CURVES OF CONSTANT BREADTH IN A STRICT WALKER 3-MANIFOLD

Athoumane NIANG, Ameth NDIAYE and Moussa KOIVOGUI
Communicated by Zafar Ahsan
MSC 2010 Classifications: Primary 53A10; Secondary 53C42, 53C50.
Keywords and phrases: Curves, Curvature, Torsion, Frenet frame, Walker manifolds.
The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

Abstract

In this paper, we investigate the properties of curves of constant breadth in a strict Walker 3-manifold and we construct examples of curves of constant breadth.

1 Introduction

The study of submanifolds of a given ambiant space is a naturel interesting problem which enriches our knowledge and understanding of the geometry of the space itself. Here the ambiant space we will consider is a Lorentzian three-manifold admitting a parallel null vector field called Walker manifold. It is known that Walker metrics have served as a powerful tool of constructing interesting indefinite metrics which exhibit various aspects of geometric properties not given by any positive definite metrics. For more detail see ([2, 3]).
Recently, Shaikh et. al initiated the study of surface curves in a different way: in [8, 9, 13, 14], they investigate a sufficient condition for which a rectifying curve on a smooth surface remains invariant under isometry of surfaces, and they show that under such an isometry the component of the position vector of a rectifying curve on a smooth surface along the normal to the surface is invariant. And they find the normal and geodesic curvature for a rectifying curve on a smooth surface and they also prove that geodesic curvature is invariant under the isometry of surfaces such that rectifying curves remain. They also find a sufficient condition for which an osculating curve on a smooth surface remains invariant under isometry of surfaces and also prove that the component of the position vector of an osculating curve $\alpha(s)$ on a smooth surface along any tangent vector to the surface at $\alpha(s)$ is invariant under such isometry. In [10, 11], they investigate an osculating curve under the conformal map, and obtain a sufficient condition for the conformal invariance of an osculating curve. They also investigate a sufficient condition for the invariance of a normal curve on a smooth immersed surface under isometry.
The curves of constant breadth were first defined in 1778 by Euler. Then, Solow [15] and Blascke [1] investigated the curves of constant breadth. In Euclidean spaces \mathbb{E}^{3} and \mathbb{E}^{4}, plane curves of constant breadth were studied by Kose [6].
In the paper [17], some geometric properties of curves of constant breadth in Minkowski 3space were given. Also, these curves in Minkowski 4-space were obtained by Kazaz, Onder and Kocayigit [5]. A number of authors have, recently, studied the curves of constant breadth under different conditions (see [4, 5, 7, 18]).
In this paper we study curves of contant braith in 3-dimension strict Walker manifold; and we construct examples.

2 Preliminaries

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of null parallel r-planes, with $r \leq \frac{n}{2}$. The canonical forms of the metrics were investigated by A. G. Walker ([16]). Walker has derived adapted coordinates to a parallel plan field. Hence, the metric of a
three-dimensional Walker manifold $\left(M, g_{f}^{\epsilon}\right)$ with coordinates (x, y, z) is expressed as

$$
\begin{equation*}
g_{f}^{\epsilon}=d x \circ d z+\epsilon d y^{2}+f(x, y, z) d z^{2} \tag{2.1}
\end{equation*}
$$

and its matrix form as

$$
g_{f}^{\epsilon}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & \epsilon & 0 \\
1 & 0 & f
\end{array}\right) \text { with inverse }\left(g_{f}^{\epsilon}\right)^{-1}=\left(\begin{array}{ccc}
-f & 0 & 1 \\
0 & \epsilon & 0 \\
1 & 0 & 0
\end{array}\right)
$$

for some function $f(x, y, z)$, where $\epsilon= \pm 1$ and thus $D=\operatorname{Span} \partial_{x}$ as the parallel degenerate line field. Notice that when $\epsilon=1$ and $\epsilon=-1$ the Walker manifold has signature $(2,1)$ and $(1,2)$ respectively, and therefore is Lorentzian in both cases.

