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Abstract. Let bped,;  (n) denote the number of [j, k] —overpartition pairs of a positive integer
n with even parts distinct in which the first occurrence of each distinct part congruent to 5 modulo
k may be overlined. In this work, we establish many infinite families of congruences modulo
powers of 2 for bped; 5(n) and bpeds ¢(n). For example, for any n > 0 and o, 3 > 0,

bpeds ¢ (8 - 3% . 5201 (5p 4 j) + 7 - 3%42. 52941) =0 (mod 32),

where j =0, 1, 3,4.

1 Introduction

Corteel and Lovejoy [4] introduced overpartitions. An overpartition of a positive integer n is a
partition in which the first occurrence of each distinct part may be overlined. Let p(n) denote
the number of overpartitions of n with p(0) = 1. The generating function for p(n) is given by

— (%) P
p(n)q" = "5 =3, 1.1)
,;) (¢:9)% ?
where
fri=(@g)e= Y (=1)gGn=hr2
and

for=1(d"q" = T (1 = ¢™).

m=1

Many authors proved many Ramanujan-type identities and congruences for p(n), including [1,
3,6,9, 10, 14, 15, 16, 17].

For positive integers j and k such that k > j > 1, an [j, k] —overpartitions of n is a partition
in which the first occurrence of each distinct parts are congruent to j (mod k) may be overlined.
Let P, ,(n) denote the number of such overpartitions of n with p; ;(0) = 1. The generating
function for p; . (n) is given by

= = n __ (_qj;qk)oc 1 2
nziop,,k(mq = e (1.2)

For example, the [5, 10]-overpartitions of 5 are

55,441,342, 3+1+1, 24241, 2+1+1+1, 1+14+1+1+1
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Mahadeva Naika et al. [12] obtained many infinite families of congruences modulo powers
of 2 for p; ;.(n), the number of [j, k] —regular overpartitions of n in which none of the parts are
congruent to j (mod k). For example, for alln > 0 and v, 8 > 0,

Poig (3% 52971 (24(5n + i) +23)) =0 (mod 64),

where i = 0,1,2,4.

In [11, 13], the authors proved many infinite families of congruences modulo powers of 2 for
peds 3(n), peds (n) and pedy o(n), congruences modulo powers of 2 and 3 for pedy ;5(n). For
example, for any n > O and o, 3 > 0,

peds g (8347252012 4 ¢ . 3241 52041) =0 (mod 64),

where ¢; € {23,47,71,119}.

By the motivation of the above work, in this paper, we define prL x(n), the number of
[4, k] —overpartition pairs of a positive integer n with even parts distinct in which the first oc-
currence of each distinct parts are congruent to 5 modulo £ may be overlined. The generating
function for bped, ;. (n) is given by

(a5 ¢*) 2 (=73 d")2,

(G0 (1.3)

> bped; ;. (n) " =
n=0
Also, we establish many infinite families of congruences modulo powers of 2 for bped; 3(n) and
bpeds (n). For example, for any n > 0 and o, § > 0,
bpeds ¢ (8 - 3% . 5201 (5p 4 ) + 7 - 3%42. 52941) =0 (mod 32),

where j =0, 1,3,4.

2 Preliminary results
In this section, we collect several identities which are useful in proving our main results.

Lemma 2.1. The following 2-dissections hold:
LR B

L 2.1
RGN @D
and 14 2 4
L _ /i +4qf4£8. (2.2)

it A )

The identity (2.1) is the 2-dissection of ¢(q) [3, (1.9.4)]. The identity (2.2) is the 2-dissection of
#(q)? [5, (1.10.1)]. Also, one can see [2, p.40].

Lemma 2.2. The following 2-dissections hold:

L fif fif 53
Rh BRI R RR 3)
i _ [l ) fafe f3 foa o4
2 B U B @4
and 5 fi
== et 2.5
fi o T fa 2.5)

The equations (2.3) and (2.4) are the same as (30.12.3) and (30.10.4) in [5]. The equation (2.5)
is the same as (22.1.14) in [5] (after using 22.1.6 and 22.1.7).
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Lemma 2.3. The following 3-dissections hold:
2 2
fi o f 6f 9 + f J18

= 2.6
A fhs T (26)
o5 bl 2.7
o fis Uil @7
o _ fefs 11 2f6f18
= +2q +4q (2.8)
i B f 3
Lemma 2.3 was proved by Hirschhorn and Sellers [7].
Lemma 2.4. The following 3-dissections hold:
3 J06f96 3 f3 fls
— - +4q 2.9
fl f3f138 f9 f6 fg ( )
" ol fi
_ Jolo 2 2/3/18 2.10
fif2 AP afofis 2 (2.10)

The equation (2.9) is the same as (14.8.5) in [5]. Also, see [2, p.345]. For a proof of (2.10), we
can see [8].

