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Abstract We consider the controllability of an abstract parabolic system by using switch-
ing controls. More precisely, we show that, under general hypotheses, if a parabolic system is
null-controllable for any positive time with N controls, then it is also null-controllable with the
property that at each time, only one of these controls is active. The main difference with previous
results in the literature is that we can handle the case where the main operator of the system is
not self-adjoint. We give several examples to illustrate our result: coupled heat equations with
terms of orders 0 and 1, the Oseen system or the Boussinesq system.

1 Introduction and main result

Let us consider the following system
z′ +Az =

N∑
j=1

Bjuj in (0, T ),

z(0) = z0,

(1.1)

where z is the state of the system and uj are controls. We are interested by the problem proposed
in [23] where the idea is to control z by using “switching” controls so that only one control uj
is active at the same time. We consider here parabolic systems in the sense defined below. Our
aim is to generalize the results already obtained in [23] and in [6]. In [6], the authors manage to
prove the null-controllability of the system (1.1) with switching controls in the case where A is a
self-adjoint operator in a Hilbert space and if (1.1) is null-controllable for all T > 0 without the
switching conditions on the controls. They also obtain this result in the case where the state space
is finite-dimensional and they conclude with a result for non self-adjoint operator in a Hilbert
space but with conditions on A that can be quite restrictive (see the discussion after Theorem 5.1
in [6]). Here, we show a more general result with less restrictive conditions on A and we give at
the end of this article several examples showing that we can handle many important situations.
We also state a corresponding result for the approximate controllability with switching controls.

We assume that, in (1.1), A : D(A)→ H is an unbounded operator in a Hilbert space H, and
Bj , j = 1, . . . , N are control operators satisfying Bj ∈ L(Uj ,D((A∗)k)′) for some k > 0, where
Uj is a Hilbert space. Here and in what follows, we identify H with its dual and for a Hilbert
space V ⊂ H such that V is dense in H, V ′ stands for the dual space of V with respect to the
pivot space H.

In what follows, we assume that

−A is the infinitesimal generator of an analytic semigroup
(
e−tA

)
t>0 . (H1)

This implies that the spectrum σ(A) of A is contained in a sector of C (see, for instance, [3,
Theorem 2.11, p.112]). We assume moreover that

σ(A) is only composed by eigenvalues (λj) with finite algebraic multiplicity. (H2)
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We recall that one can define the algebraic multiplicity of λj by using a projection operator

P(λj) =
1

2πı

∮
Γ

(λI −A)−1dλ, (1.2)

where Γ is a positively oriented simple closed curve enclosing λj but no other point of σ(A) (see
[17, pp. 180-181]). Then, the algebraic multiplicity of λj is the dimension of ImP(λj). There
exists n ∈ N∗ such that ImP(λj) = Ker(λjI − A)n and an element of ImP(λj) is called a root
vector of A. We denote by mj the smallest n satisfying the above equality (the index of λj). We
have similar definitions for A∗ and we assume that

The root vectors of A are complete in H. (H3)

Our main result is

Theorem 1.1. Assume (H1), (H2), and (H3). If (1.1) is null-controllable in any time T > 0,
then it is null-controllable in any time T > 0 with the following constraint on the controls
(uk)k=1,...,N :

N∏
j=1

∑
k 6=j

‖uk(t)‖Uk

 = 0 a.e. t ∈ (0, T ). (1.3)

The condition (1.3) means that at most one control uk is active (not null) at the same time. In
the case N = 2, (1.1) writes{

z′ +Az = B1u1 +B2u2 in (0, T ),
z(0) = z0,

(1.4)

and the condition (1.3) reduces to the condition

‖u1(t)‖U1‖u2(t)‖U2 = 0 a.e. t ∈ (0, T ). (1.5)

Remark 1.2. To be more precise in the statement of Theorem 1.1, let us define for r = k + α,
k ∈ N, α ∈ [0, 1], the spaces:

Hr
def
=
[
D(Ak+1),D(Ak)

]
1−α , H−r

def
=
[
D((A∗)k+1),D((A∗)k)

]′
1−α , (1.6)

where [·, ·]· denotes the interpolation space obtained with the complex interpolation method.
Then, there exists γ > 0 such that

Bj ∈ L(Uj ,H−γ) (j = 1, . . . , N). (1.7)

From standard result on parabolic systems, if uj ∈ L2(0, T ;Ui) and if z0 ∈ [H1−γ ,H−γ ]1/2, then
the solution z of (1.1) satisfies

z ∈ H1(0, T ;H−γ) ∩ L2(0, T ;H1−γ) ∩ C0([0, T ]; [H1−γ ,H−γ ]1/2) (1.8)

and Theorem 1.1 states that if (1.1) is null-controllable for any time T > 0 in [H1−γ ,H−γ ]1/2

with controls in L2(0, T ;Uj) then for any z0 ∈ [H1−γ ,H−γ ]1/2, there exist uj ∈ L2(0, T ;Uj)
satisfying (1.3) and such that z(T ) = 0.