It follows after a straightforward calculation that the Levi-Civita connection of any metric (2.1) is given by:

$$
\begin{align*}
\nabla_{\partial_{x}} \partial z & =\frac{1}{2} f_{x} \partial_{x}, \quad \nabla_{\partial_{y}} \partial z=\frac{1}{2} f_{y} \partial_{x} \\
\nabla_{\partial_{z}} \partial z & =\frac{1}{2}\left(f f_{x}+f_{z}\right) \partial_{x}+\frac{1}{2} f_{y} \partial_{y}-\frac{1}{2} f_{x} \partial_{z} \tag{2.2}
\end{align*}
$$

where $\partial_{x}, \partial_{y}$ and ∂_{z} are the coordinate vector fields $\frac{\partial}{\partial_{x}}, \frac{\partial}{\partial_{y}}$ and $\frac{\partial}{\partial_{z}}$, respectively. Hence, if $\left(M, g_{f}^{\epsilon}\right)$ is a strict Walker manifolds i.e., $f(x, y, z)=f(y, z)$, then the associated Levi-Civita connection satisfies

$$
\begin{equation*}
\nabla_{\partial_{y}} \partial z=\frac{1}{2} f_{y} \partial_{x}, \quad \nabla_{\partial_{z}} \partial z=\frac{1}{2} f_{z} \partial_{x}-\frac{\epsilon}{2} f_{y} \partial_{y} \tag{2.3}
\end{equation*}
$$

Note that the existence of a null parallel vector field (i.e $f=f(y, z)$) simplifies the non-zero components of the Christoffel symbols and the curvature tensor of the metric g_{f}^{ϵ} as follows:

$$
\begin{equation*}
\Gamma_{23}^{1}=\Gamma_{32}^{1}=\frac{1}{2} f_{y}, \Gamma_{33}^{1}=\frac{1}{2} f_{z}, \Gamma_{33}^{2}=-\frac{\epsilon}{2} f_{y} \tag{2.4}
\end{equation*}
$$

Starting from local coordinates (x, y, z) for which (2.1) holds, it is easy to check that

$$
e_{1}=\partial_{y}, \quad e_{2}=\frac{2-f}{2 \sqrt{2}} \partial_{x}+\frac{1}{\sqrt{2}} \partial_{z}, e_{3}=\frac{2+f}{2 \sqrt{2}} \partial_{x}-\frac{1}{\sqrt{2}} \partial_{z}
$$

are local pseudo-orthonormal frame fields on $\left(M, g_{f}^{\epsilon}\right)$, with $g_{f}^{\epsilon}\left(e_{1}, e_{1}\right)=1, g_{f}^{\epsilon}\left(e_{2}, e_{2}\right)=\epsilon$ and $g_{f}^{\epsilon}\left(e_{3}, e_{3}\right)=1$. Thus the signature of the metric g_{f}^{ϵ} is $(1, \epsilon,-1)$.
Let now u and v be two vectors in M. Denoted by $(\vec{i}, \vec{j}, \vec{k})$ the canonical frame in \mathbb{R}^{3}.
The vector product of u and v in $\left(M, g_{f}^{\epsilon}\right)$ with respect to the metric g_{f}^{ϵ} is the vector denoted by $u \times v$ in M defined by

$$
\begin{equation*}
g_{f}^{\epsilon}(u \times v, w)=\operatorname{det}(u, v, w) \tag{2.5}
\end{equation*}
$$

for all vector w in M, where $\operatorname{det}(u, v, w)$ is the determinant function associated to the canonical basis of \mathbb{R}^{3}. If $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ then by using (2.5), we have:

$$
u \times v=\left(\left|\begin{array}{ll}
u_{1} & v_{1} \tag{2.6}\\
u_{2} & v_{2}
\end{array}\right|-f\left|\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right|\right) \vec{i}-\epsilon\left|\begin{array}{cc}
u_{1} & v_{1} \\
u_{3} & v_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right| \vec{k}
$$

Let $\alpha: I \subset \mathbb{R} \longrightarrow\left(M, g_{f}^{\epsilon}\right)$ be a curve parametrized by its arc-length s.
The Frenet frame of α is the vectors T, N and B along α where T is the tangent, N the principal normal and B the binormal vector. They satisfied the Frenet formulas

$$
\left\{\begin{array}{ccc}
\nabla_{T} T(s) & = & \epsilon_{2} \kappa(s) N(s) \tag{2.7}\\
\nabla_{T} N(s) & = & -\epsilon_{1} \kappa T(s)-\epsilon_{3} \tau B(s) \\
\nabla_{T} B(s) & = & \epsilon_{2} \tau(s) N(s)
\end{array}\right.
$$

where κ and τ are respectively the curvature and the torsion of the curve α, with $\epsilon_{1}=g_{f}(T ; T) ; \epsilon_{2}=$ $g_{f}(N ; N)$ and $\epsilon_{3}=g_{f}(B, B)$.

