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Abstract: A characterization of a class of unit elements, using SS-elements of a ring, is
obtained. As an immediate consequence, an analogue of familiar Hua identity for SS-elements,
is obtained besides some theorems on SS-rings. It is also proved that there exists rings containing
an infinitely many SS-elements. Further more, the notion of SBSS-ring(suitable for building SS-
elements) is initiated and proved that the matrix ring M,,(Z,),n >2 is an SBSS-ring. Examples
are provided for justification as well.

1 Introduction

In the theory of rings, it is quite natural and interesting to observe that there are elements of
a ring satisfying the condition > = a + a. These elements are called the SS-elements of the
ring. The concept of SS-element of a ring was first initiated by W.B.V.K. Swamy[12]. In a ring
with unity, we can always find two SS-elements O(additive identity) and 2(=1+1), which are the
trivial SS-elements of the ring. An SS-element of the ring other than 0 and 2 is said to be a non-
trivial SS-element. A ring is called an SS-ring if it contains at least one non-trivial SS-element.
Examples of SS-rings can naturally be found in the literature. In [9], we have obtained some
characterizations and applications of SS-elements of a ring.

In this paper, we shall present a characterization of a class of unit elements of a ring using
SS-elements. We shall also present, as an immediate consequence, an analogue of the familiar
Hua identity for SS-elements besides some theorems on SS-rings. It is natural and reasonable
to raise a question that, does there exist an SS-ring containing an infinitely many SS-elements?
we shall prove that the answer in affirmative. Further, we shall also initiate the notion of SBSS-
ring(suitable to build SS-elements), which is an analogue of SBI ring (suitable to build idempo-
tent elements, the terminology is due to Kaplansky.I[6]) and prove that the matrix ring M,,(Z;)
is an SBSS-ring. Consequently, there are infinitely many SBSS-rings.

In section-2, we shall give definitions, propositions, theorems and in section-3, we shall
present our main results and in section-4 we shall provide examples for justification. For basic
definitions, fundamental concepts and elementary results, the reader can refer to Jacobson[6,7],
Serge Lang[5] and T. Srinivas and A.K.S. Chandrasekhar Rao[9].

We begin with the following;

2 Section
Definition 2.1. [7] An element O # a in a ring with unity is said to be a unit if there exists an
element b in R such that ab = ba = 1. If b = q, in other words, a? = 1, then « is unit having its
own inverse.

Definition 2.2. [6] An element ¢ in a ring R with unity is said to be an idempotent if €? = e.

Definition 2.3. [6] If e and f are idempotents in a ring R with unity then we say that e and f are
orthogonal if and only if ef=0=fe.

Definition 2.4. [7] An element z in a ring R with unity is called nilpotent if 2™ = 0 for some
neZt.
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Theorem 2.5. [7](Hua identity) Let a and b be elements of a ring with unity such that a, b and

ab — 1 are units. Then a—b~" and (chl)’l)_1 — a~! are units and the following identity holds:
((afbfl)_l —a ) "l=aba — a.

Remark 2.6. [7] If the characteristic of a ring R with unity is £ > 0 then ka = (k1)a = 0, for all
a in R. Clearly, k is the smallest positive integer having this property.

Theorem 2.7. [12]An SS-ring contains(always) non-zero divisors of zero.

Theorem 2.8. 3] If a is a nontrivial SS-element of a ring R then it should necessarily satisfy the
condition a*> # a.

Remark 2.9. [3] The idempotent elements of a ring can not be non-trivial SS-elements and a
Boolean algebra regarded as a ring (Boolean ring) is not an SS-ring.

Definition 2.10. [8] Let >, be the set of all infinite sequences of 0's and 1’s. This set is
called the sequence space of 0 and 1 or the symbol space of 0 and 1. More precisely, >, =
{(s0, s1,...)/s; = 0 or 1}. We will often refer to elements of ), as points in > _,.

3 Main Results

Theorem 3.1. Let R be a ring with unity and of characteristic # 2 and O # a be an element of
R. Then 1 — a is an SS-element of R if and only if a is a unit having its own inverse.