Lemma 2.5. We have

fi = fs(R(@) " —a— @R()), 2.11)
where i 4)
_ —q,—q
Rlo) = f(=¢% —4%)
and

f(a,b) := (—a;ab) oo (—b; ab) o (ab; ab) wo
The identity (2.11) is essentially (8.1.1) in [5].
Lemma 2.6. We have

= f“(f*gi qggi—ﬂ qﬁggi;) 2.12)
f(=

where A(q) = f(=¢*,—¢*), B(q) = f(—¢*, —¢°) and C(q) = f(—q,—¢°).
Lemma 2.6 is an exercise in [5], see [5, (10.5.1)]. Also, one can see [2, p.303, Entry 17(v)].

3 Congruences for bped; ;(n)

Theorem 3.1. For all n > 0 and o > 0, we have

> 3datl _
predw (2 C3tetly o 2) "= ;2 +24qf1fof3f2  (mod 32), (3.1)
n=0
. 34a+3 _ . 3datl _
bpeds 3 (2 3oty 4 5321> = bpeds 5 (2 S3tatly 4 5321) (mod 32),
(3.2)
_ 7. 4a+471 - 7'4a+271
bpeds 5 <2 cghass, 103 5 > = bped; 5 (2 S3het3n 4 % (mod 32),
(3.3)
- 11 - 34at4 _q 7 11 - 34+2 _q
bpeds 5 (2 3tatS, 4 3 5 ) = bpeds 5 (2 3t 4 3 5 (mod 32).

(3.4)
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Proof. Setting j = k = 3 in (1.3), we find that

oo 22
> bpeds s (n)q" = ;%;:2 (3.5
n=0

Employing (2.3) in (3.5) and then collecting the coefficients of ¢?**! from both sides of the
resultant equation, we obtain

— n o __ f26fg
> bpeds 3 (2n+1)¢" = 26 (3.6)
n=0 fl f3
From the binomial theorem, it is easy to see that for any positive integers k and m,
=2 (mod 2™). (3.7)
Using (2.6) and (2.8) in (3.6) and invoking (3.7), we arrive at
o 6
Z bpeds 3 (6n+ 1) ¢" = 2;26 +24qf1ff5f2  (mod 32), (3.8)
n=0 1
S e _ BB
ped3 s (6n+3)¢" 7 (mod 8) 3.9
1
n=0
and
> “bpeds 5 (6n+5)q" = 2f.f; (mod 4). (3.10)
n=0

The equation (3.8) is a« = 0 case of (3.1). Suppose that the congruence (3.1) is true for a > 0.
Substituting (2.6), (2.8) and (2.10) in (3.1) and then collecting the coefficients of ¢*", ¢*"*! and
¢>"*? from the resultant equation, we have

0 4o+l _ 3£3
> " bpeds 5 (2-34"‘+2n—|—32> q" ff + 16qf2 fs + 24q fz?ﬁ (mod 32), (3.11)
n=0 1

o0 CR4a+1 _ 6
> " bpeds 5 <2 3ty 4 531) q fo3 + 24215 +24 fiz (mod 32) (3.12)
e 2 f fe fl
and
- r 4a+2 34a+3 —1 n _ 3 r3 f66
> bpedy s (2-3 nt+——>—14q :8f1f2f3f6+10F (mod 32). (3.13)
3

Using (2.10) in (3.13), we obtain

0 3dat3 _
S bpeds 5 (2 3kl 2) 7= 18; 2 424 of3 2 (mod32),  (3.14)
n=0

o 7. 34a+2 1
> " bpeds 5 (2 L34ty 4 2) " =8f fafsfe + 16qf2fe (mod 32)  (3.15)

and

o~ 4a+3 11.34a+271 n _— 2 2 2
> bpeds s (2: 3P+ o) " =87 AR (mod 32). (3.16)
n=0
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Utilizing (2.6), (2.8) and (2.10) in (3.14), we get

