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Abstract In this paper, we generalize linear canonical curvelet transform to quaternion -
valued signals, known as quaternion linear canonical curvelet transform (QLCCT). Firstly, we
investigate Parseval’s formula, Inversion formula and characterization of range. Finally, we have
formulated a couple of Heisenberg’s Uncertainty principle’s associated with quaternion linear
canonical curvelet transform.

1 Introduction

In the early 1970’s, a promising linear integral transform namely linear canonical transform was
independently introduced by Collins [17] in paraxial optics, and Moshinsky and Quesne [29] in
quantum mechanics to study the conservation of information and uncertainty under linear maps
of phase space. The LCT can be regarded as generalization of many mathematical transforms
such as the classical Fourier transform, Fresnel Transform and the fractional Fourier transform
[31, 30]. It plays an important role in many fields like signal processing and optics and serves as
a magnanimous analysing tool [7, 32, 29]. For more about LCT and its application we refer to
[1,8,2,22,17,29, 34, 20, 35, 36].

In the domain of higher dimensional signal processing the quality of wavelet transform tends
to decrease because of the fact that the wavelet transform uses isotropic scaling in dimension
n > 2. These isotropic scalings are rather weak and incompetent to capture the edges and corners
in higher dimensional signals appearing due to its spatial occlusion between different objects, as
for example, in medical imaging curves separate bones and various other soft tissues. Therefore,
the key problem in multidimensional signal analysis is to extract and characterize the relevant and
directional information regarding the occurrence of boundaries and curves in signals. To address
these limitations of wavelet transform, some off-shoots of the wavelet transform, like ridgelet
transform [11], curvelet transform [14, 15], contourlet transform [19] and shearlet transform
[27], have been introduced.

Inspired by the results of two- dimensional wavelet transform and Stockwell transform, a rel-
atively new two dimensional multi scale integral transform, which is named as the curvelet trans-
form, has appeared in time frequency analysis was introduced by Candes and Donoho [14, 15].
This transform is a higher dimensional generalization of the wavelet transform designed to rep-
resent images at different scales and different angles. This transform is widely applied in image
processing such as image denoising, imaging in astrophysics, morphological component analy-
sis and seismic imaging. Like the wavelet transform and Stockwell transform , the translations,
dilations and rotations are built into the genesis of the curvelet transform. The important differ-
ence of curvelet transform from the wavelet transform and Stockwell transform lies in the fact
that non isotropic instead of isotropic dilations are used. For more about curvelets, we refer to
[16, 28, 12, 13].

The article is organised as follows: In section 2 we present basic notions and preliminaries
for quaternion linear canonical curvelet transform. Section 3 initiates the notion of quaternion
linear canonical curvelet transform and deciphers some results comprising Parseval’s formula,
Inversion formula and characterization of range. Towards the culmination of the paper, we have
formulated a couple of Heisenberg’s uncertainty principle’s for linear canonical curvelet trans-
form in quaternion domain.
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2 Basic notions and preliminaries

It was in 1843, the theory of quaternion algebra was initiated by the Irish mathematician W. R.
Hamilton and is denoted by H in his honour. The quaternion algebra is an associative, non com-
mutative four dimensional algebra that serves as an extension of the ordinary complex number
system. The quaternion algebra H over R is given by

H= {h:a0+ia1 +jax+kasz : ap,ar,a2,a3 € R},
where i, j, k are the three imaginary units, follow the Hamilton’s multiplication rules
ij=—ji=k, jk=—kj=1i, ki=—ik=j,and > =j> =k =ijk=—1.

For a quaternion h = ag + i aj + ja + kaz € H, aq is called scalar part of h denoted by Sc(h)

and a pure quaternion h denoted by Vec(h) =iaj + jaz + k as.
For quaternions
hi=ay+ia1+jary+kas

and
hy =by+iby + jbo + kb3,

the addition is defined component wise as
hy +hy = (ao + bo) + (a1 +b1) i+ (a2 +b2) j + (a3 +b3) k
Also the multiplication is defined as

hihy = (apby — a1by — axby — azbs) + i (a1bg + apby + axbs — azby)
+ j(a0b2 + arbg + azb; — a1b3) + k (a0b3 + azby + a1by — azb]).

For a quaternion h = ap + ia; + jaz + ka3, the conjugate and norm are respectively given
byh =ay—ia; —jay — kas and ||h||y = hh = \/ao? + a1 + a2 + az2. Also the arbitrary
quaternion h can be represented by two complex numbers as h = (ag +ia; + j (ap —iaz) =
fi + 4 fo, where fi, f» € C and hence h = f; — j f», where f; denoting the complex conjugate
of f1. The inner product of any two quaternions f = f; + j f» and g = ¢; + j g» in H is defined

by

(f,9)u = (g1 + fa92) + 5 (f201 — f192)-

By virtue of Cayley’s-Dickson representation a quaternion valued function f : R? — H
can be decomposed as f(x) = fi + j f», where f, f» are both complex valued functions. The
quaternion Fourier transform is defined in a similar way as the classical Fourier transform of the
two dimensional functions. The non commutativity property of the quaternion multiplication
allows us to have three different definitions of quaternion Fourier transform. Here we only
introduce two sided QFT. For more details, we refer to [6, 18, 23].

