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Abstract In this paper, we argue that in terms of spatiotemporal fluctuations non popula-
tion density, the genuine allelopathic prey-predator system is typically inhomogeneous. With
this in mind, we add noise to the system to simulate the effect of environmental heterogeneity
on prey-predator interactions. The noise analysis of the system suggests the impression of the
environmental pollution on the dynamical behavior of solutions. We mainly focused on the im-
portance of stochastic coefficient, diffusion coefficient and its possible ergodic behavior in a time
dependent and time independent prey population density problem is taken under consideration
in the study.

1 Introduction

The interactions between populations and the natural environment are what define ecological
systems. Predation is a significant sort of ecological interaction that happens across a wide range
of stochastic, diffusion, and ergodic domains. In nature, there are large classes of marine species
other than the fish species such as Phytoplankton, Algae, Bacteria and other plants which re-
lease toxic substances. The toxin released by one species may affect that species and/or affect
the growth of the other species in the biological system. The result may be either positive or
negative effect on the growth of the species. For example, Green algae and Chlorella vulgaris in
a marine environment release a toxic substance which controls the growth of its own population
and prevents the growth of the plankton algae Bacillareae. On the other side, two competing Phy-
toplankton species, (Enteromorphalinza and Enteromorpha) where one species produces auxin
and has a positive response on the growth of the other phytoplankton species. Many studies [1-6]
[8-18][21-24] have looked at the allelopathic effects of algae on other algae and the effect of one
plant on the growth of another by releasing chemical compounds ( allele chemicals ) in biologi-
cal species, particularly marine species. In the context of toxicity, Chattopadhyay [20] presented
a two-species competition model for phytoplankton communities. Maynard smith [19] studied
the effects of toxicant in a competitive system by assuming each of the species releasing a toxic
substance in the presence of the other species. Kar and chaudhuri [36] described a competition
fish species model subjected to a combined harvesting effort in the presence of toxicity. Same
phenomenon also exists in prey-predator models. Purohit et al. [7] believe that allelopathic and
other genetic chemical effects will eventually have to be included in all relevant, functional eco-
logical models. In population dynamics, prey-predator models are critical.

Some scholars have highlighted the impact of noise on ecological dynamics [32-34]. Noise
can come from stochastic disorders in the external environment, as well as from noise itself;
species dynamics appear to be constantly stochastic. In a prey-predator system, Xu et.al. [33-
35] looked at the colour of the noise and population extinction. They also looked into noise with
a white variance spectrum and no temporal autocorrelation, which shows population dynamics
are random. Banerjee [30] studied the impact of colour noise on predator and prey biomass
spatiotemporal behaviour. We were inspired by a few researchers to calculate the population
intensities of white noise fluctuations. It’s also crucial to look into how white noise affects one-
dimensional oscillations in partial differential equation systems.
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In numerous natural systems, the species viable may scatter spatially just as advancing as ex-
pected. This spatial dispersal or dissemination emerges from the propensity of specific species
to move towards regions of lower populace density, predominantly because of asset impediment.
In locales of high populace thickness, food will turn out to be scant, and people will in general
move to areas of lower populace thickness. As of late, incredible consideration has been paid
with the impact of scattering of a populace in a limited living space, and in this circumstance
the overseeing conditions for the populace densities are depicted by an arrangement of response
dispersion conditions. An environmental intriguing and numerically testing issue is to be decide
under what condition the time subordinate arrangement merges to a positive consistent state ar-
rangement, and what role is played by the impact of diffusion[25-27].

Species may travel in the marine system due to currents, turbulent diffusion, or other factors.
The spatial variation of prey-predator population densities is a feature of prey-predator popula-
tions. Many writers have used diffusion to model the geographical variation of population in
the prey-predator system [28-31]. They indicated that diffusion may cause turning instability in
the prey-predator system when compared to labour without spatial variation. We will investigate
the impact of spatial variation on model (2.1) performance in this research. There are numerous
elements that can influence the spatial variation of the prey-predator system in the marine en-
vironment, but we cannot consider all of them at this time. We only consider the prey-predator
system’s physical diffusion. Petersen, K.E[27] observes the fundamental and physical applica-
tion and application of statistical techniques in his article and Hassler [15] investigates ergodic
for mean in his work.