3 Space curves of constant breadth in Walker manifold

In this section, we define space curves of constant breadth in the three dimensional Walker manifold.
Definition 3.1. A curve $\alpha: I \rightarrow\left(M, g_{f}^{\epsilon}\right)$ in the three-dimensional Walker manifold $\left(M, g_{f}^{\epsilon}\right)$ is called a curve of constant breadth if there exists a curve $\beta: I \rightarrow M_{f}$ such that, at the corresponding points of curves, the parallel tangent vectors of α and β at $\alpha(s)$ and $\beta\left(s^{\star}\right)$ at $s ; s^{\star} \in I$ are opposite directions and the distance $g_{f}^{\epsilon}(\beta-\alpha, \beta-\alpha)$ is constant. In this case, $(\alpha ; \beta)$ is called a pair curve of constant breadth.

Let now $(\alpha ; \beta)$ be a pair curve of constant breadth and s, s^{\star} be arc-length of α and β, respectively. Then we may write the following equation:

$$
\begin{equation*}
\beta\left(s^{\star}\right)=\alpha(s)+m_{1}(s) T(s)+m_{2}(s) N(s)+m_{3}(s) B(s) ; \tag{3.1}
\end{equation*}
$$

where $m_{i}(i=1,2,3)$ are smooth functions of s.
Differentiating (3.1) equation with respect to s and using (2.7) we obtain

$$
\begin{align*}
\frac{d \beta}{d s}= & \frac{d \beta}{d s^{\star}} \frac{d s^{\star}}{d s} \\
= & T^{\star} \frac{d s^{\star}}{d s}=\left(1+m_{1}^{\prime}-\epsilon_{1} m_{2} \kappa(s)\right) T \\
& +\left(m_{2}^{\prime}+\epsilon_{2} m_{1} \kappa(s)+\epsilon_{2} m_{3} \tau(s)\right) N+\left(m_{3}^{\prime}-\epsilon_{3} m_{2} \tau(s)\right) B \tag{3.2}
\end{align*}
$$

where T^{\star} denotes the tangent vector of β.
Since $T=-T^{*}$, from the equation in (3.2) we have

$$
\left\{\begin{array}{cc}
1+m_{1}^{\prime}-\epsilon_{1} m_{2} \kappa(s) & =-\frac{d s^{\star}}{d s} \tag{3.3}\\
m_{2}^{\prime}+\epsilon_{2} m_{1} \kappa(s)+\epsilon_{2} m_{3} \tau(s) & =0 \\
m_{3}^{\prime}-\epsilon_{3} m_{2} \tau(s) & =0
\end{array}\right.
$$

Let us introduce the angle ϕ between the tagent vector of α with a chosen fixed direction. The curvature of α is $\kappa=\frac{d \phi}{d s}$ and the curvature of β is $\kappa^{\star}=\frac{d \phi}{d s^{\star}}$. If we denote by $\rho=\frac{1}{\kappa}$ and $\rho^{\star}=\frac{1}{\kappa^{\star}}$, the radius of curvature of α and β; and $g(\phi)=\rho+\rho^{\star}$, then the relation (3.3) can be rewritten as

$$
\left\{\begin{array}{llc}
\frac{d m_{1}}{d \phi} & = & \epsilon_{1} m_{2}-g(\phi) \tag{3.4}\\
\frac{d m_{2}}{d \phi} & = & -\epsilon_{2}\left(m_{1}+m_{3} \rho \tau\right) \\
\frac{d m_{3}}{d \phi} & = & \epsilon_{3} m_{2} \rho \tau
\end{array}\right.
$$

Differentiating the second equation of (3.4) with respect to ϕ and using the first and the third equations of (3.4), we obtain the following equation:

$$
\begin{equation*}
\frac{d^{2} m_{2}}{d \phi^{2}}-\frac{1}{\rho \tau} \frac{d(\rho \tau)}{d \phi}\left(\frac{d m_{2}}{d \phi}+\epsilon_{2} m_{1}\right)+\epsilon_{2} \epsilon_{3} m_{2}(\rho \tau)^{2}=-\epsilon_{2}\left(\epsilon_{1} m_{2}-g(\phi)\right) \tag{3.5}
\end{equation*}
$$

If the distance between the opposite points of α and β is constant, then we get

$$
\begin{equation*}
\epsilon_{1} m_{1} \frac{d m_{1}}{d \phi}+\epsilon_{2} m_{2} \frac{d m_{2}}{d \phi}+\epsilon_{3} m_{3} \frac{d m_{3}}{d \phi}=0 \tag{3.6}
\end{equation*}
$$