0 dat3 _ 1 2 33

> bped; 5 (2 R 32> "= 18f—22+ 16quf8+24qf2“;33f6 (mod 32), (3.17)

n=0 1 1

o . R4a+3 _ 1

> bped; 5 (2 S3tetdy 4 53) f2f3 +24f 5 + 24qf6 (mod 32) (3.18)

n=0 7 2 f f f

and

3 bpeds 5 | 2 - 3% & =38 26f6 d 32 3.19
Z peds 3 n -+ 3 B ffe+ 76 (mo )- (3.19)
n=0 3

From the equations (3.12) and (3.18), we obtain (3.2).
Employing (2.10) in (3.19), we have

x 34a+5 -1 f
Z bpeds 3 (2 S3tatSy 4 2) = 2f2 +24qf1f-£5f2  (mod 32), (3.20)
n=0

oo 7. 34a+4 -1
Z bpeds 3 (2 C3tatSy 2) " = 8f2 fofsfe + 16qf>f¢ (mod 32)  (3.21)

and
11 - 34a+4 _

> bpeds (2 S3datSy 4 21> " =8f2f3f2 (mod 32). (3.22)

The equation (3.20) is a+ 1 case of (3.1). By induction, the congruence (3.1) holds for all integer
a>0.

From the equations (3.15) and (3.21), we get (3.3).

From the congruences (3.16) and (3.22), we obtain (3.4). O

Theorem 3.2. For all n > 0 and o, 8 > 0, we have

L 34at3 L Fhatl _q

bpeds 5 (2 Loty 4 2) = ped, 5 (z 3 T ) (mod 16), (3.23)

bpeds 5 (4 3ty 4 23346;21) =0 (mod 16), (3.24)

imw (4 gtatd 528, , 110 34a+22' Sl 1) "=8ff; (mod 16), (3.25)
n=0

bpeds 5 (4  3hot3 S84 (5 4 ) 4 7.3 '25 i 1) =0 (mod 16), (3.26)

ibpﬁl3 <4 a3 528, T 34a+22' 5 - 1) ¢"=8f] (mod 16), (3.27)

11 - 34a+2 . 52ﬂ+1 _
2

1
bped, 5 <4-34“+3 525 (5p 4 ) + ) =0 (mod 16), (3.28)

19 . 34a+2 . 253 -1
93 > ) " =8f1f2 (mod 16), (3.29)

> bped; 5 (4 L 3tat3 526y 4 5

23. 34a+2 i 52,B+1 _
2

bpeds 5 (4 -3ot3 5284 (5 1 k) + 1) =0 (mod 16), (3.30)

wherei=0,1,3,4,7j=0,2,3,4and k =0,1,2,4.
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Proof. In view of the equations (3.11) and (3.17), we arrive at (3.23).
The equation (3.16) becomes

o~ 4a+3 11.3401-&-2_1 n 3
> bpedy s (2-3% 0+ — )" = 8Lk (mod 16), (3.31)

n=0

which implies (3.24) and

— 4a+3 11- 340{+2 —1 n 3
> bpeds 5 (43 Fn + 5 )d"=8Lf (mod 16), (3.32)
n=0

which is 5 = 0 case of (3.25). Consider the congruence (3.25) is true for 8 > 0. Employing

(2.11) in (3.25) and then collecting the coefficients of ¢°>"*! from both sides of the resultant

equation, we get

7. 34a+2 . 52[5’+1 1
2

> bpeds 5 (4 L 3tad3 526040, 4

n=0

which implies (3.26) and

) q" =8¢ fiofis (mod 16), (3.33)

11 - 34a+2 . 526+2 -1
* 2

> " bpeds 5 <4 - 3datd 52642, ) " =8f,fi (mod 16), (3.34)
n=0

which implies that the congruence (3.25) is true for 8 4 1. By induction, the congruence (3.25)
holds for all integers a, 5 > 0.
The equation (3.15) becomes

> 7.3%+2 _q 33
S bpeds 5 (2  ghert3,, | 32) o =8t sz 5 (mod 16). (3.35)
1

n=0

Using (2.5) in (3.35) and then comparing the coefficients of ¢*" and ¢***!, we find that

o 7. 34a+2 -1
> bpeds 5 (4 3t 4 2) ¢" =8f] (mod 16) (3.36)
n=0
and
—— 4a+3 19- 34a+2 -1 n 3
> bpedy s (4-3%Fn + 2) ¢" =8f1f2 (mod 16). (3.37)

n=0
The remaining proofs of the congruences (3.27)-(3.30) are similar to the proofs of the congru-
ences (3.25) and (3.26). So, we omit the details. O