Definition 2.1. [24] Let f € L!'(R? H) N L*(R?,H) be any quaternion valued function, the two
sided quaternion Fourier transform (QFT) is denoted by 7, and is given by

Folf ()] (w) = flw) = /R e f(x) eI dx. @1

where x = (71,73), w = (w1,ws),dx = drdr; and the quaternion exponential e~ ‘1“1 and
e~ /%22 are the quaternion Fourier kernels. The correlated inversion formula is given by

1 , .
fx) = e /R2 e f(w) 2™ dw. (2.2)
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Now we recall the definition of quaternion linear canonical transform (QLCT). Due to the non-
commutativity property of quaternion multiplication, quaternion linear canonical transform are
classified into three different types as; left-sided QLCT, right-sided QLCT and two sided QLCT.
In this article we will use two sided QLCT [4, 26] .

as b .
® %1 € R?>*? be a real matrix parameter such that det (M) = 1,

CS S

Definition 2.2. Let M, = [

for s = 1,2. The two sided QLCT of f € L?(IR?, H) is defined by

Jee Ky, (21, w01) f(x) K‘}%(Isz)dx biby #0
L%II,JMZ [f(x)](w) =

2

\/dldze 2 “’lf(dlwl,dgwg)e 22d2w7 b1b2:0

where x = (x1,22), w = (wi,w;). The quaternion kernels K7, (ml,wl),K%(xz,wz) are re-
spectively given by

| I
KM‘(xl’wl)_meXp{zb oy - zx“‘“”lwd}

and

. 1 ;
Kfuz(fz, wy) = N exp { b [azxz 2xwr + d2w2] }

For the case b5, = 0, the QLCT of a signal is essentially a quaternion chirp multiplication. So
in this paper, we only consider the case by b, # 0.
The correlated inversion formula for the two sided QLCT is given by

X) = /2 K}w] (z1,w1) E%]’Mz [ﬂ (w) K'}% (22, w2) dw. (2.3)
R
Also the Parseval’s formula for the QLCT is given by [4]

(CRnanlf)s Linanle) =10 e 24)

L2 (R* H)

We now recall the definition of linear canonical curvelet transform [25].

b
¢ J ) € R?*? be a matrix with parameters satisfying det(M) =

Definition 2.3. For M = (
c

ad — be = 1. Then linear canonical curvelet transform of a signal f € L?*(R?), is defined as the
integral transform

(T 1) (0 .6) = [ FOOTY ()i, 5
R2
where x = (x1,22), € (0,a0),8 € R*,0 € (—m, ) and T'Y 5 ,(x) is given by

Yy o (x) = ra,o,ome(xm)exp{ (8- x>}
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3 Quaternion Linear Canonical Curvelet Transform (QLCCT)

In this section, we generalize linear canonical curvelet transform [25], to quaternion- valued
signals , known as quaternion linear canonical curvelet transform.

Definition 3.1. Let M; = (ay,b1,¢1,d1) and My = (ay, by, c2,ds) be two parameters satisfying
det(M;) = asds — bscs = 1,5 = 1,2 then the quaternion linear canonical curvelet transform of
asignal f € L?>(R?, H) is defined by

(T2 ) 8.6) = [ 160020 ()i @D
R2

where

023000) = exp { har (51— 20) f ool - B exp { {2 aa(a - )| 32

Definition 3.2. (Admissibility Condition). A function ¢ € L? (R?, H) is said to be admissible
if

clp_//],cMth Me o (x )] (w)‘zdeda. (3.3)

0 —m

Lemma 3.3. The two sided quaternion LCT of ¢£{E,9(X)’ defined in (3.2) is given by

277\/%6 P{zb [dlwl 2ﬂ1(w1 — alﬁl) _01512]}

x Fy [exp{ b (y1+2y161)}wa7070<39<w—baﬂ>>exp{_ZSZ(y%+2yzﬁz)}]

X exp { 2, [dows — 2B (w2 — azfB2) — azﬁg]} .

