Some Statistical properties of Extended Generalized Bessel function

Farhatbanu H. Patel, R. K. Jana and A. K. Shukla*

Communicated by Deshna Loonker

MSC 2010 Classifications: 33C10, 26A33, 33C90, 62E99.

Keywords and phrases: Extended Generalized Bessel Matrix function, Ramanujan's Master theorem, Probability Density Function.

Abstract In the present paper, our aim is to discuss a probability density function involving the Extended Generalized Bessel function, and its properties.

1 Introduction

A fairly wide range of important functions in applied sciences are defined via improper integrals or infinite series or infinite products. McNolty [6] showed the applicability of Univariate Bessel Function Distributions in signal output of radar. We give brief introduction of Bessel function of first kind.

The Bessel function of first kind $J_{\nu}(z)$ [5, P. 109] is represented as,

$$J_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(1+\nu+k)k!} \left(\frac{z}{2}\right)^{2k+\nu},$$
(1.1)

where $|z| < \infty$, $|\arg z| < \pi$.

In 2013, Salehbhai et al. [8, P. 2] introduced Extended Generalized Bessel Function in following manner,

$${}_{h}J_{v}^{m}(z) = \sum_{k=0}^{\infty} \frac{\left(-1\right)^{k} z^{k}}{\Gamma\left(1 + mv + hk\right) k!},$$
(1.2)

where, $h \in N$, $|z| < \infty$, $|\arg z| < \pi$, $m \text{ and } v \in C$.

The well known generalized hypergeometric function [5, P. 73] is defined by

$${}_{p}F_{q}\left[\left. \begin{array}{c} \alpha_{1}, \alpha_{2}, \dots, \alpha_{p} \\ \beta_{1}, \beta_{2}, \dots, \beta_{q} \end{array} \right| z \right] = 1 + \sum_{k=1}^{\infty} \frac{(\alpha_{1})_{k} (\alpha_{2})_{k} \dots (\alpha_{p})_{k}}{(\beta_{1})_{k} (\beta_{2})_{k} \dots (\beta_{q})_{k}} \frac{z^{k}}{k!}, \quad |z| < 1,$$

$$(1.3)$$

where p and q are nonnegative integers and β_j (j = 1, 2, ..., q) is zero or a negative integer. Here, $(\alpha)_k$ is a Pochhammer symbol [5, P. 22] and defined as

$$(\alpha)_k := \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)} = \begin{cases} 1 & (k=0; \, \alpha \in \mathbf{C} \setminus \{0\}) \\ \alpha(\alpha+1)\dots(\alpha+k-1) & (k \in \mathbf{N}; \, \alpha \in \mathbf{C}). \end{cases}$$
(1.4)

Fox-Wright function [10] defined as following form,

$${}_{p}\Psi_{q}(z) = {}_{p}\Psi_{q} \left[\begin{pmatrix} (\alpha_{i}, A_{i})_{1,p} \\ (\beta_{j}, B_{j})_{1,q} \end{pmatrix} z \right] = \sum_{k=0}^{\infty} \frac{\Gamma(\alpha_{1} + A_{1}k) \cdots \Gamma(\alpha_{p} + A_{p}k)}{\Gamma(\beta_{1} + B_{1}k) \cdots \Gamma(\beta_{q} + B_{q}k)} \frac{z^{k}}{k!},$$
(1.5)

where $i = 1, 2, \dots, p$; $j = 1, 2, \dots, q$ and $z, \alpha_i, \beta_j \in \mathbf{C}$, and the coefficients $A_1, \dots, A_p \in \mathbf{R}^+$ and $B_1, \dots, B_q \in \mathbf{R}^+$ satisfying the following condition

$$\sum_{j=1}^{q} B_j - \sum_{i=1}^{p} A_i > -1.$$
(1.6)

We recall the Hadamard product (or the Hadamard composition) here.

Definition 1.1. [6] Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ ($|z| < R_f$) and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ ($|z| < R_g$) be two given power series whose radii of convergence are denoted by R_f and R_g respectively. Then their Hadamard product (f * g) (z) is given by the following power series ,

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n = (g * f)(z) \quad (|z| < R),$$
(1.7)

where

$$R = \lim_{n \to \infty} \left| \frac{a_n b_n}{a_{n+1} b_{n+1}} \right| = \left(\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \right) \cdot \left(\lim_{n \to \infty} \left| \frac{b_n}{b_{n+1}} \right| \right)$$

$$= R_f \cdot R_g,$$
(1.8)

Some of the following facts are needed in our study.