2 Noise induced Allelopathic formulation

In this section, a two-species prey-predator model in which both the species having densities
p, z is proposed. The two species are harvested by different agencies with harvesting efforts
e1, e2 respectively and the corresponding catch-ability coefficients of the species being a4, b4.
In the proposed dynamical model, the two species obey law of logistic growth with intrinsic
growth rates a1, b1 and have carrying capacities Γ1,Γ2 respectively. Both the species release toxic
substances which affect the other, the toxic coefficients of prey-predator are a3, b3. The terms
a3p

2z
(
b3pz

2
)
measure the effect of the toxic substance released by the predator (prey)on the prey

(predator). b2 represents the net rate of interaction on predator. The rate of decrease of prey is
not only by the predation but also by the toxin released by the predator. The predator population
increases by having prey as its food source and decreases by the effect of toxic substance by the
predator. Here it is assumed that the rate of predation is more than the rate of effect of toxin
release by prey.

Dp = p
(
a1 − a1p

Γ1
− a2z − a3pz − a4e1

)
+ α1ρ1 (t)

Dz = z
(
b1 − b1z

Γ2
+ b2p− b3pz − b4e2

)
+ α2ρ2 (t)

 (2.1)

where α1, α2 are real constants and ρ (t) = [ρ1 (t) , ρ2 (t)] is a 2 dimensional Gaussian white
noise process satisfying E [ρi (t)] = 0; i=1,2 and E [ρi (t) ρj (t)] = δij .δ

(
t− t1

)
; i=1,2. Here δij

is the Kronecker symbol and δ is the Dirac function. Let p(t) = ξ1(t)+u∗ ; and z(t) = ξ2(t)+v∗

be the perturbed variables of the system (1). The linearized system (2.1) is

Dξ1 = −a1
Γ1
ξ1u
∗ − a2ξ2u

∗ + α1ρ1

Dξ2 = b2ξ1v
∗ − b1

Γ2
ξ2v
∗ + α2ρ2

}
(2.2)

We separate the individual direct facsimile. By apply Fourier change on the straight repre-
sentation, we get a numerical system

∼
ρ (ω) = N (ω)

∼
ξ (ω) (2.3)

where

N (ω) =

(
n11 n12

n21 n22

)
;
∼
ξ (ω) =

 ∼ξ 1(ω)
∼
ξ2(ω)

 ;
∼
ρ (ω) =

[
α1
∼
ρ1 (ω)

α2
∼
ρ2 (ω)

]
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n11 = iω +

(
a1

Γ1

)
u∗;n12 = 0;n21 = 0;n22 = iω +

(
b1

Γ2

)
v∗

Condition (2.3) can likewise be composed as

ξ̃ (ω) = [N (ω)]
−1
ρ̃ (ω) =M(ω)ρ̃ (ω) (2.4)

where

M(ω) = [N (ω)]
−1

=

[
n22
|N(ω)| − n12

|N(ω)|
− n21
|N(ω)|

n11
|N(ω)|

]
, and |N (ω)|2 = Ω2 + Θ2

where Ω = a1b1u
∗v∗

Γ1Γ2
− ω2and Θ = ωa1u

∗

Γ1
+ ωb1v

∗

Γ2
The segments of the arrangement (2.4) are given by

∼
ξ τ (ω) =

2∑
υ=1

Mτυ (ω) αυ
∼
ρυ (ω) ; τ = 1, 2 (2.5)

where Mτυ (ω) are the components of the matrix M(ω) and
∼
ξ τ (ω) are the mean estimations of

the populaces. The intensities of fluctuations of ξτ ; τ = 1, 2 are given by

µ2
ξτ =

1
2π

2∑
υ=1

∫ ∞
−∞

αυ |Mτυ(ω)|2 dω; τ = 1, 2 (2.6)

where Mτυ (ω) =
Gτυ(ω)
|N(ω)| ; τ, υ = 1, 2

Utilizing (2.4), we have the populace differences of the model (2.1) as follows

µ2
ξτ =

1
2π

2∑
υ=1

∫ ∞
−∞

αυ |Mτυ(ω)|2 dω; τ = 1, 2 (2.7)

where
Gτυ = χτυ + iδτυ; τ, υ = 1, 2

χ11 =
b1

Γ2
v∗; δ11 = ω;χ12 = 0; δ12 = 0;χ21 = 0; δ21 = 0;χ22 =

a1

Γ1
u∗; δ22 = ω;

Using (2.6) and (2.7), we get

µ2
ξ1
=

1
2π

{∫ ∞
−∞

1
Ω2(ω) + Θ2(ω)

[
α1

{
ω2 +

(
a1u
∗

Γ1

)2
}
+ α2(0)2

]
dω

}
(2.8)

µ2
ξ2
=

1
2π

{∫ ∞
−∞

1
Ω2(ω) + Θ2(ω)

[
α1(0)2 + α2

{
ω2 +

(
b1v
∗

Γ2

)2
}]

dω

}
(2.9)

On the off chance that we are keen on the elements of the system (2.1) with either α1 = 0 or
α2 = 0. When α1 = 0,µ2