Proof. Let 0 # a be an element of R, our assertion is that 1 — a is an SS-element if and only
if a> = 1. First assume that 1 — a is an SS-element of R. Then we have | —a + 1 —a =
(1 -—a)(1 —a) =1—a—a+ a® In view of cancellation laws and commutative axiom under
addition, we get a> = 1. Therefore,  is a unit having its own inverse that means a> = 1 .

On the other hand,

ad=1=d*-a-a+l=1-a—a+1

=(l-a)(l1-a)=(10-a)+ (1 —-a)

It is obvious that (1 — a) is an SS-element of R. i

Theorem 3.2. (Analogue of Hua identity) In a commutative ring with unity and of characteristic
# 2, if 0 # a,0 # b be any two elements of R such that 1 — a,1 — b,2 — ab are SS-elements then
1 — (a — b) is an SS-element and the identity a — b = aba holds.

Proof. Since 1 — a, 1 — b are SS-elements, we have, in view of theorem(3.1), a> = 1, b* = 1.

Also, 2 — ab is an SS-element. = (ab— 1) = 1= a?b? + 1 — 2ab = 1

=14+1-2ab=1.

= 2ab=1.....(3.2a)

Next to prove 1 — (a — b) is an SS-element, in view of the theorem 2.5, it is sufficient to show

that (a — b)? = 1. For, (a — b)2 =a?—2ab+b =1-1+1=1 (inview of 3.2a).
Therefore (a — b)2 = 1. Further, we write a — b =a — b™".

Next, ~b=a—-b—a=a—-b"'—-al=(a-b"1)"! —q!

= b2 — ((CL _ bfl)fl _ a71)2

= ((a—b"H1—a1)2=1.

Hence 1 — ((a —b~')~! —a~!) is an SS-element.
From the above discussion we have

1 — ais an SS-element< o~ ! = a;

1 — bis an SS-element< b~ = b;

1 — (a — b) is an SS-element< (a —b) ™! =a —b;

1-((a—b"")"!—a ) isan SS-elements ((a — b~ 1)1 —a H T =(a—b"1)"—a)
Let us recall Hua identity (Theorem 2.5),

((a—b‘l)7l —a ) ' =aba—a

= (a—b"")  —a!'=aba—a

=a—-bl-a=aba—a

=a—b—a=aba—a

= a — b = aba. This completes the proof. O
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Next, we present further results on SS-elements of a ring.

Theorem 3.3. Let R be a commutative ring with unity and of characteristic # 2 and e, f be two
non zero SS-elements of R. Then e 4 f is non-zero SS-element of R if and only ifef = 0.

Proof. Let e, f be two non-zero SS-elements of a commutative ring R with unity and of charac-
teristic # 2. Then, we have e + e = €%, f + f = f>.

First assume that e 4 f is an SS-element of R.

Thene+ f+e+ f=(e+ f)le+f)=e>+ef + fe+ f2

=ef +ef =0=ef =0asRisaring of characteristic # 2.

In view of (definition 2.3), we have e and f are orthogonal.

On the other hand, assume thatef =0 =ef +ef =0

e+ ftef+fetet+f=et+ft+etf

= (e+ f)e+ f) = (e+ f)+ (e+ f). Hence e + f is an SS-element.

This completes the proof. O

Theorem 3.4. Let R be a ring with unity and of characteristic # 2, and 0% u be an SS-element
and unit then

(34a): u=2
(3.4b) : u+u = 1.

Proof. Let 0# u be an SS-element and a unit in a ring R with unit and of characteristic # 2.
Then, in view of definition 2.1, there exists an element v in R such that uy = vu = 1.

We have u 4+ v = u? = uv + uv = uuv

sl1l4+l=u=u=2

Next, it is readily seen that uvu = u and vu’v=1

Now, vu*v=1= v(u + u)v=1

= (vu+rvu)y =1

= vuv +vur = 1

= u + u = 1. This is completes the proof. O

Theorem 3.5. Let R and R’ be two rings with unity 1 and 1 respectively. Let ¢ : R — R bea
monomorphism. Then

(3.5a) : a € R is an SS-element if and only if ¢(a) is an SS element of R’

(3.5b) : If the ring R is of characteristic 2 and 0 # a € R is an SS-element of R then ring R
contains nilpotents.