‘CMI M, Wi{éx,e(x)] (w) =

Proof. We have
Lo an a0 (0))(@)

= /wal (1, w1 )¢£{E,Q(X)Ki@ (2, wn)dx
RZ

/\/W { (a2t — 2x1w1+d1w1]}

X exp{i;lx,(ﬂl Il)}1/1a00(39 x — 3)) exp {xz B2 562)}

1 .
X exXp {] [a2x2 2xowy + dzwz } dridxs

—[ala:l 2x1w1+d1w1}

R
X exp {i;lxl (81 — x])} Va00(Ro(x — B)) exp {jbafxz(ﬂz - :c2)}

J [azxz 2xowy + dzwz] } dxidzy
2

1
Y — = (2 ) 2
2 b]bz/exp{Zbl[ ( Tiwi a1x]ﬂl)+dlwl}}
R2
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—ia —1Ja
X exp { bll x%} V00,0 (Rg(x — ﬁ)) exp { 2][)22%}
X exp {22 [ — Qaows — 2a2223) + daws3] } dzdz,

1 i
= 27r7\/mexp 2 (dlwl)}ﬂ@[exp{bl[—$1(w1—0151)]}

X exp { _21 x%} Va,00(Ro(x — B)) exp { 2jbzz 2}

X exp {1;72 [ — xz(wz — azﬁg)] } dl‘ldl‘z exp{zb (dZWQ)}
ZWMCXP{ ! (dlwl)}/exp{—ixl <wl_blalﬁl>}
R2
X exp { _221 x%} V00,0 (Rg(x — ﬁ)) exp { _2‘7;212 x%}
X exp {—sz (wz—bzaz52> } dzdzy exp{Zb (dng)}
1 _
= ZW\/WCXP{Zbl (dlwl)}/exp{_i(yl+51)(0‘)1blalﬂl>}
R2
X exp{_;;l(yl +51)2}¢a00(30}’) exp{ 2, (yz+ﬁz)2}
X exp{ (2 +ﬁz)<ba2ﬂ2>}dy1dyz CXP{Zb (dzwz)}
2
— o o g - Bl — )}
—mexp 27)1 1wy bT w1 —a1pr

X /exp {—iyl (M—bla1ﬂ1> } exp { _2b (y1 + 51) } 0,00 (Rey)
R2
X exp{ 2 (42 + )? }CXP{—jyz (cuz_ClZBZ)}
2b, by

dywy — ' 52(0J2 - azﬁz)}

X dyidy, exp { T

271'\/1)17[)6 p{2b [diw? — 2ﬁ1(w1—a161)—a1512]}

X Fyq leXP { A (v + 2y161)} 1a,0,0 (Ra <w —baﬁ>>

exp{ % (yz+2y252)H

X exp {;l)z[dzué — 262(&)2 — azﬁg) — azﬂg]} .

This completes the proof. O
Theorem 3.4. ( Parseval’s Formula) Suppose that ¢ € L>(R?, H) be admissible , then for every
f,g € L*(R?, H), we have

(). @O 9)) | =bibCulf, ) e ) (34

L2(9,H)
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Where G = (0,a9) x R? x (=7, ) and Cy, is admissibility given by (3.3).

Proof. By Parseval’s formula for the two sided quaternion linear canonical transform and using
lemma (3.3), we have

(T4 1), ()

L2(G,H)

= / [ £)(ov, B, 0)[TE" 9] (e, B, 0)dad B8
g

- <f’ w“ﬂ 9>L2 R, H <g’¢g’%=9>m R2, H dadf3df
(R?, H) (R?, H)

<£M1 Mo [f], E%\IZI,MQ [wgza,e(x)] >

L2(R?, H)

Il
Q@

X <EIJP\IZI M, l9], L5, M, Wtjx\{fa,e(x)} >L2(R27 ) dadBdo

-]

/{/ﬁMl i [F)E3 o, [V 0 (% d“’/ﬁMl s (U8 0 ()] L5 g [Q]dw'} dodBdf

R2

1 .
= 47r2b1b2///ﬁ%fl,Mz[f]exp{;bl[dlw%—zﬂl(wl —alﬂl)—alﬁﬂ}

G R R?
_ aﬂ)) exp { _Zzaz (12 + Zyzﬁz)}]

X Fq lexp{ b (yl + zylﬁl)} V0,0 <Re(w

X exp { 20, [daw3 — 265 (w2 — a2 f32) — azﬁz]}

{/‘C%Il M, [f]£%1 M, [wg,ffa,e( )]d“’/ﬁMl M, [g] EIJP\%,MZ [1/)51\/,123,9(’()]5[‘*’/} dadBd

2 R2

XeXP{zb [dlwl =281 (w) —alﬂl)—alﬁﬂ}

x Fq [exP { —la) (y]Z + 2y161)} Va,0,0 <Re (w baﬁ)) exp { 7;:’2 (y% + ZyQBZ)H

X exp {2‘22[6520.}5 — Zﬁg(wé — azﬂz) - azﬁg]}

x LE  Tg]dwdw dadBdo

| .
= 520, ///C%I,le [f]exp {ijz[dzwg = 2B (w2 — azfa) — azﬁ%}}

G R2 R2

X Fq lexp { _;16“ (y7 + 23/1»31)} %00 <R9 (w _ba5>> CXP{ Z z (13 + 2@/252)}]