Definition 1.2. [4] Probability Density Functions is one, discrete or continuous and variable are denoted p(r) and f(x), respectively. They are assumed to be properly normalized such that

$$\sum_{r} p(r) = 1 \quad and \quad \int_{-\infty}^{\infty} f(x)dx = 1, \tag{1.9}$$

where the sum or the integral are taken over all relevant values for which the probability density function is defined.

Definition 1.3. [4] Algebraic moments of order r are defined as expectation value

$$E(x^{r}) = \sum_{k} k^{r} p(k) \quad or \quad \int_{-\infty}^{\infty} x^{r} f(x) \, dx \tag{1.10}$$

Definition 1.4. [1] For a distribution in a continuous variable x the Fourier transform of the probability density function

$$\phi(t) = E\left(e^{ixt}\right) = \int_{-\infty}^{\infty} e^{ixt} f(x) dx$$
(1.11)

is called the characteristic function. It has the property that $\phi(0) = 1$ and $|\phi(t)| \leq 1$ for all t.

Definition 1.5. [1] For commutative distribution function, f(x) is the probability that the variates takes a value less than or equal to x.

$$F(x) = \Pr\left[X \leqslant x\right] = \alpha \tag{1.12}$$

$$F(x) = \int_{-\infty}^{x} f(u)du$$
(1.13)

2 An Extended Generalized Bessel Distribution

In this section, we discuss a general family of statistical probability distributions.

We begin by recalling the celebrated Ramanujan's Master Theorem [2], which was widely used by Srinivasa Ramanujan Iyengar (1887-1920) in order to evaluate definite integrals and infinite series. The proof of Ramanujan's Master Theorem was provided by Godfrey Harold Hardy (1877-1947) by making the use of Cauchy's Residue Theorem as well as the well-known Mellin Inversion Theorem.

Definition 2.1. The Extended Generalized Bessel function is defined (1.2) as

$${}_{h}J_{v}^{m}\left(z\right) = \sum_{k=0}^{\infty} \frac{\left(-1\right)^{k} z^{k}}{\Gamma\left(1 + mv + hk\right) k!}$$

where, $h \in N$, $|z| < \infty$, $|\arg z| < \pi$, $m \text{ and } v \in C$.

One can write the equation (1.2) as,

$${}_{h}J_{v}^{m}(z) = \Gamma(1+mv)\sum_{k=0}^{\infty} \frac{\left(-1\right)^{k} z^{k}}{\left(1+mv\right)_{hk} k!},$$
(2.1)

or,

$${}_{h}J_{v}^{m}\left(z\right) = \Gamma\left(1+mv\right){}_{0}F_{h}\left[\begin{array}{c}-\\(1+mv)\end{array}\right] - z\right],$$
(2.2)

or,

$${}_{h}J_{v}^{m}(z) = \Gamma(1+mv)\sum_{k=0}^{\infty}\Theta_{n}\frac{(-z)^{k}}{k!},$$
(2.3)

where $\Theta_n = (1 + mv)_{hn}^{-1}$.

Theorem 2.2. (*Ramanujan's Master Theorem*)[2] *Assume that the function* f(x) *has a power series expansion in the following form*.

$$f(x) = \sum_{n=0}^{\infty} \frac{\phi(n)}{n!} (-x)^n$$
(2.4)

Then the Mellin transform of the f(x) is given by

$$M[f(t);s] = \int_{0}^{\infty} t^{s-1}f(t) dt = \Gamma(s) \phi(-s), \qquad (2.5)$$

provided the integral in (2.5) exists.

On employing Theorem 2.2 and Eq.(1.2), we can deduce the following corollary.

Corollary 2.3. Under the conditions for (2.5), the following Mellin transform formula holds true.

$$M\left[{}_{h}J_{v}^{m}\left(z\right)\right] = \Gamma\left(1+mv\right)\Gamma\left(s\right)\Theta_{-s},\tag{2.6}$$

where

$$\Theta_{-s} = \Theta_n \big|_{n=-s} \tag{2.7}$$

in terms of the coefficients Θ_n , given by Eq.(2.3).