ξ1
= 0

µ2
ξ2
=
α2

2π

{∫ ∞
−∞

1
Ω2(ω) + Θ2(ω)

[
ω2 +

(
b1v
∗

Γ2

)2
]
dω

}
(2.10)

When α2 = 0, µ2
ξ2
= 0

µ2
ξ1
=
α1

2π

{∫ ∞
−∞

1
Ω2(ω) + Θ2(ω)

[
ω2 +

(
a1u
∗

Γ1

)2
]
dω

}
(2.11)

Example 1: For the following values of parameters a1 = 4; b1 = 5; Γ1 = 500; Γ2 = 400; a2 =
0.1; b2 = 0.9; a3 = 0.008; b3 = 0.005; a4 = 0.2; b4 = 0.1; e1 = 30 ;e2 = 40 ;
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Figure 1

Figure 1. represents the time series evaluation for the attributes of Example 1 with noise
intensities α1 = 0.01 ; α2 = 0.02.

Figure 2

Figure 2. represents the time series evaluation for the attributes of Example 1 with noise
intensitiesα1 = 0.1 ; α2 = 0.2.
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Figure 3

Figure 3. represents the time series evaluation for the attributes of Example 1 with noise
intensities α1 = 0.5 ; α2 = 0.6.

Figure 4

Figure 4. represents the time series evaluation for the attributes of Example 1 with noise
intensities α1 = 1 ; α2 = 2.
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Figure 5

Figure 5. represents the time series evaluation for the attributes of Example 1 with noise
intensities α1 = 5 ; α2 = 6.

Figure 6

Figure 6. represents the time series evaluation for the attributes of Example 1 with noise
intensities α1 = 10 ; α2 = 20.
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3 Diffusion Induced Allelopathic Formulation

We consider the reaction-diffusion prey-predator model, which looks like this:

pt = Dpptt +Dp

zt = Dqztt +Dz

}
(3.1)

with the accompanying states of the population

p(Φ, t) and z(Φ, t) > 0 in 0 ≤ Φ ≤M , M > 0
pt (0, t) = pt (M, t) = zt (0, t) = zt (M, t) = 0

}
(3.2)

3.1 Diffusion coefficient and possibility for ergodic behavior

Diffusion coefficient can be observed as a time dependent dynamic function of population den-
sity (equation, 4), hence, the sample space in the total ecological environment under considera-
tion (refer figure 4) will have a particular diffusion coefficient Di with a population density of
the prey µi

Di = f (µi, φ, t) (3.3)

In this section the fundamental objective is to study the possibility of ergodic behavior by mean
for the colonized diffusion coefficient over time. Where, φ is the random variable, t is the
instantaneous time. In order to define the instantaneous time as a fraction of the total time
T,(t/T ) is defined. By assuming the equation (3.3) as a linear dynamic function with a constant
K, we get equation (3.4),

Di = f (µi, φ, t) = Kµi

[
t

T

]φ
(3.4)

The random variable φ is determines the randomized behaviour of the time dependency of
the diffusion coefficient. The range value of φ is from -1 to 1, −1 ≤ φ ≤ 1.The negative values
bring the possibility of the decreasing diffusion coefficient over time and positive values notify
the increasing diffusion coefficient over time ( refer Figure 8).Time independence is when φ = 0

Figure 7

Figure 7. represents sample spaces in the total ecological environment
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Figure 8

Figure 8. represents the rate of change of diffusion coefficient in accordance with the possible
random variable φ.

The probability distribution function of the random variable P (φ) is considered to be uniform.
Therefore,

P (φ) =


1
2 , −1 ≤ φ ≤ 1
0, φ ≤ −1
0, φ ≥ 1

(3.5)

3.1.1 Necessary condition for ergodic behavior
The system is said to be ergodic, when the mean diffusion coefficient of the sample space pos-
sesses the tendency to become the mean diffusion coefficient of the entire ecological system over
time (T → ∞). In order to obtain the necessary condition for ergodic by mean, the ensample
average and total time average of the diffusion equation must be equal, therefore,

∫ 1

−1
f

(
µ, φ,

t

T

)
P (φ) dφ = lim

T→∞

1
T

∫ T/2

−T/2
f

(
µ, φ,

t

T

)
dt (3.6)

Lemma1: The ensample average for the diffusion coefficient function∫ 1

−1
f

(
µi, φ,

t

T

)
P (φ) dφ =

1
2 ln [t/T ]

Kµi

(
t2 − T 2

t

)
(3.7)

Lemma2: The total time average for the diffusion coefficient function

lim
T→∞

1
T

∫ T/2

−T/2
f

(
µi, φ,

t

T

)
dt = lim

T→∞

1
T

∫ T/2

−T/2
Kµi [t/T ]

