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Abstract In this paper, we investigate the properties of curves of constant breadth in a strict
Walker 3-manifold and we construct examples of curves of constant breadth.

1 Introduction

The study of submanifolds of a given ambiant space is a naturel interesting problem which
enriches our knowledge and understanding of the geometry of the space itself. Here the ambiant
space we will consider is a Lorentzian three-manifold admitting a parallel null vector field called
Walker manifold. It is known that Walker metrics have served as a powerful tool of constructing
interesting indefinite metrics which exhibit various aspects of geometric properties not given by
any positive definite metrics. For more detail see ([2, 3]).
Recently, Shaikh et. al initiated the study of surface curves in a different way: in [8, 9, 13, 14],
they investigate a sufficient condition for which a rectifying curve on a smooth surface remains
invariant under isometry of surfaces, and they show that under such an isometry the component
of the position vector of a rectifying curve on a smooth surface along the normal to the surface
is invariant. And they find the normal and geodesic curvature for a rectifying curve on a smooth
surface and they also prove that geodesic curvature is invariant under the isometry of surfaces
such that rectifying curves remain. They also find a sufficient condition for which an osculating
curve on a smooth surface remains invariant under isometry of surfaces and also prove that
the component of the position vector of an osculating curve α(s) on a smooth surface along any
tangent vector to the surface at α(s) is invariant under such isometry. In [10, 11], they investigate
an osculating curve under the conformal map, and obtain a sufficient condition for the conformal
invariance of an osculating curve. They also investigate a sufficient condition for the invariance
of a normal curve on a smooth immersed surface under isometry.
The curves of constant breadth were first defined in 1778 by Euler. Then, Solow [15] and Blascke
[1] investigated the curves of constant breadth. In Euclidean spaces E3 and E4, plane curves of
constant breadth were studied by Kose [6].
In the paper [17], some geometric properties of curves of constant breadth in Minkowski 3-
space were given. Also, these curves in Minkowski 4-space were obtained by Kazaz, Onder and
Kocayigit [5]. A number of authors have, recently, studied the curves of constant breadth under
different conditions (see [4, 5, 7, 18] ).
In this paper we study curves of contant braith in 3-dimension strict Walker manifold; and we
construct examples.

2 Preliminaries

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of null parallel
r-planes, with r ≤ n

2 . The canonical forms of the metrics were investigated by A. G. Walker
([16]). Walker has derived adapted coordinates to a parallel plan field. Hence, the metric of a
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three-dimensional Walker manifold (M, gεf ) with coordinates (x, y, z) is expressed as

gεf = dx ◦ dz + εdy2 + f(x, y, z)dz2 (2.1)

and its matrix form as

gεf =

 0 0 1
0 ε 0
1 0 f

 with inverse (gεf )
−1 =

 −f 0 1
0 ε 0
1 0 0


for some function f(x, y, z), where ε = ±1 and thus D = Span∂x as the parallel degenerate line
field. Notice that when ε = 1 and ε = −1 the Walker manifold has signature (2, 1) and (1, 2)
respectively, and therefore is Lorentzian in both cases.

It follows after a straightforward calculation that the Levi-Civita connection of any metric
(2.1) is given by:

∇∂x∂z =
1
2
fx∂x, ∇∂y∂z =

1
2
fy∂x,

∇∂z∂z =
1
2
(ffx + fz)∂x +

1
2
fy∂y −

1
2
fx∂z (2.2)

where ∂x, ∂y and ∂z are the coordinate vector fields ∂
∂x

, ∂
∂y

and ∂
∂z

, respectively. Hence, if
(M, gεf ) is a strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the associated Levi-Civita
connection satisfies

∇∂y∂z =
1
2
fy∂x, ∇∂z∂z =

1
2
fz∂x −

ε

2
fy∂y. (2.3)

Note that the existence of a null parallel vector field (i.e f = f(y, z)) simplifies the non-zero
components of the Christoffel symbols and the curvature tensor of the metric gεf as follows:

Γ
1
23 = Γ

1
32 =

1
2
fy, Γ

1
33 =

1
2
fz, Γ

2
33 = −

ε

2
fy (2.4)

Starting from local coordinates (x, y, z) for which (2.1) holds, it is easy to check that

e1 = ∂y, e2 =
2− f
2
√

2
∂x +

1√
2
∂z, e3 =

2 + f

2
√

2
∂x −

1√
2
∂z

are local pseudo-orthonormal frame fields on (M, gεf ), with gεf (e1, e1) = 1, gεf (e2, e2) = ε and
gεf (e3, e3) = 1. Thus the signature of the metric gεf is (1, ε,−1).
Let now u and v be two vectors in M . Denoted by (~i,~j,~k) the canonical frame in R3.
The vector product of u and v in (M, gεf ) with respect to the metric gεf is the vector denoted by
u× v in M defined by

gεf (u× v, w) = det(u, v, w) (2.5)

for all vector w in M , where det(u, v, w) is the determinant function associated to the canonical
basis of R3. If u = (u1, u2, u3) and v = (v1, v2, v3) then by using (2.5), we have:

u× v =

(∣∣∣∣∣u1 v1

u2 v2

∣∣∣∣∣− f
∣∣∣∣∣u2 v2

u3 v3

∣∣∣∣∣
)
~i− ε

∣∣∣∣∣u1 v1

u3 v3

∣∣∣∣∣~j +
∣∣∣∣∣u2 v2

u3 v3

∣∣∣∣∣~k (2.6)