Proof. First we prove (3.5a).

Let a € R be an SS-element = a + a = a*> = aa

= (a+a) = ¢(aa)

= ¢(a) + ¢(a) = ¢(a)p(a) /

Therefore, ¢(a) is an SS-element of R .

On the other hand, ¢(z) € R’ is an SS-element of R’

= ¢(x) + ¢(z)=¢(z)p(x)

= oz + ) = d(aa)

= z +x = 2% as ¢ is a monomorphism.

= x is an SS-element of R.

This completes the proof of (3.5a).

Next, we prove (3.5b). Let the ring R be of characteristic 2 and 0 # a be an SS-element of R.
Then in view of (3.5a), we have ¢(a) is an SS-elements of R . So, ¢(a) + ¢(a) = ¢(a)?.

= ¢(a + a)=¢(a)?

= ¢(0) = ¢(a)?

= ¢(a)’=0

= ¢(a) is nilpotent, where 0 is additive identity in R’.

This completes the proof of (3.5b). O

Corollary 3.6. The homomorphic image of an SS-ring is an SS-ring.
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Proof. Obvious. O

Lemma 3.7. In a ring R with unity and of characteristic 2, 0 # a € R is an SS-element if and
only if a*> = 0 (a is nilpotent).

Proof. Obvious. O

Theorem 3.8. Let R be a ring with unity and of characteristic 2 and z be a non zero SS-element
of R. If O # w be any element of R then zwz is an SS-element of R.

Proof. In view of the above lemma 3.7, we have 22=0. Let 0 #w € R.

Now, zwz + zwz = 0 as zwz € R and characteristic of R is 2.

Next, (zwz)(zwz) = (zw)2*(wz) = 0. 50, zwz + zwz = (z2wz)(zwz).

Hence, zwz is an SS-element of R. O

Theorem 3.9. Let R be a commutative ring with unity and of characteristic 2 and z be a non zero
SS-element of R, If w is a non zero element of R then zw is an SS-element of R.

Proof. In view of the lemma 3.7, we have 22=0. Let 0 #w € R.
Now, zw + zw=0 as zw € R. Next, (zw)(zw) = (wz)(zw) = (wz?)w=0
Therefore, zw is an SS-element of R O

Theorem 3.10. Let R be a ring with unity and of characteristic 2 and a be a non-zero SS-element
of R. Then, there does'’t exists a non zero element x in R such that a* is a factor of x.

Proof. In a contrary way, assume that there exists a nonzero element z in R such that z = a%y.
In view of the lemma 3.7 we have x =0, which is not possible. This completes the proof. O

Theorem 3.11. Let R be a commutative ring with unity and of characteristic 2 and a1, ay, ....., ap,n >2

be non zero elements of R. If for some i(1 < i < n)a; is an SS-element then the product [| a; is
J
an SS-element.

Proof. In view of lemma 3.7, a;> = 0. It readily seen that ]| a;+] ] a; = 0 ; Using mathematical

J J
induction and applying commutative law repeatedly, we can easily see that ([[a;) ([]a;) = 0.

J J
Hence,[| a; is an SS-element of R.

J
This completes the proof. O

Definition 3.12. Let R be a ring with unity and S(R) be a ring with unity over the ring R, (the
elements of the ring S(R) are formed with elements of R ). The ring S(R) is called an SBSS-ring
(suitable for building SS-elements) if and only if

(3.12a) the characteristic of the ring R is 2.

(3.12b) S(R) contains non zero elements a such that > = 0.

Theorem 3.13. The matrix ring M,,(Z,), n > 2 is an SBSS-ring.

Proof. Itis readily seen that the characteristic of the field Z, = {0, 1} is 2. Therefore the matrix
ring M,,(Z,) satisfies (3.12a).

ajp ap . .. Qp

Next, choose a matrix A = [“_2‘ an . .- Amn } in M, (Z,) such that the (i,7)'" entry element
Anl Ap2 - - - Gnn

Dij = Qi1615 + @025 + ... + ainapn; = 0in the matrix

D2 aIk@Kl ) A1kAK2 - - - P Q1kOkn

Yawakr Yawaky - Yewan | j=12,..n, j=1,2,..,nand k=1,2,...,n.
> Gnka@kl Y0 Anka@k2 - - - D AnkQkn

Care must be taken while choosing the entries in the matrix A.