Note that, using the parabolic regularity, if z0 is in a larger space H−γ′ , with γ′ > γ, then
taking uj ≡ 0 in (0, ε) with ε ∈ (0, T ) arbitrarily small, we have z(ε) ∈ [H1−γ ,H−γ ]1/2 and we
deduce the null-controllability with switching controls.

Remark 1.3. With respect to the literature, we generalize here the results obtained in [23] and in
[6]. In [6], the authors assume that the operator A is self-adjoint or thatH is of finite dimension.
They have also obtained an extension in the case of a parabolic system (Theorem 5.1 in [6]) but
they need a hypothesis on the semigroup

(
e−tA

∗
)
t>0

and they explain that this hypothesis is

difficult to check in practice with some examples. Here we have more general hypotheses on
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A and there is a typical situation where (H1), (H2) and (H3) hold: if A can be decomposed as
A = A0 +A1 with A0 a self-adjoint operator in H with compact resolvent, D(A1) ⊂ D(Aα0 ) for
some α ∈ [0, 1) and the eigenvalues µj of A0 satisfy for some 1 6 p <∞ and for some J > 1,

∞∑
j=J

1
|µj |p

<∞, (1.9)

then from a classical result for the perturbation of analytic semigroup (see, for instance, [19,
Theorem 2.1, p. 80]), (H1) holds. Moreover, one can use the Keldy Theorem (see [15, Thm.10.1,
p.276] or [21, Theorem 3, p.394] combined with [21, Relation (6), p.393 and Lemma 2, p.395]))
that yields (H2) and (H3).

With a similar proof as Theorem 1.1, one can also obtain the following result:

Theorem 1.4. Assume (H1), (H2) and (H3). If (1.1) is approximately controllable for some time
T > 0, then it is approximately controllable in time T > 0 with the constraint (1.3).

Remark 1.5. We can make the above statement more precise, using Remark 1.2. If (1.1) is
approximately controllable for some time T > 0, and if Bj satisfies (1.7), then for any z0, z1 ∈
[H1−γ ,H−γ ]1/2 and for any ε > 0, there exist uj ∈ L2(0, T ;Ui) satisfying (1.3) so that the
solution z of (1.1) (satisfying (1.8)) verifies

∥∥z(T )− z1∥∥
[H1−γ ,H−γ ]1/2

6 ε.

The outline of this article is as follows: in the next section, we show Theorem 1.1 and give
the main ideas to adapt the proof to Theorem 1.4. Then in Section 3, we present some examples
to illustrate this result.

2 Proof of the main result

The proof of Theorem 1.1 follows the same scheme as in [23] and in [6]. The new part of this
proof corresponds to Lemma 2.2 . We only repeat all the proof for sake of clarity. To simplify,
we only show Theorem 1.1 for N = 2. The details of the proof for N > 2 can be found in
[6]. Finally, we can also assume that Bj ∈ L(Uj ,H) (the case of “bounded” control operators).
Indeed, taking µ0 > − inf

j>1
Reλj , one can apply (µ0 + A)−k to (1.4) and we obtain the control

system {
z̃′ +Az̃ = B̃1u1 + B̃2u2 in (0, T ),
z̃(0) = z̃0,

(2.1)

where

z̃
def
= (µ0 +A)−kz, z̃0 def

= (µ0 +A)−kz0, B̃j
def
= (µ0 +A)−kBj ∈ L(Uj ,H).

If there exist controls uj satisfying (1.5) and such that z̃(T ) = 0 then it implies Theorem 1.1.
First, we consider the adjoint system of (1.1){

ϕ′ +A∗ϕ = 0 in (0, T ),
ϕ(0) = ϕ0,

(2.2)

that is
ϕ(t) = e−tA

∗
ϕ0 (t > 0).

Since (1.1) is null-controllable in any time τ > 0, we have by a standard duality argument (see,
for instance, [22, Theorem 11.2.1, p.357]) the following observability inequality:∥∥∥e−τA∗ϕ0

∥∥∥
H
6 C(τ)

(∫ τ

0

{∥∥∥B∗1 e−tA∗ϕ0
∥∥∥2

U1

+
∥∥∥B∗2 e−tA∗ϕ0

∥∥∥2

U2

}
dt

)1/2 (
ϕ0 ∈ H

)
.

