore $1-2 g$ is an SS-element as $1+g$ is an SS-element.
Hence the example 3 illustrates theorem 3.1.
To illustrate theorem 3.2. Take $a=g, b=2 g$ then $1-a=1-g=1+2 g ; 1-b=1-2 g=$ $1+g, 2-a b=2-g(2 g)=2-2=2+1=0$ are obviously SS-elements.
Now $1-(a-b)=1-(g-2 g)=1-(g+g)=1-2 g=1+g$ is an SS-element. Next, $g-2 g=g+g=2 g ; g(2 g)(g)=2 g$ Therefore $a-b=g-2 g=g(2 g)(g)=a b a$. Further more, the example 3, illustrates theorem 3.4.
Example 4.4. To illustrate theorem 3.13 we provide the following;
The matrices $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$ etc, are SS-elements in the matrix ring $M_{3}\left(Z_{2}\right)$.
Next, the matrices $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$ etc, are SS-elements in the matrix ring $M_{4}\left(Z_{2}\right)$.
Likewise $\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$,

References

[1] Foster Alfred. L, The theory of Boolean like rings, Ame Math. Soc, Trans, 59, pp.166-187, 1946.
[2] Alan Doerr and Kenneth Levasseur, Applied Discrete Structures for Computer Science, Asia students Edition, New Delhi, India, 1986.
[3] C.S Rao A.K.S, A note on SS-rings, Math edu., India, 2000.
[4] Lambek. J, Lectures on Rings and Modules, Waltham, Massachusatts, Blasdell,1966.
[5] Serge. L, Algebras, Addision wesley publishing company reading Massachusetts, USA, 2002.
[6] Nathan Jacobsm, Structure of rings, Math.Soc.Coll.Pub. Amer, 37, 1956.
[7] Nathan Jacobsam, Besic algebra, Hindustan Publishing Corporation India, 1, 1984.
[8] Holmgren Richard. A, A first course in Discrete Dynamical System, Springer-Verlag, New york, 2001
[9] Srinivas. T and Chandrasekhar Rao. A.K.S, SS-elements and their applications, Southeast Asian Bull. Math, Hong Kong, 33, pp.361-366, 2009.
[10] Srinivas. T and Chandra Sekhar Rao. A.K.S, A Generalization of Foster's Boolean like rings, Acta Ciencia Indica, XXXIII M, pp.1371-1376,2007.
[11] Srinivas. T, Narasimha Swamy. P and Chandra Sekhar Rao. A.K.S, Central SS-elements of a Ring, Acta Ciencia Indica, XXXV M(1), pp.301-306, 2009.
[12] Vasantha Kanda Swamy. W.B, On SS-rings, Math. India, 1998.

Author information

L. Bhaskar, Department of Mathematics, Kakatiya University, Warangal-506009, Telangana, INDIA.

E-mail: bhaskarlavudya1226@gmail.com
A.K.S. Chandrasekhar Rao, Department of Mathematics, D.N.R. College, Post graduate Course and Research Center, Bhimavaram-534-202, A.P, INDIA.
E-mail: chandhrasekhar-6@yahoo.co.in
T. Srinivas, Department of Mathematics, Kakatiya Univeristy, Warangal-506 009, Telangana, INDIA.

E-mail: thotasrinivas.srinivas@gmail.com
Received: August 28th, 2021
Accepted: March 31st, 2022