Let α : I ⊂ R −→ (M, gεf ) be a curve parametrized by its arc-length s.
The Frenet frame of α is the vectors T , N and B along α where T is the tangent, N the principal
normal and B the binormal vector. They satisfied the Frenet formulas

∇TT (s) = ε2κ(s)N(s)

∇TN(s) = −ε1κT (s)− ε3τB(s)

∇TB(s) = ε2τ(s)N(s)

(2.7)

where κ and τ are respectively the curvature and the torsion of the curve α, with ε1 = gf (T ;T ); ε2 =
gf (N ;N) and ε3 = gf (B,B).
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3 Space curves of constant breadth in Walker manifold

In this section, we define space curves of constant breadth in the three dimensional Walker
manifold.

Definition 3.1. A curve α : I → (M, gεf ) in the three-dimensional Walker manifold (M, gεf ) is
called a curve of constant breadth if there exists a curve β : I → Mf such that, at the corre-
sponding points of curves, the parallel tangent vectors of α and β at α(s) and β(s?) at s; s? ∈ I
are opposite directions and the distance gεf (β−α, β−α) is constant. In this case, (α;β) is called
a pair curve of constant breadth.

Let now (α;β) be a pair curve of constant breadth and s, s? be arc-length of α and β, respec-
tively. Then we may write the following equation:

β(s?) = α(s) +m1(s)T (s) +m2(s)N(s) +m3(s)B(s); (3.1)

where mi(i = 1, 2, 3) are smooth functions of s.
Differentiating (3.1) equation with respect to s and using (2.7) we obtain

dβ

ds
=

dβ

ds?
ds?

ds

= T ?
ds?

ds
= (1 +m′1 − ε1m2κ(s))T

+(m′2 + ε2m1κ(s) + ε2m3τ(s))N + (m′3 − ε3m2τ(s))B (3.2)

where T ? denotes the tangent vector of β.
Since T = −T ∗, from the equation in (3.2) we have

1 +m′1 − ε1m2κ(s) = −ds
?

ds

m′2 + ε2m1κ(s) + ε2m3τ(s) = 0
m′3 − ε3m2τ(s) = 0

(3.3)

Let us introduce the angle φ between the tagent vector of α with a chosen fixed direction. The
curvature of α is κ = dφ

ds and the curvature of β is κ? = dφ
ds? . If we denote by ρ = 1

κ and
ρ? = 1

κ? , the radius of curvature of α and β; and g(φ) = ρ + ρ?, then the relation (3.3) can be
rewritten as 

dm1
dφ = ε1m2 − g(φ)
dm2
dφ = −ε2(m1 +m3ρτ)
dm3
dφ = ε3m2ρτ.

(3.4)

Differentiating the second equation of (3.4) with respect to φ and using the first and the third
equations of (3.4), we obtain the following equation:

d2m2

dφ2 −
1
ρτ

d(ρτ)

dφ
(
dm2

dφ
+ ε2m1) + ε2ε3m2(ρτ)

2 = −ε2(ε1m2 − g(φ)). (3.5)

If the distance between the opposite points of α and β is constant, then we get

ε1m1
dm1

dφ
+ ε2m2

dm2

dφ
+ ε3m3

dm3

dφ
= 0 (3.6)

Combining (3.4) and (3.6) we get

ε1m1
dm1

dφ
+ ε2m2(−ε2m1 − ε2m3ρτ) + ε3ε3m3m2ρτ = 0.

Then we get

m1(ε1
dm1

dφ
−m2) = 0. (3.7)

Case 1: ε1
dm1
dφ −m2 = 0.

If m1 is non-zero constant, from the first equation of (3.4) we find m2 = 0 and g(φ) = 0. Then
we have d

φ (ρτ) = 0. Thus ρτ is constant, that is, τ = κ =constant. Now, we have the following
theorem:



584 Athoumane NIANG, Ameth NDIAYE and Moussa KOIVOGUI

Theorem 3.2. The space curve of constant breadth with the tangent component m1 is non-zero
constant and the principal normal componentm2 = 0, is a general helix in the three dimensional
Walker manifold (M, gεf ).