(2.3)
Following the proof of [6], we introduce the function

α(t) = 1 +
1
2

sin(ωt), (2.4)
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with ω ∈ R that will be fixed further. As explained in [6], where the authors introduce such
a function, many other choices are possible for α. We fix T > 0 and we define the following
function

∥∥ϕ0∥∥
X

def
=

(∫ T

0
max

{∥∥∥B∗1 e−tA∗ϕ0
∥∥∥2

U1

, α(t)
∥∥∥B∗2 e−tA∗ϕ0

∥∥∥2

U2

}
dt

)1/2

(2.5)

and due to the bounds of α, we deduce from (2.3) that∥∥∥e−TA∗ϕ0
∥∥∥
H
6 C

∥∥ϕ0∥∥
X

(
ϕ0 ∈ H

)
. (2.6)

Using that
(
e−tA

∗
)
t>0

is an analytic semigroup, the above relation implies that ‖ · ‖X is a norm.

We consider the closure of H with respect to this norm:

X def
= Clos‖·‖X H. (2.7)

Remark 2.1. Note that from (2.6), we can extend the application ϕ0 7→ e−TA
∗
ϕ0 into a bounded

map of L(X ,H). Using (2.3), for any τ ∈ (0, T ), we can also extend the application ϕ0 7→
e−τA

∗
ϕ0 into a bounded map of L(X ,H). Finally, for j = 1, 2, we extend

ϕ0 7→
[
t 7→ B∗j e

−tA∗ϕ0
]

into a bounded map of L(X , L2(0, T ;Uj)).

We can now define

J(ϕ0)
def
=

1
2
∥∥ϕ0∥∥2

X +
(
z0, e−TA

∗
ϕ0
)
H

(ϕ0 ∈ X ).

The function J is convex, continuous and coercive: there exists a minimizer φ0 ∈ X of J . First,
if φ0 = 0, then let us consider ϕ0 ∈ H. For any ε > 0,

J(εϕ0) =
1
2
ε2 ∥∥ϕ0∥∥2

X + ε
(
z0, e−TA

∗
ϕ0
)
H
> 0 = J(φ0)

and similarly,
1
2
ε2 ∥∥ϕ0∥∥2

X − ε
(
z0, e−TA

∗
ϕ0
)
H
> 0.

Dividing by ε and taking ε→ 0 in the two above relations, we deduce that
(
e−TAz0, ϕ0) = 0 for

any ϕ0 ∈ H and thus e−TAz0 = 0. In particular, the controls u1 = 0 and u2 = 0 in (0, T ) lead
the system to rest and satisfy the switching condition. Second, assume φ0 6= 0. Then, we apply
Lemma 2.2 below: it states that there exists ω such that the set

I0
def
=

{
t ∈ (0, T ) ;

∥∥∥B∗1 e−tA∗φ0
∥∥∥2

U1

= α(t)
∥∥∥B∗2 e−tA∗φ0

∥∥∥2

U2

}
(2.8)

is of Lebesgue measure equal to 0. We then define

I1
def
=

{
t ∈ (0, T ) ;

∥∥∥B∗1 e−(T−t)A∗φ0
∥∥∥2

U1

> α(T − t)
∥∥∥B∗2 e−(T−t)A∗φ0

∥∥∥2

U2

}
,

and
I2

def
=

{
t ∈ (0, T ) ;

∥∥∥B∗1 e−(T−t)A∗φ0
∥∥∥2

U1

< α(T − t)
∥∥∥B∗2 e−(T−t)A∗φ0

∥∥∥2

U2

}
.

We also define

j(t, ϕ0)
def
= max

{∥∥∥B∗1 e−(T−t)A∗ϕ0
∥∥∥2

U1

, α(T − t)
∥∥∥B∗2 e−(T−t)A∗ϕ0

∥∥∥2

U2

}



68 Mehdi Badra and Takéo Takahashi

and we note that the differentiate of j(t, ·) at the point φ0 in the direction ϕ0 satisfies

Dφ0j(t, ϕ0) =

 2
(
B∗1 e

−(T−t)A∗φ0, B∗1 e
−(T−t)A∗ϕ0

)
U1

if t ∈ I1,

2α(T − t)
(
B∗2 e

−(T−t)A∗φ0, B∗2 e
−(T−t)A∗ϕ0

)
U2

if t ∈ I2.