For t=1,2,....n., pij = Zaitatj =0ifa;; =0; Qtj = Oora; = l;atj =0ora; = O;Cltj =1lor
. . ’
a;t = 1;a;; = 1 such that summation ) a;.a.; contains an even number of 1 s.

A2 =




SOME THEOREMS ON SS-ELEMENTS OF A RING 541

We apply the principle of mathematical induction. If n=2, then [93],[51].[1 1] inMy(2,)
are nilpotent and hence M;(7,) is SBSS-ring.
Next, let B,,_; be a nilpotent in M,,_;(Z,) then augment one row and one column containing all
entries equal to zero to the matrix B,,_;. Consequently, we get a matrix B,, in M,,(Z,), which is
nilpotent. Hence M,,(Z,), n > 2 is an SBSS-ring. This completes the proof. ]

Corollary 3.14. There exists an infinity of SBSS-rings.

Proof. In view of the theorem 3.13, for n >2, the matrix ringM,,(Z;) is an SBSS-ring. Since
n > 2, is arbitrary, there are infinitely many SBSS-rings. O

Theorem 3.15. The polynomial ring P(Z,) is an SBSS-ring. Further we can find infinity many
SS-elements in polynomial ring P(Z,).

Proof. 1t is readily seen that the polynomial ring P(Z;) is a ring with unity and the field Z, =
{0, 1} is of characteristic 2. Now, choose the polynomial f(z) consisting of an even number
of terms with coefficients 1. We can easily see that f(z).f(z) = 0(z), where 0(z)is the zero
polynomial in the ring P(Z,). Therefore, the ringP(Z,) is an SBSS-ring. Further more, it can
readily be seen that there are infinity many polynomials consisting of an even number of terms
with coefficients 1. Hence, we can find infinity of SS-elements in the polynomial ring P(Z25).

]

Corollary 3.16. The sequence space _, of 0 and 1 is an SBSS-ring. Further, we can find in-
finitely many SS-elements in the sequence space ) ,.

Proof. In view of the definition 2.10, the sequence space >, = {(so,51,...)/s; = 0 or 1} can
be viewed as the set P(Z,) of polynomials over the field Z, = {0, 1}. It can be readily seen that
>, = P(Z,) is a polynomial ring with unity. In view of the theorem 15, the sequence space >,
is an SBSS-ring consisting of infinitely many SS-elements. O

Corollary 3.17. The set Z, X Zp X .... is an SBSS-ring consisting of infinitely many SS-elements.

Proof. In view of the corollary 3.16, the proof is obvious. O

4 Examples

Example 4.1. Let us consider the ring R = {0, 1,2} with addition and multiplication defined by
the following tables :

+]o 1 2 o1 2
0o 1 2 0]0 0 0
1120 1o 1 2
202 0 1 200 2 1

It is obvious that R is a ring with unity and of characteristic # 2. From the tables, we can see
that 12 = 1, then 1-1=1+2=0 which is an SS-element, next, 22 = 1, then 1-2=1+1=2 which is an
SS-element.

This verification illustrates theorem 3.1.

Next, take a=1, b=2, it is obvious that a, b satisfy the hypothesis of theorem 3.2. Now a — b=1-
2=2, also aba = 2. Therefore a—b = aba, this justifies theorem(3.2a). Further more this example
justifies theorem 3.4.

In [9], we have given the following example.

Example 4.2. Let G={e,a} be a cyclic group of order 2 and Z, = {0, 1} be a field of charac-
teristic 2. Z»(G)={0,a,e,e + a} is a group algebra with respect to the operations defined by
following tables :
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+ 0 a e e+a . 0 a e e+a
0 0 a e e+ta 0 0 0 0 0
a a 0 e+a e a 0 e e e+a
e e e+a 0 a e 0 a e e+a
et+a|eta e a 0 et+a |0 et+a e+a 0

This example illustrates lemma 3.7, theorem 3.8 and theorem 3.9.