X exp{Zb [d]wl 251 (wl — a]ﬁl) — alﬂlz — dlwf + 25] (w'l — (Z]B]) -+ a]ﬁlz]}

X Fq lexp { A (vi + 2y151)} ¥a,0,0 <R9 (WI ;aﬂ)> CXP{ g 23 + 22/2»32)}]
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X exp { T [d2w2 2B (wy — axf3p) — agﬁg]} L8 a, [9] dwdw'dadBdo

| y
— g | ] [ Canl exp{ 5t - 22002 - ) - arsdl

G R? R?

x Fy [exp { b, (y] + Zylﬁl)} V00,0 (Re (w —ba5>> exp { _ij (2 + 2y2ﬁ2)}]

X exp {Z_bj[dl(wlz —wi) = 281 (wi — wi]}

x Fq [exp {b( Yi +2y1/31)} %00 <R9(wl ;aﬂ)> GXP{ g (13 +2y252)}]

X exp { b [dzwz 2B (wy — axf3p) — agﬂg]} ﬁ%th [9] dwdw'dadBdo

—47r21b1b2/O////ﬁ%&[th[f]exp{z_b‘i[dzwg—Z,Bz(w—azﬁz)—azﬂg]}

0 —m R R2 R2
B)) exp { —gzaz (v3 + 2y232) }]

x Fq lexp{; (y1+2y151)}¢a00<39( 5

xexp{_;;fl (w%—wiz)}/exp{ }
R

x Fq lexp{ by (1/1 +2y151)}%,0,0<R9(w ;aﬂ)>e P{

X exp { T [daw} — 285 (wh — a232) — azﬂg]} £Y 9] dwde dpyddo

—47T21b1b2/C)////LH]\;[th[f]exp{z_li[dzwg—Qﬁz(wz—azﬂz)—azﬁg]}

0 —m R R2 R2

x Fy [exp { ; (y2 + 2y161)} V00,0 <Re (w —ba5>> exp { _Zzaz (2 + 2y252)}]

exp{ ot (ut — ) fnder - of)

x Fy [exp {b.(?h + 2y151)} %a,0,0 <R9 (wl ;aﬂ)> exp { g (5 + Zyzﬁz)}]

X exp { T [d2w2 2B (wy — axf3p) — agﬂg]} L8 a, [g] dwdw'dB>dfdo

47T2b2 /////L‘M‘ i eXp{zb [daws — 22 (wn — a232) —azﬂg]}

-7 R R R2

x Fy lexp{ h (yl+2y161)}1/)a)0)0<39(w—baﬂ>>exp{_l{:z(yg—l—Zyzﬁz)}]

X /exp —idy (W — ) b 8(wy —w))dw!
2b
R

(yz + Zyzﬂz)}]
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x Fq [exp { g3+ 2y151)} P00 <Re (w/ ;a5)> exp { Z 23 + Zyzﬂz)}]

X exp { T [dzwz 2B (wh — axfB2) — azﬁg]} EIJE\HIMMZ [g} dwdwhdBrdfda

= ﬁ%z 7////[1}%[])% [f] exp {Z_Ii[dzw% = 2B (w2 — a232) — azﬁg]}

0 —m R R R2

x Fq lexp { ;al (yi + 21/151)} 0,00 <R9 (w _ba5>> exp { —Zzaz (y3 + 21/252)}]
x Fy [CXP { b Lyt + 23/151)} Ya,0,0 <R9 (W/ baﬁ)) exp {gaz(yg + Zyzﬂz)}]
! >

X exp {ZJb[dzw; —2Ba2(wh — ax ) — azﬁg]} 55%11 M 9] dwdw)dBrdfdo

“it | [ [ ] [

0 —mR R R2

X exXp { b, [d2w2 Zﬁz(wz - azﬁz) — azﬂ% - dgwéz + 252(0.)5 — azﬂz) + azﬁ%]}

Fq lexp {_;lal(y]2 + Zylﬁl)} V.00 (Re (W —baﬂ>> exp{ z 2 (2 + 2y252)}]
Fq [CXP { —2101 (v + 21/151)} 1a,0,0 <R9 (w ;aﬁ)) exp { —jzaz (13 + 23/252)}]

X LY 9] dwdw)dBrdbda

= 47:21)27]///11%1,]\42 [f] exp{z_bz [dz(w% —w;) — 2B (w2 —Wé)}}

0 —m R R R2
) {202

x Fy leXp { —;ICH (yi + 22/151)} Ya,0,0 <Re<
x Fq [CXP {b(yl + 23/151)} Ya,0,0 <R9 (w ba5)> exp {g:z(yg + Zyzﬂz)}]

x LE 1 [g]dwdwhdBrdbda

471'21)2////EM‘ vl eXp{ (3w }/e"p{f “2“*’5)}6%
R

0 —m R R2

Fq leXP { _glal (yi + 22/151)} %a,0,0 (Ra (w —baﬁ)> exp { —jzaz (3 + 2y262)}]