Theorem 3.3. For all n > 0 and o, 3,7y > 0, we have

ibpﬁw (4 Cghas2 g2y Y 34a+12' L 1> ¢*=4f (mod 8), (3.38)
n=0
bpeds 5 (4 L3has2 24 (7 4 ) 4 AL EMa ;Ml - 1) =0 (mod 8), (3.39)
ibp@w (4 (3tar2 528, 4 130 34%;' Sl 1) ¢*=4f" (mod 8), (3.40)
n=0
bpeds 5 (4 342 5284 (5 4 ) 17 34%1;2% — 1) =0 (mod 8), (3.41)
ibp@w (12 -5%n + 752;1> ¢*=4f] (mod 8), (3.42)

n=0
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S 11-5%+ —1

bpeds 3 <12 5% (50 + k) + 2> =0 (mod8), (3.43)
g 19-5% — 1

> " bpeds 5 (12 -5%n 4 952> " =4f1f2 (mod8), (3.44)

n=0

23.5%+ ]
2

wherei =0,2,3,4,5,6,7=0,1,3,4,k =0,2,3,4and | = 0, 1,2, 4.

Proof. The equation (3.12) becomes

> C3datl _q 3
> " bped; 5 (2 3%ty 4 532) "= f}ﬁ (mod 8). (3.46)
1

Utilizing (2.5) in (3.46) and then extracting the coefficients of ¢>” from the resultant equation,
we get

bpeds 5 (12 52N (5n 1) + ) =0 (mod 8), (3.45)

n=0

S 5.3%+1 ]
> " bpeds 5 (4 L3ty 4 2> ¢"=4f (mod 8), (3.47)
n=0

which is v = 0 case of (3.38). Suppose that the congruence (3.38) is true for v > 0. Substituting
(2.12) in (3.38) and then collecting the coefficients of ¢’"*3 from the resultant equation, we have

11 - 34a+1 . 72~/+l -1

predw (4 3Rt oy ) " =4qf; (mod8),  (3.48)

n=0 2
which implies (3.39) and
oo CR4a+1 | g2y+2 1
S Tpeds 5 (4 (3ha42 g2y, 4 903 27 ) " =4f5 (mod8),  (3.49)
n=0

which implies that the congruence (3.38) is true for v + 1. By induction, the congruence (3.38)
holds for all integers «,y > 0.
The equation (3.11) becomes

© 34at+l _ 1 2
Z bped, 5 <2 L3ty 2) q" = f—22 (mod 8). (3.50)
n=0 1

Using (2.1) in (3.50), we obtain

> 34atl _ 1 f4
predw (4 3ty 4 2) "= 2F (mod 8) (3.51)
n=0 1
and
o~ 13- 3%+l
> " bpeds 5 (4 3ty 4 2) " =4f3 (mod 8). (3.52)

n=0
The equation (3.52) is 8 = 0 case of (3.40). The rest of the proofs of the congruences (3.40) and
(3.41) are similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.
Utilizing (2.5) in (3.9), we arrive at

> “bpedy 5 (12n+3)¢" =4f] (mod 8) (3.53)
n=0
and -
> “bpeds; (12n+9)q" = 4f1f; (mod 8). (3.54)
n=0

The remaining proofs of the congruences (3.42)-(3.45) are similar to the proofs of the congru-
ences (3.25) and (3.26). So, we omit the details. O
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Theorem 3.4. For alln > 0 and o, f > 0, we have

bpeds 3 (12n+11) =0 (mod 4), (3.55)
o .828 _
> " bpeds 5 (12 .52 + 11521> " =2ff; (mod 4), (3.56)

n=0

7_526+1 —1

bpeds (12 52001 (5p 4-4) + 5

) =0 (mod4), (3.57)

bped (4 gha+2,, | 3atl 1> { 2 (mod 4) ifn is a pentagonal number,
33 |4 —

2 0 (mod4) otherwise,
(3.58)
where i =0,1,3,4.
Proof. The equation (3.10) implies (3.55) and
> bpeds 5 (12n+5)q" =2£,f; (mod 4), (3.59)

n=0

which is § = 0 case of (3.56). The rest of the proofs of the congruences (3.56) and (3.57) are
similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.
From the equation (3.51), we arrive at (3.58). O