φ
dt (3.8)

lim
T→∞

1
T

∫ T/2

−T/2
f

(
µi, φ,

t

T

)
dt =

1
φ+ 1

Kµi (3.9)

Lemma 3: Time dependent population density with constant growth rate r
(
µ1
i (t) = r

)
lim
T→∞

1
T

∫ T/2

−T/2
f

(
µi (t) , φ,

t

T

)
dt =

k

φ+ 1
(µi (t)− r) (3.10)

Case 1: Necessary condition for ergodic by mean for the diffusion coefficient, if population
density is independent of time (3.7) and (3.9) in associate to equation (3.6), we have



596 C Sreerag, B S N Murthy, J Venkateswara Rao and M N Srinivas

1
2 ln [t/T ]

[
t2 − T 2

t

]
=

1
φ+ 1

Case 2: Necessary condition for ergodic by mean for the diffusion coefficient, if population
density is dependent of time. By combining equation (3.7) and (3.10) in associate to equation
(3.6), we have [

1
φ+ 1

− 1
2 ln (t/T )

(
t2 − T 2

t

)]
µi (t) =

r

φ+ 1

Since population growth rate is constant,µ1
i (t) = r, therefore µi (t) = rt

1
2 ln [t/T ]

[
t2 − T 2] = 1

φ+ 1
(t− 1) (3.11)

Figure 9(A) & 9(B)

9(A) represents the feasible t-T plot (equation 3.10) for different possible random variable φ, when
population density is independent of time. 9(B) represents the feasible t-T plot (equation 3.11)

for different possible random variable φ, when population density is dependent of time.
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In order to identify the real solutions, we must consider some boundary conditions, this includes,
and the instantaneous time and the total time must be a non-negative quantity, 0 ≤ t, T. And the
instantaneous time shall be lesser in comparison with the total time t ≤ T , this leads to a con-
clusion to the time ratio already defined (t/T ), the quantity (t/T ) will always have a non-zero
positive fraction less than unit in a real system, 0 < (t/T ) < 1.

In the figure 9(A), for a time independent population density, it is observable that the possible
feasible solution of the necessary condition from case 1 (marked as red lines in the figure 9(A-
B)) is distributed across both sides of the line (t/T ) = 1 (marked as green in colour in figure
9(A-B)). Since, for real solutions, we have 0 < (t/T ) < 1, which can be categorized as the er-
godic zone. Here for time independent population density the diffusion coefficient shows more
ergodic behavior for all values of the random variable φ. This indicates over time the diffusion
coefficient of the sample space might become the diffusion coefficient of the total ecological
system.

Similarly, in the case 2, when the population density is time dependent, majority of the feasible
solution (from equation 3.11, figure 9(A)) lie on the non ergodic zone, which implies, if the
population density possess a time dependency, there is less chance for diffusion coefficient to
become ergodic by its mean. That is, over time the diffusion coefficient of the sample space
might not become the diffusion coefficient of the total ecological system.

4. Conclusions and Remarks
In this study, we argued that the real allelopathic prey-predator system is typically inhomoge-
neous in terms of spatiotemporal variations and non-population density. In order to model the
effect of environmental heterogeneity on prey-predator interactions, we added noise to the sys-
tem. The following are some of the observations:

(i) The system’s noise analysis reveals that environmental pollution has an impact on the dy-
namical behaviour of solutions.

(ii) The paper focuses on the significance of stochastic coefficients, diffusion coefficients, and
their likely ergodic behavior in a time dependent and time independent prey population
density problem.

(iii) The ergodic behavior for the diffusion coefficient is analyzed and the feasible solution t-T
plot is notified as well, and seen that the time dependency of the population density which
is directly influencing the diffusion coefficient bears significant role in determining the
process to be ergodic or non-ergodic.

(iv) This will have the implication of understanding and adjusting the localized, globalized
harvesting zones in a prey-predator ecological environment.

(v) Moreover, briefly alarms the possibility of having an influence on the global ecological
system by proving actions localized sample spaces in the ecological environment.

(vi) From figures (3-4), it is observed that both the species exhibit low dynamics as low oscilla-
tory for lower values of noise densities. In biological point of view, as environmental noise
are at low densities, both the species undergone some disturbance which results imbalance
for a short period of time and may come to stable after noise vibrations vanished.

(vii) From figures (5-6), it is observed that both the species exhibit high dynamics as highly
oscillatory for higher values of noise densities. At higher values of noise densities (α1 =
5 ; α2 = 6.) and (α1 = 10 ; α2 = 20.) both the species are highly effected and exhibits
good dynamics at these critical values. In biological point of view, as environmental noise
reaches high densities, both the species are effected quantitatively as highly oscillatory in
their zones which results in imbalance in the ecosystem against time.
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