X L3, [9] dwdwydfde

1FT —idy )
:m////ﬁ%hmm CXP{ 2 (W%—wé)}bﬂ(wz—wé)

0 —m™ R R2

X
X

€

=n

2

X
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2
Fq leXP { b L+ Zylﬁl)} Ya,0,0 (Re <w baﬂ)) exp {;:2(2/% + 2y262)}] |

X L5 1, (9] dwdwydfdo

jdz 2 2
L] [ Sl /&ﬁZMw—@@wwwm@

0 —7m R2

Fq leXP { _glal (yi + 2?/151)} Ya,0,0 (Ra (w —baﬁ>> exp { Z 2 (3 + 23/252)}]

X ﬁ%l M [g] dwdfda

“sri ] [t

0 —m R?

Fq lexp { b, L} + 2y1ﬂ1)} %a,0,0 (Re (w _baﬁ)> exp { —Zzaz (5 + 23/252)}]

X L']]}\I;[] M [g] dwdfda

X

2

X

2

X

a, ™

2 -
271'\/b1b2 /EMl M2 //‘EI\/[]JWZ ,ﬁ o(x )] (w)‘ d@daﬁ%th [g]dw

0 —m
= blbzcw <‘CM1,M2 [f] ) ‘CMI,MZ [g] >L2(R2,H)
= 0102Cy (f, 9) o ey -
This completes the proof. O

Corollary 3.5. For f = g, we have the following identity:

2
J|[£8 1] (@.8.60)| dadBas = bibaCull e (3.5)
g

Now we prove the inversion formula for the quaternion linear canonical curvelet transform
using parseval’s formula.

Theorem 3.6. (Inversion Formula). Suppose that ¢» € L*(R?,H), then any quaternion signal
f € L*(R?, H) can be reconstructed from the quaternion linear canonical transform [Fﬁf o f } (o, B,6)
by the following formula:

M
Jx) blbzcw /// Ui f| (@, B,0)015 o (x)dadBdb. (3.6)

—7 R2

Proof. By parseval’s formula for QLCCT, for any arbitrary g € L*(R?, H), we have

bibsCos (f 9) ogme sy = / T f](, B, 6)TYg] (@, B, 6)dadBd

[T £)(e, 8,6) (g waﬁg(x)>L o,y 1040

l()\ Q\Q

T )0 8,0) (V2lao(3):9) .-, dadBa8
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/ [T&" fl(e, B,0) / Aty o (x)g(x)dxdadBde

g

= / / [CX f)(ev, B, 0)w2y o (x)dadBddg(x)dx

:</[ maﬁm%gAﬁmwwﬂ@O

G L2(R2,H)
where we use Fubini’s theorem to obtain second last inequality. Therefore, we have

bm%ﬂw=/[ (o, B,0)6 , (x)dadBdo
g

]W
or  f(x)= b1b2cw/// r aﬁe)waﬁe( x)dadBdo.

—7 R2

This completes the proof. O

In the next theorem we shall present a complete ''characterization of range''of the pro-
posed quaternion linear canonical curvelet transform.

Theorem 3.7. (Characterization of Range) If f € L* (R? x (0,a9) x [—m, 7)), then f is the
QLCCT of a certain square integrable function if and only if

fle,B8,0") =

blbzc /f a,8,9) <¢aaev% B, 9/>dad6d9. (3.7)

Proof. Let f belongs to the range of proposed transform Fé\f . Then there exists a square inte-
grable function g such that {Fﬁfﬁ g] = f. In order to show that f satisfies (3.7), we go forward
by using inversion formula as

J.B.0) = [Tg| (..
= / g(x)wi/,[fﬁ/ o (x)dx

R2
1 —_—
B / b1b20¢ / |: j| (Oé '8 a)wa,ﬁe( )dad/@dewa B, 9,( )dX
b1b20¢ // F]W a ’8 9)¢a,69( )¢a B, 9/( )dxdadﬂd&
g R?
1 —_—
B bIbZC’w/ |: g] @ ﬂ 9 {/wa B, 0 ’(/}a/i@,ﬂ’ (X)dX} dad,@d&
G

— 1 M M, M,
= gy | (9] @0B.0) (0 ) 5 ot
g

= 0) (M pMs dadBdo.
blbzcw /f(aaﬁa ) <waﬂ79’wa ,B',0 >L2(R2,H) adp
G
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Conversely suppose that f satisfies (3.7). Then we show that there exists a function g €
L*(R?,H) satisfying [Fﬁ“ g} = f. Consider