4 Congruences for bped; ¢(n)

Theorem 4.1. For all n > 0 and o > 0, we have

e} 5 £5
Y bpeds g (2- 340+ 341 gt = 36]}1 ;3 +56ff3 (mod 64), 4.1
2J6

n=0

bpedy g (2-3*Fn +5-3%%) =bped, ¢ (2-3*Fn +5-3%72)  (mod 64), 4.2)

bpeds g (2 3% 00 +5.3%%) =bped, c (2-3**Tn +5-3%%)  (mod 64). 4.3)
Proof. Setting j = 3 and k£ = 6 in (1.3), we find that

o0 2 r4
Z bpedy ¢ (n) ¢" = Jils 4.4)
n=0

AR

Using (2.3) in (4.4) and then extracting the coefficients of ¢>**! from both sides of the resultant
equation, we get

oo 6 2
Z bpedy ¢ (2n +1)¢" = 2f2 Jo

. 4.5)
n=0 f16'f32
Employing (2.6) and (2.8) in (4.5) and invoking (3.7) we arrive at
- n _— f23f63 4 p4
> bpeds g (6n+3) ¢" = 12 + 565 f¢  (mod 64). (4.6)

3,3
n=0 fl 3

Substituting (2.6) and (2.8) in (4.6) and then comparing the coefficients of ¢°”, ¢***! and ¢**2
on both sides of the resultant equation, we have

EYE

+ 16g 7
1

peds 6 (18n +3) ¢" = 1275

v (mod 32), 4.7
n=0 fl
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e 5 £5
> bpedy s (18n+9) ¢" = 36717 +56ftf  (mod 64) 4.8)
! ’ f2fe
and -
T W _ BB
> bpedy s (18n+15) ¢" = ST (mod 32). (4.9)
n=0 1

The equation (4.8) is a = 0 case of (4.1). Suppose that the congruence (4.1) is true for o > 0.
Utilizing (2.7), (2.9) and (2.10) in (4.1) and then collecting the coefficients of ¢*", ¢>**! and
¢*"*? from both sides of the resultant equation, we obtain

i LB

> bpeds 6 (2 3% Fn 4 3442) g = 28123 4 48¢ (mod 64), (4.10)
n=0 7 P N
- bi 2 34o<+3 34oz+3 n _— 44f15f35 2 6 4 4 4 4.11
Z peds 6 (2 - n+ )q" = o Fe +32qfs +56qf5 fs (mod 64) 4.11)
n=0
and -
m 2 34a+3 442\ n — 4 f22f’§2f62 d 64 4.12
ZP63,6( : n+5-3"") ¢" =40 7 (mod 64). (4.12)
n=0 1
Substituting (2.7) and (2.9) in (4.11), we get
oo 4 £8 3 r3
> “bpeds 6 (2- 34 Hn 4 3483) g = 44 ! }fﬁ +48¢ I 2? Jo (mod 64), (4.13)
n=0 6 1

o0 5,5
> bpeds g (234 n 4 34t gt = 36J}l ;3 + 328 +32qf8 4+ 56f f3 (mod 64) (4.14)
=0 2J6
and -
T3 da+4 4a+3 n _— f22f32f62
> bpedy (2-3% 0 + 5. 3% gn =8 7 (mod 64). (4.15)
n=0 1
Using (2.7), (2.9) and (2.10) in (4.14), we arrive at

00 4 £8 33
> bpedy s (230 4 31 " = 28 ! }{3 +32f4 +48¢ f ”;3 s
n=0 6 1

(mod 64),  (4.16)

> 5 £5
> bpedsy 6 (23 n 4 345 ¢ = 44% +32f8 +56qf1 f& (mod 64) (4.17)
"0 2J6
and -
73 4a+5 da+4 n __ f22f32f62
> “bpeds g (2340 45 3% ¢" = 40 7 (mod 64). (4.18)
n=0 1
In view of (4.12) and (4.18), we obtain (4.2).
Employing (2.7) and (2.9) in (4.17), we find that
00 4 r8 3 £3
> bpedy s (23400 + 35 ¢ = 3264 + aa! }f} + 48qf ”;3 Jo (mod 64),  (4.19)
n=0 6 1
~— 4a+6 4a+6\ n f15f35 4 p4
> bpeds s (2- 30 + 3%76) ¢ = 36 +56ff3 (mod 64) (4.20)
o S fafe
and -
I3 4a+6 4a+5 n _ f22f'§2f62
pred% (23446 5. 345y n = 8 7 (mod 64). (4.21)
n=0 1
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The equation (4.20) implies that the congruence (4.1) is true for o + 1. Hence, by induction, the

congruence (4.1) holds for all integer o > 0.
In view of (4.15) and (4.21), we obtain (4.3).