Combining (3.4) and (3.6) we get

$$
\epsilon_{1} m_{1} \frac{d m_{1}}{d \phi}+\epsilon_{2} m_{2}\left(-\epsilon_{2} m_{1}-\epsilon_{2} m_{3} \rho \tau\right)+\epsilon_{3} \epsilon_{3} m_{3} m_{2} \rho \tau=0 .
$$

Then we get

$$
\begin{equation*}
m_{1}\left(\epsilon_{1} \frac{d m_{1}}{d \phi}-m_{2}\right)=0 \tag{3.7}
\end{equation*}
$$

Case 1: $\epsilon_{1} \frac{d m_{1}}{d \phi}-m_{2}=0$.
If m_{1} is non-zero constant, from the first equation of (3.4) we find $m_{2}=0$ and $g(\phi)=0$. Then we have $\frac{d}{\phi}(\rho \tau)=0$. Thus $\rho \tau$ is constant, that is, $\tau=\kappa=$ constant. Now, we have the following theorem:

Theorem 3.2. The space curve of constant breadth with the tangent component m_{1} is non-zero constant and the principal normal component $m_{2}=0$, is a general helix in the three dimensional Walker manifold $\left(M, g_{f}^{\epsilon}\right)$.

Case 2: $m_{1}=0$.
Then using the first line (3.4)we get $m_{2}=\epsilon_{1} g(\phi)$.
Thus the equation (3.5) becomes

$$
\begin{equation*}
\frac{d^{2} m_{2}}{d \phi^{2}}-\frac{1}{\rho \tau} \frac{d(\rho \tau)}{d \phi}\left(\frac{d m_{2}}{d \phi}+\epsilon_{2} m_{1}\right)+\epsilon_{2} \epsilon_{3} m_{2}(\rho \tau)^{2}=0 \tag{3.8}
\end{equation*}
$$

one can solve the equation (3.8) by considering the new varibale $z=z(\phi)$ defined by $\frac{d z}{d \phi}=(\rho \tau)$. So we get

$$
\left\{\begin{array}{c}
\frac{d m_{2}}{d \phi}=\frac{d m_{2}}{d z}(\rho \tau) \tag{3.9}\\
\frac{d^{2} m_{2}}{d \phi^{2}}=\frac{d^{2} m_{2}}{d z^{2}}(\rho \tau)^{2}+\frac{d m_{2}}{d z} \frac{(\rho \tau)}{d \phi}
\end{array}\right.
$$

By (3.9) the equation (3.8) becomes

$$
\begin{equation*}
\frac{d^{2} m_{2}}{d z^{2}}+\epsilon_{2} \epsilon_{3} m_{2}=0 \tag{3.10}
\end{equation*}
$$

If $\epsilon_{2} \epsilon_{3}=1$, then

$$
\begin{equation*}
m_{2}=c \cos \left(\int_{0}^{\phi}(\rho \tau) d \phi+b\right) \tag{3.11}
\end{equation*}
$$

which gives, by using (3.4), that

$$
\begin{equation*}
m_{3}=\epsilon_{3} c \sin \left(\int_{0}^{\phi}(\rho \tau) d \phi\right) \tag{3.12}
\end{equation*}
$$

If $\epsilon_{2} \epsilon_{3}=-1$, then

$$
\begin{equation*}
m_{2}=a e^{-\int_{0}^{\phi}(\rho \tau) d \phi}+b e^{\int_{0}^{\phi}(\rho \tau) d \phi} \tag{3.13}
\end{equation*}
$$

which gives by using (3.4), that

$$
\begin{equation*}
m_{3}=-\epsilon_{3}\left(-a e^{-\int_{0}^{\phi}(\rho \tau) d \phi}+b e^{\int_{0}^{\phi}(\rho \tau) d \phi}\right) \tag{3.14}
\end{equation*}
$$

Theorem 3.3. Let $(\alpha ; \beta)$ be a curve pair of constant breadth in $\left(M, g_{f}\right)$. If α is a curve with $m_{1}=0$, then the curve β have the following form:
(i) if the normale N and the binormal B have the same sign then

$$
\beta(s)=\alpha(s)+c \cos \left(\int_{0}^{\phi}(\rho \tau) d \phi+b\right) N(s)+\epsilon_{3} c \sin \left(\int_{0}^{\phi}(\rho \tau) d \phi\right) B(s)
$$