9(x) =

blbzc /f o, 3,6) waﬁﬂdadﬁde

First, we show that g € L?(IR?, H).Therefore, we have

ol e = |

R2

- [ s

1

g(x)g(x)dx

/f a,B,0)¢ aﬁgdadﬁdﬂ}

b16,Cy

/ fla, B0y, e,da’d,@’de’} dx

0) a0 dx | dadBdo
blszwbleCw//f a ’6 (/waﬁ(ﬂ/}a B0 X) 167 ﬂ

" bhhCyhibCy )

1

1
- 7/f(o/
hibCy )

" bibCy

1

x f(o/,B,0")do’dB'do’
//f(a,ﬁﬂ) <¢i{§,g,¢gfgw,>dadﬁd9
g
x f(o/, B, 6")do’ dB' db’
8.0 (o, 3,60 do’dB'do’

[Fi—

Besides , as a result of the renowned Fubini-theorem, we get

Tg] @ 8.0) = [ gt G

This completes the proof.

R2

M. oy
blbzcw/ /fa B,0)1 aﬁadad,@de Vor's o (x)dx

b1b26’¢

- blszw
g

/ f(a,8,0) / Yy gy, dxdadBdo

/f(a,ﬁﬁ) <w;‘{;,9, ¢;‘?§6,’9,> dadBdo

= f(a/,8,0).

4 Uncertainty Principles for Quaternion Linear Canonical Curvelet

Transform

Uncertainty Principle is one of the fundamentals of harmonic analysis and signal processing. In
harmonic analysis, the classical Heisenberg’s uncertainty principle gives information about the
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spread of a signal and its Fourier transform by asserting that a signal cannot be sharply localized
in both the time and frequency domain [21]. That is, if we restrict the behaviour of one, we
lose control over the other. Heisenberg’s Uncertainty Principle in harmonic analysis bears a vital
significance in time frequency analysis for it supplies a lower bound for optimal resolution of a
signal in both the time and frequency domain. Different settings witness the enlargement of the
principle and many analogues have appeared in the literature [3, 9, 21, 10, 33]. In this section, we
will establish the proof of Heisenberg’s uncertainty principle and logarithm uncertainty principle
associated with the proposed transform (3.1). In a first, we demonstrate the following lemma.

Lemma 4.1. Let ov € L*(R* H), be any admissible quaternion curvelet , then for every f €
L*(R?,H), we have

T ay
2
bibaCy / |, Fylf] (@) |5 de = / / / ‘wkc%{gth [Ty f](w)’HdwdadH.
R2

-7 0 R2

Proof. From Parseval’s formula of quaternion linear canonical curvelet transform, we have

T ap

0102Cy (f, 9) ooy = / / / [Tg" f] (. B,60) [T g (e, B, 0)dBdadb.

-7 0 R2

Now applying the Plancheral theorem of two sided QFT on L.H.S and plancheral’s theorem of
QLCT to the B-integral on R.H.S of above equation, we obtain

bbaCo (F L) Fola) oo / / e [ 1) L [T (), o,
—7 0

On multiplying both sides by |wy| , we get

T Qg
b1b20¢ <’wqu[f], wk]:q [g]>L2(R2’H) = / / <wk£%1,M2 [FI]E\]I4S [f]v wkﬁ]}-\l}l,Mz [Fﬁjs [g]> 2(T2 dadp.

L2(R2,H)
—7 0
For f = g, we have
™ ag 2
b1b20¢/|wk}'[ w)[% dw = ///‘wkﬁ g [T f](w)’HdwdadH.
R2 —mT 0 R2
This completes the proof. O

Theorem 4.2. Let v € L*(R? H), be any admissible quaternion curvelet , then the quaternion
LCCT Fﬂl\fs [f)(«, B, 0) satisfies the following uncertainty inequality:

///ﬁkz,[pﬁgsf} (a,,a,e)\;ldﬁdeda/|wqu[f](w)|ﬁﬂdw
0 —7 R2 R2
b3
> ZblszwaHLz R?H)"

Proof. Using the Heisenberg’s inequality for the QLCT [26], we can write

1/2

) 2y
/mﬁ’f(x)‘;ldx {/RZ wi’ﬁ%thz [f] (w)‘Hdw} > ?k

R2

xX)pdx. (@)

R2
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Where k=1,2

Considering Ty * [f] (e, B, 0) as a function of 3 and replacing f by T'y*[f](c, B,6) in (4.1), we
obtain

1/2
2 1/2
{ / 5| [rﬁfé‘f](a,ﬂﬁ)!;dﬁ} { /R k| £ [F%ﬂf](a,ﬂ,e)(w)\Hdw}
R2

2

b

> % [ | fleso) . @2
2 Jre

Integrating (4.2) with respect to measure dadf and using (3.5), we have

H

/2

// /52 [T f) 0) Ve M * l/zded
k | (o, B, |Hdﬁ {/RZ wk’£M,,M2 [FH f] (a,ﬁ,&)(w)‘H ‘*’} o

0 —m
> b;// [ |0 ;

b
= 5 bibaCyl I )

Now applying Cauchy-Schwartz inequality and Fubini theorem ,we obtain

ay T 1/2
{ / / / 8% [T f] (a,ﬁ,e)ﬁﬂdﬂdeda}

0 —m R?