Theorem 4.2. For alln > 0 and o, B > 0, we have

bpeds 6 (2 - 3% n + 3%%) =bped, 6 (2-3*Pn +3*72)  (mod 32),

bpeds ¢ (2 - 3% 00 + 3%15) = bped, ¢ (2 3** M0 + 3%13)  (mod 32),

bpeds (8 -3**Fn+7-3%%2) =0 (mod 32),

> bpeds; 6 (8-3*3 . 5%n +19.3%42.520) " = 16/, £ (mod 32),

n=0

bpeds ¢ (8 - 3% - 524! (5 + i) +23.3%2.52071) =0 (mod 32),

bpeds ¢ (8 -3**n +23-3%"2) =0 (mod 32),

> bpeds; 6 (8-3* 3. 5% n +11.3%12.520) " = 16/, (mod 32),
n=0

bpedy g (8 - 3% . 520 (5n 4 j) +7-3%%2. 52071y =0 (mod 32),
wherei=0,1,2,4and j =0,1,3,4.

Proof. From the equations (4.10) and (4.16), we get (4.22).
In view of (4.13) and (4.19), we obtain (4.23).
The equation (4.10) reduces to

.- 4 33
ZM-”,G (2.34a+3n+34a+2) qn528&+16qf2f3f6

7 B (mod 32).
1

n=0

Using (2.2) and (2.5) in (4.30), we get

5l

& 2

> bpedy (4340 4 3112 g = 28f—22 + 16¢q (mod 32)
n=0 7 f] fl

and
- T3 4a+3 4da+2 n _— f;f; 7
> bpeds ¢ (43P0 7. 3412) g = 16f— +16f] (mod 32).
1
n=0

Substituting (2.5) in (4.32), we obtain (4.24) and

> bpedy ¢ (83 +19-3*F2) g" = 16£1 £ (mod 32),
n=0

O

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)

4.31)

(4.32)

(4.33)

which is § = 0 case of (4.25). The rest of the proofs of the congruences (4.25) and (4.26) are

similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.
The equation (4.12) becomes

- 2 2 £2

mod 32).
n=0 flz ( )

(4.34)
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Utilizing (2.4) in (4.34), we have

ir 4a+3 dat2\ n — f33f4f§
pedy g (43 n +5.3%72) ¢ = 83 (mod 32) (4.35)
n=0 ’ fl f12
and
> bpedy 6 (43P0 +11-3%2) ¢" = 16£4 /¢ (mod 32). (4.36)
n=0
The equation (4.36) implies (4.27) and
> bpedy s (83 +11-3**2) ¢" = 16£,f]  (mod 32), (4.37)

n=0

which is 8 = 0 case of (4.28). The rest of the proofs of the congruences (4.28) and (4.29) are
similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details. O

Theorem 4.3. For all n > 0 and § > 0, we have

bpeds s (72n+21) =0 (mod 32), (4.38)
bpeds 6 (72n+69) =0 (mod 32), (4.39)
ibpq3’6 (72-5%n +57-5%%) ¢" = 161 f¢ (mod 32), (4.40)
n=0
bpeds ¢ (72-5°771(5n + i) + 69 -5*T1) =0 (mod 32), (4.41)
i’%@me (72-5*n +33-5%) ¢" = 16f,f; (mod 32), (4.42)
n=0
bpeds 6 (72 - 5% (5n 4 j) +21-5*"T1) =0 (mod 32), (4.43)

where i =0,1,2,4and j =0,1,3,4.
Proof. Utilizing (2.2) and (2.5) in (4.7), we get

15 1

> bpedy s (36n +3) ¢" = 1272 4 16¢=2¢  (mod 32) (4.44)
n=0 ’ fl fl
and
> bpeds  (36n+21) q" = 16f5 + 16 7 (mod 32). (4.45)
1
n=0
Using (2.5) in (4.45), we obtain (4.38) and
> “bpedy s (72n+57) ¢" = 161 f; (mod 32), (4.46)
n=0

which is § = 0 case of (4.40). The rest of the proofs of the congruences (4.40) and (4.41) are
similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.
Employing (2.4) in (4.9), we find that