Definition 2.4. For a statistical probability distribution of a random variable *X*, let the probability density function

$$B_X(X) = \begin{cases} \left(\frac{1}{\Gamma(s)\Theta_{-s}}\right) \frac{1}{\Gamma(1+mv)} x^{s-1} F_h \begin{bmatrix} -\\(1+mv) \end{bmatrix} - x \end{bmatrix}, \quad x > 0 \\ 0, \quad elsewhere \end{cases}$$
(2.8)

where Θ_{-s} is given by (2.7) and it is tacitly assumed that the various arguments parameters involved in the definitions (2.2) and (2.3), are restricted as

$$B_X\left(X\right) > 0,\tag{2.9}$$

clearly, it follows from corollary (2.3) that

$$\int_{0}^{\infty} B_X(X) \, dx = 1, \tag{2.10}$$

provided that the integral (2.10) exists.

3 Properties of Random variable X

In this section, we give some properties of the random variable X.

3.1 The k^{th} Moment

Theorem 3.1. The k^{th} Moment $E[x^k]$ of the random variable X is given by

$$E\left[x^{k}\right] = \frac{\Gamma\left(s+k\right)\Theta_{-s-k}}{\Gamma\left(s\right)\Theta_{-s}}.$$
(3.1)

Proof. The k^{th} moment of the random variable X is given as,

$$E\left[x^{k}\right] = \int_{0}^{\infty} t^{k} B_{X}\left(t\right) dt$$
(3.2)

On using (2.8), we obtain,

$$E\left[x^{k}\right] = \left(\frac{1}{\Gamma\left(s\right)\Theta_{-s}\Gamma\left(1+mv\right)}\right)\int_{0}^{\infty} t^{s+k-1}{}_{1}F_{h}\left[-\left(1+mv\right)\right| - t\right]dt$$
(3.3)

From (2.5) and (3.3), we get,

$$E\left[x^{k}\right] = \frac{\Gamma\left(s+k\right)\Theta_{-s-k}\Gamma\left(1+mv\right)}{\Gamma\left(s\right)\Theta_{-s}\Gamma\left(1+mv\right)}.$$

Corollary 3.2. The mean μ_x is the first moment, the expected value of the random variable X is a special case of the k^{th} moment as defined (3.3) for k = 1.

$$\mu_x = E[X] = \frac{\Gamma(s+1)\Theta_{-s-1}}{\Gamma(s)\Theta_{-s}}.$$
(3.4)

This can also be written as,

$$\mu_x = E[X] = \frac{s\Gamma(s)\Theta_{-s-1}}{\Gamma(s)\Theta_{-s}}.$$

On further simplification, we arrive at

$$\mu_x = E\left[X\right] = \frac{s\Theta_{-s-1}}{\Theta_{-s}}.$$
(3.5)

Corollary 3.3. On setting k = 2, the formula (2.11), this yields the second moment as follows.

$$E\left[X^{2}\right] = \frac{\Gamma(s+2)\Theta_{-s-2}}{\Gamma(s)\Theta_{-s}}.$$
(3.6)

$$E\left[X^{2}\right] = \frac{s\left(s+1\right)\Theta_{-s-2}}{\Theta_{-s}}$$
(3.7)

Corollary 3.4. *Making the use of Eq.(3.5) and (3.7), the variance* σ_x^2 *of the random variable X can easily be computed,*

$$\sigma_x^2 = E[X^2] - (E[X])^2,$$
(3.8)

this can also be written as,

$$\sigma_x^2 = \frac{s\left(s+1\right)\Theta_{-s-2}}{\Theta_{-s}} - \left(\frac{s\Theta_{-s-1}}{\Theta_{-s}}\right)^2.$$
(3.9)

3.2 The Characteristic Function

Lemma 3.5. The Extended Generalized Bessel function defined as (1.2), the following integral formula holds true.

$$\int_{0}^{\infty} t^{\rho-1} e^{-st} {}_{h} J_{v}^{m} (zt^{\sigma}) dt$$

$$= s^{-\rho} \Gamma (1+mv) {}_{0} F_{h} \left[\begin{array}{c} -\\ (1+mv) \end{array} \right| \frac{-z}{s^{\sigma}} \right] * {}_{1} \psi_{0} \left[\begin{array}{c} (\delta,\sigma) \\ - \end{array} \right| \frac{-z}{s^{\sigma}} \right],$$

$$(3.10)$$

where * is the Hadamard product defined as (1.7) and $_{p}\psi_{q}$ denotes the Fox-wright generalized hypergeometric function and it is assumed that each member of (3.10) exists.