(ii) if the normale N and the binormal B have not the same sign then

$$
\beta(s)=\alpha(s)+\left(a e^{-\int_{0}^{\phi}(\rho \tau) d \phi}+b e^{\int_{0}^{\phi}(\rho \tau) d \phi}\right) N(s)-\epsilon_{3}\left(-a e^{-\int_{0}^{\phi}(\rho \tau) d \phi}+b e^{\int_{0}^{\phi}(\rho \tau) d \phi}\right) B(s)
$$

4 Examples

In the case 2 when $m_{1}=0$, the equation (3.8) has very simple solution. The solutions of (3.8) when $\rho \tau$ is assumed to be constant are obtained by the equation

$$
\begin{equation*}
\frac{d^{2} m_{2}}{d \phi^{2}}+\epsilon_{2} \epsilon_{3} m_{2}(\rho \tau)^{2}=0 \tag{4.1}
\end{equation*}
$$

We will consider that the function $f=f(y, z)$ wich defines the geometry of the strict Walker manifold is given by

$$
\begin{equation*}
f(y)=-2 a e^{-2 y}, \quad a \in \mathbb{R}, \quad-1<a<0 \tag{4.2}
\end{equation*}
$$

We consider the curve α given by

$$
\begin{equation*}
\alpha(s)=\left(-a e^{-s}, s, e^{s}\right), \quad s \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\alpha^{\prime}(s)=\left(a e^{-s}, 1, e^{s}\right), \quad s \in \mathbb{R} \tag{4.4}
\end{equation*}
$$

An easy computation show that $g_{f}^{\epsilon}\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)=\epsilon=\epsilon_{1}$.
If we denoted the coordonates (x, y, z) of $\left(M, g_{f}^{\epsilon}\right)$ by $\left(x_{1}, x_{2} x_{3}\right)$, a vector field

$$
\begin{equation*}
Z=Z(s)=\sum_{i=1}^{3} Z^{i}(s) \frac{\partial}{\partial x_{i}} \tag{4.5}
\end{equation*}
$$

of α has co-variant derivative $Z^{\prime}(s)$ given by

$$
Z^{\prime}(s)=\left(\begin{array}{c}
\frac{d Z^{1}}{d s}+\Gamma_{23}^{1} x_{2}^{\prime} Z^{3}+\Gamma_{32}^{1} x_{3}^{\prime} Z^{2} \tag{4.6}\\
\frac{d Z^{2}}{d s}+\Gamma_{33}^{2} x_{3}^{\prime} Z^{3} \\
\frac{d Z^{3}}{d s}
\end{array}\right)
$$

where $\Gamma_{i j}^{k}$ is given in (2.4).
By using (4.6)with (4.4) we obtain

$$
\alpha^{\prime \prime}(s)=\left(\begin{array}{c}
3 a e^{-s} \tag{4.7}\\
-a \epsilon \\
e^{s}
\end{array}\right)
$$

NB: We work with $\epsilon=1$.
Since $\alpha^{\prime \prime}=\epsilon_{2} \kappa N$ then ϵ is the sign of $g_{f}^{\epsilon}\left(\alpha^{\prime \prime}, \alpha^{\prime \prime}\right)$ which equal to $\epsilon_{2} \kappa^{2}$. By (4.7), an easy computation gives that

$$
\begin{equation*}
g_{f}^{\epsilon}\left(\alpha^{\prime \prime}, \alpha^{\prime \prime}\right)=4 a(1+a)<0 \tag{4.8}
\end{equation*}
$$

So we have

$$
N=\frac{1}{\sqrt{-4 a(1+a)}}\left(\begin{array}{c}
3 a e^{-s} \tag{4.9}\\
-2 a \\
e^{s}
\end{array}\right)
$$

We see that $\epsilon_{2}=-1$.
Using the vector product (2.4, the binormal vector of α is given by

$$
B=T \times N=\frac{1}{\sqrt{-4 a(1+a)}}\left(\begin{array}{c}
a^{2} e^{-s} \tag{4.10}\\
2 a \\
e^{s}(1+2 a)
\end{array}\right)
$$

and the sign of B is $\epsilon_{3}=1$ because $g_{f}^{\epsilon}(B, B)=a^{2}(1-2 a)>0$. Then the equation (4.1) becomes

$$
\begin{equation*}
\frac{d^{2} m_{2}}{d \phi^{2}}-m_{2}(\rho \tau)^{2}=0 \tag{4.11}
\end{equation*}
$$