{ / / [ w05 (a,,@ﬂ)(w);dwd@da}l/z

br
= 7b1b20¢‘|f||ZL2(R2,H)'
Now applying lemma (4.1) into L.H.S of above equation, we get

dBdfda

ay T 1/2 %
{///B’ﬂ[Fﬁsﬂ(a’ﬁ’a)’;dﬁd%a} {blbz%/qu[ J(w >Hd"’}

0 —7m R2

b
> ?kb1b20w”f||2L2(Rz,H)

ag 1/2 1
{///ﬁkzl[F%sf](a,ﬂ,a)&dﬁdeda} {/qu[f](w)% dw}
e

or,

0 —7R?

bk 2
> ————biC
= 2/bibs /7011} 122 ¢||f”L2(R2,H)

Squaring both sides we get

///5k2| T4 f](, B,0) |Hd5d9da/|wk}‘

0 —m R2

S
L Coll L@ m):
This completes the proof.
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Next, we will prove the logarithm uncertainty principle associated with QLCCT.

Theorem 4.3. Let f € L>(R?,H), be the quaternion function , then the quaternion LCCT
Fﬁj\fs [f](e, B, 0) satisfies the following uncertainty principle:

/ao/ﬂ/lnm’[l"ﬁﬁf] (O"ﬁ’e)‘;dﬂdada”lbﬁw/Iwqu[f](w)ﬁﬂdw

0 —m R2 &

> (D +1n 8] bibaCl 11 g s
r'(1/2)
r(1/2)

Proof. The logarithm Uncertainty principle for the quaternion linear canonical transform is given
by [5]

where D = ( —In 7r> and I denotes the Gamma function.

[l 1R dx - [l | @) do > (D) [17Rdx @3
R? R2 R2

Now we shall identify [Fé\fs f](e, B,6) as a function of 3 and replacing f(x) by Fﬁfs [f](a, 3,0)
in (4.3), we obtain

M, ¢ M. 2

tn 3| [0 1] (0, 8.0)]_ 4B+ [ o] | €5, s [TH 1] (00 8,0) ()] o

R? R?

> (D+ln|b\)/‘[rﬁfsf] (a,ﬁ,Q)’;dﬁ.
2

Now integrating above equation with respect to dadf and using fubini’s theorem, we obtain

f / / In 8| |[T4 /] <a,ﬂ,9>];d5dada

0 —m R?

ap T

///]""""5 an[TE"f (aﬁﬁ)(w));dwdeda

0 —7 R2
> (D +1n|b| [ [Tg" £]( ,5,9)2 dBdfda.  (4.4)
( n )O/ZR/’ H @ ‘]HI @

Now using lemma (4.1) for wy,?> = In |w| in L.H.S of (4.4) and corollary (3.5) on R.H.S of (4.4),
we get

///ln‘m’ [T /] (a8, 9)‘ dﬁdad@”lbzw/mkf )| dw

0 —m R2

> (D +1n[b])bib2Coll 12 e
This completes the proof. O

References

[1] O. Ahmad, N. A. Sheikh and F. A. Shah, Fractional Multiresolution Analysis and associated scaling
functions in L*(R), Analysis and Mathematical Physics 11, 1-20 (2021).



Quaternion Linear Canonical Curvelet Transform 659

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

0. Ahmad, N. A. Sheikh and F. A. Shah, Fractional biorthogonal wavelets in L*(R), Applicable Analysis,
(2021).

O. Ahmad and N. A. Sheikh, Novel special affine wavelet transform and associated uncertainty principles,
International Journal of Geometric Methods in Modern Physics 18 (2021).

M. Bahri and R. Ashino, A simplified proof of uncertainty principle for quaternion linear canonical trans-
form, Abstract and Applied Analysis, Hindawi (2016).

M. Bahri and R. Ashino, Logarithmic uncertainty principle for quaternion linear canonical transform,
International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), (140-145) (2016).

M. Bahri, E. Hitzer, R. Ashino and A. Hayashi, An uncertainty principle for quaternion Fourier transform,
Computers and Mathematics with Applications 56, 2398-2410 (2008).

B. Barshan, M. A. Kutay and H. M. Ozaktas, Optimal filtering with linear canonical transformations,
Optics communications 135, 32-36 (1997).

M. Y. Bhat and A. H. Dar, Multiresolution analysis for linear canonical S transform, Advances in Operator
Theory 6, 1-11 (2021).

M. Y. Bhat and A. H. Dar, The algebra of 2D Gabor quaternionic offset linear canonical transform and
uncertainty principles, The Journal of Analysis, (2021).