Proof. The demonstration of lemma is based upon the following well-known result [7].

$$\int_{0}^{\infty} t^{\rho-1} e^{-st} dt = \frac{\Gamma(\rho)}{s^{\rho}} \ (\min \ \{R(s), R(\rho)\} > 0)$$
(3.11)

Let us denote L.H.S of (3.10) by I and afterwards using (3.11) and (1.2), we get,

$$I = \int_{0}^{\infty} t^{\rho - 1} e^{-st} \Gamma (1 + mv) {}_{0}F_{h} \begin{bmatrix} - \\ (1 + mv) \end{bmatrix} - zt^{\sigma}.$$
(3.12)

On changing order of integration and summation, this yields

$$I = \sum_{n=0}^{\infty} \frac{\Theta_n \Gamma(1+mv)}{n!} \int_0^{\infty} t^{\rho-1} e^{-st} (-zt^{\sigma})^k dt.$$
 (3.13)

we can also write (3.13) as,

$$I = \sum_{n=0}^{\infty} \frac{\Theta_n \Gamma(1+mv)}{n!} (-z)^k \int_0^{\infty} t^{\rho+\sigma k-1} e^{-st} dt$$
(3.14)

From (3.10) and (3.14), we get,

$$I = \sum_{n=0}^{\infty} \frac{\Theta_n \Gamma(1+mv)}{n!} (-z)^k \frac{\Gamma(\rho+\sigma k)}{s^{\rho+\sigma k}}.$$
(3.15)

One can easily write Equation (3.15) in the following form

$$I = s^{-\rho} \Gamma \left(1 + mv\right) {}_{0}F_{h} \left[\begin{matrix} - \\ (1 + mv) \end{matrix} \middle| \frac{-z}{s^{\sigma}} \end{matrix} \right] * {}_{1}\psi_{0} \left[\begin{matrix} (\delta, \sigma) \\ - \end{matrix} \middle| \frac{-z}{s^{\sigma}} \end{matrix} \right]$$
(3.16)

Theorem 3.6. The Characteristic function $\phi_x(t)$ of $B_X(t)$ associated with the random variable X is given as

$$\phi_x(t) = E\left[e^{itx}\right] = \int_0^\infty e^{itx} B_X(t) dt, \qquad (3.17)$$

where E denotes the mathematical expectation.

Proof. Let us write left hand side of (3.17) in following form by using (2.8) as,

$$\phi_x(t) = \int_0^\infty e^{itx} \left(\frac{1}{\Gamma(s) \Theta_{-s} \Gamma(1+mv)} \right) x^{s-1} {}_1F_h \begin{bmatrix} -\\(1+mv) \end{bmatrix} - x \end{bmatrix} dx.$$
(3.18)

On changing the order of integration, we arrive at

$$\phi_x(t) = \sum_{n=0}^{\infty} \frac{(-1)^n \Theta_n}{\Gamma(s) \Theta_{-s} \Gamma(1+mv)} \int_0^{\infty} e^{itx} x^{s+n-1} dx.$$
(3.19)

From (3.19) and (3.11), we obtain,

$$\phi_x(t) = \sum_{n=0}^{\infty} \frac{(-1)^n \Theta_n}{\Gamma(s) \Theta_{-s} \Gamma(1+mv)} \frac{\Gamma(s+n)}{(-it)^{s+n}}.$$
(3.20)

On using (1.7), one can get following form of (3.20), i.e.,

$$\phi_x(t) = \frac{(-it)^s}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)} {}_1F_h \begin{bmatrix} -\\(1+mv) \end{bmatrix} \frac{1}{-it} \\ * {}_1\psi_0 \begin{bmatrix} (s,1) \\ - \end{bmatrix} \frac{1}{-it}$$
(3.21) mpletes the proof.

This completes the proof.