0o X ,
ZWM) (36n +15)¢" = gf3f4f6

= d 32 4.47
fifi (mod 32) 47

n=0



642 M. S. Mahadeva Naika, Harishkumar T and Y. Veeranna

and

> bpedy s (36n+33) ¢" = 1643 (mod 32).

n=0

The equation (4.48) implies (4.39) and

16f,f; (mod 32),

> bpeds  (72n +33) ¢"
n=0

(4.48)

(4.49)

which is § = 0 case of (4.42). The rest of the proofs of the congruences (4.42) and (4.43) are

similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.

Theorem 4.4. For all n > 0 and o, 5,77 > 0, we have

> bpeds g (8- 3% 5% 4133472 529) " = 8f13  (mod 16),
n=0
bpeds g (8 - 3% . 527 (5 + i) +17-3*2.52H1) =0 (mod 16),

> bpedy g (83 70 45342 727) " = 8f)  (mod 16),
n=0

bpeds g (8 - 3% - 77 (Tn + j) + 11 -3%%2.727%1) =0 (mod 16),

> bpedy 6 (72570439 -5%) ¢ =8> (mod 16),

n=0

bpeds ¢ (72 - 5% (Sn+14) + 51 -51) =0 (mod 16),

> bpedy s (72- 70+ 15-7%7) ¢* = 8f]  (mod 16),
n=0

bpeds 6 (72 - 771 (Tn+ 5) +33-77") =0 (mod 16),
wherei=0,1,3,4and j =0,2,3,4,5,6.

Proof. The equation (4.31) becomes

o 2
> bpedsy ¢ (43P0 4 342 ¢ = 12fi2 (mod 16).
n=0 , fl

Employing (2.1) in (4.58), we arrive at
Z bpeds g (8 - 3% n + 3%72) ¢ = 12;:‘; (mod 16)
n=0 1

and

> bpedy ¢ (83 +13.3%%2) g" = 8¢ (mod 16).

n=0

O

(4.50)

4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

The equation (4.60) is = 0 case of (4.50). The rest of the proofs of the congruences (4.50) and
(4.51) are similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.

The eqution (4.35) reduces to

_ghti

ZW“’ (4 . 34a+3n +5. 34a+2) "= 5
1

n=0

(mod 16).

4.61)
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Using (2.5) in (4.61) and then extracting the coefficients of ¢>” from the resultant equation, we
find that

> bpedy ¢ (83 +5.3%2) " = 8f]  (mod 16), (4.62)
n=0

which is v = 0 case of (4.52). The rest of the proofs of the congruences (4.52) and (4.53) are
similar to the proofs of the congruences (3.38) and (3.39). So, we omit the details.
The equation (4.44) becomes

0o 2
> bpedy s (36n+3) ¢" = 12??2 (mod 16). (4.63)
n=0

Substituting (2.1) in (4.63), we have
> bped; s (12n+3) g™ = 12}? (mod 16) (4.64)
n=0

and -
> “bpeds  (72n+39) ¢" = 8 (mod 16). (4.65)

n=0

The equation (4.65) is 8 = 0 case of (4.54). The rest of the proofs of the congruences (4.54) and
(4.55) are similar to the proofs of the congruences (3.25) and (3.26). So, we omit the details.
The equation (4.47) becomes

0o 3
> bpedy s (360 +15) g™ = g 23 (mod 16). (4.66)
1
n=0
Using (2.5) in (4.66), we get
> “bped; ¢ (12n+15)q" = 8f] (mod 16), (4.67)

n=0

which is v = 0 case of (4.56). The rest of the proofs of the congruences (4.56) and (4.57) are
similar to the proofs of the congruences (3.38) and (3.39). So, we omit the details. O

Theorem 4.5. For all n > 0 and o > 0, we have

— 4 (mod 8) ifn isa pentagonal number,
bped; ¢ (12n 4+ 3) = 4.68
pedsq (72n +3) { 0 (mod 8) otherwise, (468)
4 s
Bpeds (8- 34+ 4 34042) = (mod 8) ifnis a.pentagonal number, 4.69)
’ 0 (mod 8) otherwise.
Proof. From (4.64), we arrive at (4.68).
From (4.59), we obtain (4.69). O
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