M. Y. Bhat and A. H. Dar, Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-time Quater-
nion Offset Linear Canonical Transform, arXiv:2110.02754 (2021).

E. J. Candés and D. L. Donoho, Ridgelets: a key to higher dimensional intermittency, Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
357, 2495-2509 (1999).

E. J. Candés and D. L. Donoho, Recovering edges in ill-posed inverse problems: Optimality of curvelet
frames, The Annals of Statistics 30, 784—842 (2002).

E.J. Candés and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with
piecewise C? singularities, Communications on Pure and Applied Mathematics 57, 219-266 (2004).

E. J. Candés and D. L. Donoho, Continuous curvelet transform: I. Resolution of the wavefront set, Appl.
Comput. Harmon. Anal. 19, 162-197 (2005).

E. J. Candés and D. L. Donoho, Continuous curvelet transform: II. Discretization and frames, Appl.
Comput. Harmon. Anal. 19, 198-222 (2005).

E. J. Candés and L. Demanet, The curvelet representation of wave propagators is optimally sparse, Com-
munications on Pure and Applied Mathematics 58, 1472-1528 (2005).

S. A. Collins, Lens-system diffraction integral written in terms of matrix optics, Journal of the Optical
Society of America 60, 1168-1177 (1970).

H. De Bie , New techniques for the two-sided quaternion Fourier transform, proceedings of Applied Geo-
metric Algebras in Computer Science (2012).

M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image repre-
sentation, IEEE Transactions on Image Processing 14, 2091-2106 (2005).

Q. Feng and B. Z. Li Convolution and correlation theorems for the two-dimensional linear canonical
transform and its applications, IET Signal Processing 10, (2016) 125-132.

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey Journal of Fourier anal-
ysis and applications 3, 207-238 (1997).

J. J. Healy, M. A. Kutay, H. M. Ozaktas and J.T. Sheridan, Linear Canonical Transforms, Springer, New
York (2016).

E. Hitzer, Quaternion Fourier transform on quaternion fields and generalizations, Advances in Applied
Clifford Algebras 17, 497-517 (2007).

E. Hitzer and S. J. Sangwine, Quaternion and Clifford Fourier transforms and wavelets, Birkhduser, Basel
(2013).

A. A. Khan and K. Ravikumar, Linear canonical curvelet transform and the associated Heisenberg-type
inequalities, International Journal of Geometric Methods in Modern Physics 18, (2021).

K. I. Kou, J. Y. Ou and J. Morais, On uncertainty principle for quaternionic linear canonical transform,
Abstract and Applied Analysis, (2013).

G. Kutyniok and D. Labate, Resolution of the wavefront set using continuous shearlets, Transactions of
the American Mathematical Society 361, 2719-2754 (2009).

J. Li and M. W. Wong, Localization operators for curvelet transforms, Journal of Pseudo-Differential
Operators and Applications 3, 121-143 (2012).

M. Moshinsky and C. Quesne, Linear canonical transformations and their unitary representations, Journal
of Mathematical Physics 12, 1772-1780 (1971).



660 Arshad Ahmad Khan and Ravikumar. K

[30] D. Mustard, Uncertainty principles invariant under the fractional Fourier Transform, J. Aust. Math. Soc.,
ser. B33, 180-191 (1991).

[31] H. M. Ozaktas, Z. Zalevsky and M. A. Kutay, The fractional Fourier Transform with Applications in
Optics and Signal Processing, Wiley, New York (2000).

[32] S. C. Pei and J. J. Ding, Eigen functions of the offset Fourier, fractional Fourier and linear canonical
transform, Journal of the Optical Society of America 20, 522-532 (2003).

[33] E. Wilczok, New uncertainty principles for the continuous Gabor transform and the continuous wavelet
transform, Documenta Mathematica 5, 201-226 (2000).

[34] T. Z. Xu and B. Z. Li, Linear Canonical Transform and Its Applications, Science Press, Beijing, China
(2013).

[35] A. I Zayed, Sampling of signals bandlimited to a disc in the linear canonical transform domain, /EEE
signal processing letters 25,1765-1769 (2018).

[36] Q.Zhang, Zak transform and uncertainty principles associated with linear canonical transform, /ET signal
process. 10, 791-797 (2016).

Author information

Arshad Ahmad Khan, Department of Mathematics, Annamalai University, Annamalai Nagar, -608002, Tamil
Nadu, India.
E-mail: karshad .maths@gmail.com

Ravikumar. K, Engineering Mathematics Section, Faculty of Engineering and Technology, Annamalai
University Annamalai Nagar, -608002, Tamil Nadu, India.
E-mail: ravik672003@yahoo . com

Received: September 9th, 2021
Accepted: December 27th, 2021



	1 Introduction
	2  Basic notions and preliminaries 
	3 Quaternion Linear Canonical Curvelet Transform (QLCCT)
	4 Uncertainty Principles for Quaternion Linear Canonical Curvelet Transform