We know that the curvature of α is the constant $\kappa=\sqrt{-4 a(1+a)}$. We have $\tau=-g_{f}\left(N^{\prime}, B\right)$ where

$$
N^{\prime}=\frac{1}{\sqrt{-4 a(1+a)}}\left(\begin{array}{c}
-3 a e^{-s} \tag{4.12}\\
-2 a \\
e^{s}
\end{array}\right)
$$

Using (4.12) and (4.10) we get $\tau=-\frac{1+5 a}{4(1+a)}$ is constant so $\rho \tau$ is constant. Then the equation (4.11) gives

$$
\left\{\begin{array}{l}
m_{2}=a e^{\tau s}+b e^{-\tau s} \tag{4.13}\\
m_{3}=a e^{\tau s}-b e^{-\tau s}
\end{array}\right.
$$

Thus the pair of curves (α, β) given by

$$
\alpha=\left(-a e^{-s}, s, e^{s}\right), \quad \beta=\alpha+\left(a e^{\tau s}+b e^{-\tau s}\right) N+\left(a e^{\tau s}-b e^{-\tau s}\right) B
$$

are of constant breadth.

References

[1] W. Blascke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76, 504-513 (1915).
[2] M. Brozos-Vázquez, E. García-Rio, P. Gilkey, S. Nikević and R. Vázquez-Lorenzo, The Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics, 5. Morgan and Claypool Publishers, Williston, VT, (2009).
[3] A. S. Diallo, A. Ndiaye and A. Niang, Minimal graphs on three-dimensional Walker manifolds, Proceedings of the First NLAGA-BIRS Symposium, Dakar, Senegal, Trends Math., Birkhä user/Springer, Cham, 425-438 (2020).
[4] M. Fujivara, On space curve of constant breadth,Tohoku Math. J. 5, 179-184 (1914).
[5] M. Kazaz, M. Onder and H. Kocajigit, Spacelike curves of constant breadth in Minkowski 4-space, Int. journal of Math. Analysis2, 1061-1068 (2008).
[6] O. Kose, Some properties of ovals and curves of constant width in a plane, Doga Sci. J. Serial B 8 (2), 119-126 (1984).
[7] A. Magden, Ö. Köse, and P. Piu, On the curves of constant breadth in \mathbb{E}^{4}, Turk. J. Math. 21, 277-284 (1997).
[8] A. A. Shaikh, and P. R. Ghosh, Rectifying curves on a smooth surfaces immersed in the Euclidean space, Indian J. Pure Appl. Math., 50 (4), 883-890 (2019).
[9] A. A. Shaikh, and P. R. Ghosh, Rectifying and Osculating curves on a smooth surface, Indian J. Pure Appl. Math., 51 (1), 67-75 (2020).
[10] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Conformal image of an osculating curves on a smooth immersed surface, J. Geom. Phy., 151, (2020).
[11] A. A. Shaikh, and P. R. Ghosh, Curves on a smooth surface with position vectors lie in the tangent plane, Indian J. Pure Appl. Math., 51 (3), 1097-1104 (2020).
[12] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Normal curves on a smooth immersed surface, Indian J. Pure Appl. Math., 51 (4), 1343-1355 (2020).
[13] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Rectifying curves under conformal transformation, J. Geom. Phy., 163, (2021).
[14] A.A. Shaikh, Y. H. Kim and P. R. Ghosh, Some characterizations of rectifying and osculating curves on a smooth immersed surface, J. Geom. Phy., 171, (2022).
[15] R. M. Solow, Quarterly Journal of Economics, 70, 65-94, (1956).
[16] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford 1, 2, 69-79 (1950).
[17] S. Yilmaz and M. Turgut, Partially null curves of constant breadth in semi-Riemannian space, Modern Applied Science, 3, 60-63, (2009).
[18] D. W. Yoon, Curves of constant breadth in Galilean 3-space, Applied Mathematical Sciences, 8, 70137018, (2014).

Author information

Athoumane NIANG, Département de Mathématiques et Informatique, FST, Université Cheikh Anta Diop, B.P 5005, Dakar, Sénégal.
E-mail: athoumane.niang@ucad.edu.sn

Ameth NDIAYE, Département de Mathématiques, FASTEF, Université Cheikh Anta Diop, B.P 5036, Dakar, Sénégal.
E-mail: ameth1.ndiaye@ucad.edu.sn
Moussa KOIVOGUI, Laboratoire des Sciences et Technologies de l'Information et de la Communication, Ecole Supérieure Africaine des TIC, Abidjan, Côte d'Ivoire.
E-mail: moussa.koivogui@esatic.edu.ci
Received: September 1st, 2021
Accepted: February 27th, 2022