Case 2: m1 = 0.
Then using the first line (3.4)we get m2 = ε1g(φ).
Thus the equation (3.5) becomes

d2m2

dφ2 −
1
ρτ

d(ρτ)

dφ
(
dm2

dφ
+ ε2m1) + ε2ε3m2(ρτ)

2 = 0 (3.8)

one can solve the equation (3.8) by considering the new varibale z = z(φ) defined by dz
dφ = (ρτ).

So we get {
dm2
dφ = dm2

dz (ρτ)
d2m2
dφ2 = d2m2

dz2 (ρτ)2 + dm2
dz

(ρτ)
dφ

(3.9)

By (3.9) the equation (3.8) becomes

d2m2

dz2 + ε2ε3m2 = 0. (3.10)

If ε2ε3 = 1, then

m2 = c cos
( ∫ φ

0
(ρτ)dφ+ b

)
; (3.11)

which gives, by using (3.4), that

m3 = ε3c sin(
∫ φ

0
(ρτ)dφ). (3.12)

If ε2ε3 = −1, then

m2 = ae−
∫ φ

0 (ρτ)dφ + be
∫ φ

0 (ρτ)dφ; (3.13)

which gives by using (3.4), that

m3 = −ε3(−ae−
∫ φ

0 (ρτ)dφ + be
∫ φ

0 (ρτ)dφ). (3.14)

Theorem 3.3. Let (α;β) be a curve pair of constant breadth in (M, gf ). If α is a curve with
m1 = 0, then the curve β have the following form:

(i) if the normale N and the binormal B have the same sign then

β(s) = α(s) + c cos
( ∫ φ

0
(ρτ)dφ+ b

)
N(s) + ε3c sin(

∫ φ

0
(ρτ)dφ)B(s),

(ii) if the normale N and the binormal B have not the same sign then

β(s) = α(s) +
(
ae−

∫ φ
0 (ρτ)dφ + be

∫ φ
0 (ρτ)dφ

)
N(s)− ε3(−ae−

∫ φ
0 (ρτ)dφ + be

∫ φ
0 (ρτ)dφ)B(s).

4 Examples

In the case 2 when m1 = 0, the equation (3.8) has very simple solution. The solutions of (3.8)
when ρτ is assumed to be constant are obtained by the equation

d2m2

dφ2 + ε2ε3m2(ρτ)
2 = 0. (4.1)
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We will consider that the function f = f(y, z) wich defines the geometry of the strict Walker
manifold is given by

f(y) = −2ae−2y, a ∈ R, −1 < a < 0. (4.2)

We consider the curve α given by

α(s) = (−ae−s, s, es), s ∈ R. (4.3)

So we have

α′(s) = (ae−s, 1, es), s ∈ R. (4.4)

An easy computation show that gεf (α
′(s), α′(s)) = ε = ε1.

If we denoted the coordonates (x, y, z) of (M, gεf ) by (x1, x2x3), a vector field

Z = Z(s) =
3∑
i=1

Zi(s)
∂

∂xi
(4.5)

of α has co-variant derivative Z ′(s) given by

Z ′(s) =


dZ1

ds + Γ1
23x
′
2Z

3 + Γ1
32x
′
3Z

2

dZ2

ds + Γ2
33x
′
3Z

3

dZ3

ds

 (4.6)

where Γkij is given in (2.4).
By using (4.6)with (4.4) we obtain

α′′(s) =

 3ae−s

−aε
es

 . (4.7)

NB: We work with ε = 1.
Since α′′ = ε2κN then ε is the sign of gεf (α

′′, α′′) which equal to ε2κ
2.

By (4.7), an easy computation gives that

gεf (α
′′, α′′) = 4a(1 + a) < 0. (4.8)

So we have

N =
1√

−4a(1 + a)

 3ae−s

−2a
es

 . (4.9)

We see that ε2 = −1.
Using the vector product (2.4, the binormal vector of α is given by

B = T ×N =
1√

−4a(1 + a)

 a2e−s

2a
es(1 + 2a)

 , (4.10)

and the sign of B is ε3 = 1 because gεf (B,B) = a2(1 − 2a) > 0. Then the equation (4.1)
becomes

d2m2

dφ2 −m2(ρτ)
2 = 0. (4.11)

We know that the curvature of α is the constant κ =
√
−4a(1 + a). We have τ = −gf (N ′, B)

where

N ′ =
1√

−4a(1 + a)

 −3ae−s

−2a
es

 . (4.12)
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Using (4.12) and (4.10) we get τ = − 1+5a
4(1+a) is constant so ρτ is constant. Then the equation

(4.11) gives {
m2 = aeτs + be−τs

m3 = aeτs − be−τs
(4.13)

Thus the pair of curves (α, β) given by

α = (−ae−s, s, es), β = α+ (aeτs + be−τs)N + (aeτs − be−τs)B,

are of constant breadth.
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