3.3 Moment Generating Function

Theorem 3.7. The moment generating function $M_x(t)$ [9, P. 12] of the random variable X is defined as,

$$M_x(t) = \left(\frac{\left(-t\right)^{-s}}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)}\right) {}_1F_h \begin{bmatrix} -\\(1+mv) \end{bmatrix} \frac{1}{-t} \\ * {}_1\psi_0 \begin{bmatrix} (s,1) \\ - \end{bmatrix} \frac{1}{-t}$$
(3.22)

Proof. The moment generating function $M_x(t)$ of the random variable X is defined by,

$$M_x(t) = E\left[e^{tx}\right] = \int_0^\infty e^{tx} B_X(X) \ dx \tag{3.23}$$

Therefore, we can obtain following result by using (3.21),

$$M_x(t) = E\left[e^{tx}\right] = \phi_x\left(-it\right) \tag{3.24}$$

where $\phi_x(t)$ is the characteristic function of $B_X(X)$ and associated with the random variable x, which is given by (3.12), can be expressed as,

$$M_{x}(t) = \left(\frac{(-t)^{-s}}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)}\right) {}_{1}F_{h}\left[\frac{-}{(1+mv)}\left|\frac{1}{-t}\right] * {}_{1}\psi_{0}\left[\frac{(s,1)}{-}\left|\frac{1}{-t}\right]\right]$$
(3.25)

Hence the proof.

3.4 The Cumulative Distribution Function

Theorem 3.8. From the definition of 1.5, for x > 0 the cumulative distribution function $F_x(X)$ is given by,

$$F_x(X) = \left(\frac{x^s}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)}\right) {}_1F_h\left[\begin{array}{c}-\\(1+mv)\end{array}\right] - x \left[\begin{array}{c}(s,1)\\(s+1,1)\end{array}\right] - x\right]$$
(3.26)

Proof. For x > 0 the cumulative distribution function $F_x(X)$ is given by,

$$F_x(X) = \int_0^x B_X(t) dt$$
(3.27)

On writing (3.27) in following form by using (2.8),

$$F_x(X) = \frac{1}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)} \sum_{n=0}^{\infty} \frac{(-1)^n \Theta_n}{n!} \int_0^x t^{s+n-1} dt.$$
 (3.28)

After simplification, we find that

$$F_x(X) = \frac{1}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)} \sum_{n=0}^{\infty} \frac{(-1)^n \Theta_n}{n!} \frac{x^{s+n}\Gamma(s+n)}{\Gamma(s+n+1)}.$$
(3.29)

Use of (1.3) and (1.7) gives,

$$F_x(X) = \left(\frac{x^s}{\Gamma(s)\Theta_{-s}\Gamma(1+mv)}\right) {}_1F_h \begin{bmatrix}-\\(1+mv)\end{bmatrix} - x \end{bmatrix} * {}_1\psi_1 \begin{bmatrix}(s,1)\\(s+1,1)\end{bmatrix} - x \end{bmatrix}.$$
 (3.30)

This completes the proof.

References

- [1] A. M. Mathai, R. K. Saxena, On a generalized hypergeometric distribution, Metrika 11, 127-132 (1967).
- [2] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series (Vol. 3): More Special Functions, Gordon and Breach Science Publishers, New York (1990).
- B. C. Bhattacharyya, The use of McKay's Bessel function curves for graduating frequency distributions, Sankhyā 6, 175-182 (1942).
- [4] C. Walck, Hand-book on Statistical Distributions for experimentalist, Particle Physics Group, Fysikum, University of Stockholm (2000).
- [5] E. D. Rainville, Special Functions, The Macmillan Company, New York (1960).
- [6] F. McNolty, Applications of Bessel function distributions, Sankhyā, 29 235-248 (1967).
- [7] H. M. Srivastavaa, R. Agarwal, S. Jain, Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions, *Math. Methods Appl. Sci.* 40(1), 255-273 (2017).
- [8] I. A. Salehbhai, R. K. Jana, A. K. Shukla, Extensions of generalized Bessel functions, J. Inequal. Spec. Funct, 1-12 (2013).
- [9] C. Forbes, M. Evans, N. Hastings, B. Peacock, Statistical Distributions (4th Ed.), John Wiley & Sons, Inc. New Jersey (2011).
- [10] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittage-Leffler Functions, Related Topics and Applications, *Springer Monographs in Mathematics*, New York (2014).

Author information

Farhatbanu H. Patel, R. K. Jana and A. K. Shukla^{*}, Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat-395 007, Gujarat,, India. E-mail: farhatpatel03@gmail.com, rkjana2003@yahoo.com, ajayshukla2@rediffmail.com^{*}

Received: September 2nd, 2021 Accepted: June 15th, 2022