Example 4.3. Let 73 = {0, 1,2} be a prime field of characteristic 3 and let G = {g : ¢*> = 1}
be a group. Z3(G) = {0,1,2,9,2¢9,1 4+ g,1 + 2g,2 + 2g} is a group algebra with respect to the
operations defined by the following tables

+ 0 1 2 g 2g 1+g | 2+g | 1+2g | 2+2¢g
0 0 1 2 g 2g I+g | 2+g | 1+2g | 24+2¢g
1 1 2 0 I+g | 142g | 2+g g 2+2¢g 2g
2 2 0 1 2+g | 242¢g g l+g 2g 1+2¢g
g g I+g | 2+g 2g 0 1+2g | 2+2¢g 1 2
2g 2g 1+2g | 2+2¢g 0 g 1 2 l+g | 2+¢g
l+g I+g | 2+g g 1+2¢g 1 2+2g | 2g 2 0
24+g | 2+g g 1+g | 2+2¢g 2 2g 1+2¢g 0 1
14+2g | 1+2g | 2+2g 2g 1 I+g 2 0 2+g g
242g | 242g | 2g 1+2¢ 2 2+g 0 1 g l+g
. 0 1 2 g 2g I+g | 2+g | 1+2g | 2+2¢
0 0 0 0 0 0 0 0 0 0
1 0 1 2 g 2g I+g | 2+g | 1+2g | 2+2¢
2 0 2 1 2g g 242g | 142g | 2+g I+g
g 0 g 2g 1 2 I+g | 142g | 2+g | 2+2¢
2¢ | 0| 2g g 2 1 2+2g | 2+g | 1+2g | l+g
I+g | 0| 1+g | 2+2g | 1+g | 2+2g | 2+2¢g 0 0 l+g
24g | 0| 24g | 142g | 14+2g | 2+g 0 2+g | 1+2¢g 0
1+2g | 0 | 142g | 24g | 24g | 1+2g 0 1+2g | 2+g 0
242g | 0 | 242g | 1+g | 242g | l4g I+g 0 0 2+2¢g

It is obvious that 12 = 1 and 1-1=142=0. Therefore, 1-1 is an SS-element.
Next, 22=1, and 1-2=1+1=2. Therefore 1-2 is an SS-elements.
Next, g> = 1 and 1 — g = 1 + 2g. Therefore 1 — g is an SS-element as 1 + 2g is an SS-element.
Next,(2¢)> = 1 and 1 —2g = 1+ g. Therefore 1 —2g is an SS-element as 1+ g is an SS-element.
Hence the example 3 illustrates theorem 3.1.
To illustrate theorem 3.2. Take a = g, b =2gthenl —a=1—-g=14+2¢;1 -b=1-2¢g =
1+g,2—ab=2-g(2g) =2—2=2+1=0 are obviously SS-elements.
Nowl—(a—b)=1-(9—-29) =1—(9+9g) =1—2g9g =1+ gis an SS-element. Next,
g—29=g+9=2g;9(29)(g9) = 2g Therefore a —b = g —2g = ¢g(29)(g) = aba. Further more,
the example 3, illustrates theorem 3.4.

Example 4.4. To illustrate theorem 3.13 we provide the following;
. 001 001 000 000 . .
The matrices [0 0 1}, [0 0 0], [0 00|, {1 00 | etc, are SS-elements in the matrix ring M3(Z;).
000 000 100 100
o8 i] [3931] 8834). [see8. [
: 1 1111 .
Next, the matrices 0001l> looools looool> looool> |1111] €te, are SS-elements in
o 0000 0000 0000 1000 1111
the matrix ring My (Z;).
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000100 000001 000001 000001 000000
000010 000001 000001 000000 000000
Likewise | 000001 000001 000000 000000 000000
000000 > 000001 |> 000000 > 000000 |° 000000 (>
000000 000001 000000 000000 000000
000000 000000 000000 000000 100000

etc, are SS-elements in the matrix ring Me(25).

—
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