By considering all the possibilities for the maximum, one can show (see the appendix A of [6]
for more details) the existence of C > 0 such that∣∣∣∣1h (j(t, φ0 + hϕ0)− j(t, φ0)

)∣∣∣∣ 6 C

(∥∥∥B∗1 e−(T−t)A∗φ0
∥∥∥2

U1

+
∥∥∥B∗2 e−(T−t)A∗φ0

∥∥∥2

U2

+
∥∥∥B∗1 e−(T−t)A∗ϕ0

∥∥∥2

U1

+
∥∥∥B∗2 e−(T−t)A∗ϕ0

∥∥∥2

U2

)
(h ∈ (0, 1)).

Using the Lebesgue theorem and the fact that |I0| = 0, we deduce that

Dφ0J(ϕ0) =

∫
I1

(
B∗1 e

−(T−t)A∗φ0, B∗1 e
−(T−t)A∗ϕ0

)
U1

dt

+

∫
I2

α(T − t)
(
B∗2 e

−(T−t)A∗φ0, B∗2 e
−(T−t)A∗ϕ0

)
U2

dt+
(
z0, e−TA

∗
ϕ0
)
H
. (2.9)

Setting

u1(t)
def
= 1I1(t)B

∗
1 e
−(T−t)A∗φ0, u2(t)

def
= 1I2(t)α(T − t)B∗2 e−(T−t)A

∗
φ0 (2.10)

and taking ϕ0 ∈ H, we deduce that

Dφ0J = e−TAz0 +

∫ T

0
e−(T−t)A (B1u1(t) +B2u2(t)) dt.

Using that φ0 is a minimizer we deduce that the solution z of (1.4) with u1 and u2 defined by
(2.10) satisfies z(T ) = 0 whereas u1 and u2 satisfy (1.5).

This ends the proof of Theorem 1.1, provided we can prove that the set I0 defined by (2.8)
is of Lebesgue measure equal to 0. This is the new part of this proof since it is done without
assuming that H is finite dimensional or that A is self-adjoint.

Lemma 2.2. Assume that

ω /∈
{

Im (λk − λk′) ,
1
2

Im (λk − λk′) for all (k, k′) ∈ (N∗)2 such that Re(λk) = Re(λk′)
}
.

(2.11)
If φ0 6= 0 then |I0| = 0.

Before proving the above result, let us recall a result proved in [6] (that we have slightly
adapted):

Lemma 2.3. Assume (µj)
N
j=1 is family of N distinct real numbers and (pj)

N
j=1 a family of N

polynomial functions. Then

lim
t→∞

N∑
j=1

pj(t)e
iµjt = 0 =⇒ ∀j ∈ {1, . . . , N}, pj = 0.

Proof. Lemma 2.5 in [6] shows this result if pj are polynomials of degree 6 0. To prove Lemma
2.3, we consider

d
def
= max

j∈{1,...,N}
deg pj

that is > 0 if the pj are not all null. Then by taking the limit of the above sum divided by
td, Lemma 2.5 in [6] yields that all the monomials of pj of degree d are 0 which leads to a
contradiction.
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We can now prove Lemma 2.2.

Proof of Lemma 2.2. Assume that
|I0| 6= 0. (2.12)

Then, there exists n ∈ N∗ such that ∣∣∣∣I0 ∩
(
T

n
, T

)∣∣∣∣ 6= 0. (2.13)

On the other hand, using Remark 2.1, e−
T
nA
∗
φ0 ∈ H. This fact and (2.13) allow us to reduce the

proof of Lemma 2.2 to the case φ0 ∈ H.
Using (2.12), (2.8) and the analyticity of the semigroup, we deduce that∥∥∥B∗1 e−tA∗φ0

∥∥∥2

U1

= α(t)
∥∥∥B∗2 e−tA∗φ0

∥∥∥2

U2

(t > 0). (2.14)

From the eigenvalues of A, we can define an increasing sequence (σj) of R such that

{σj , j ∈ N∗} = {Reλk, k ∈ N∗} .

Let us define
Σ1

def
=
{
λk ; Reλk = σ1

}
, K1

def
= {k ∈ N∗ ; Reλk = σ1} .

From (H1) and (H2) there exists a positively oriented simple closed curve Γ1 enclosing Σ1
but no other point of σ(A∗). Then, we consider the projection operator (see [17, Theorem 6.17,
p.178])

P∗1
def
=

1
2πı

∮
Γ1

(λI −A∗)−1
dλ (2.15)

and we define
H+

def
= P∗1 (H) , H−

def
= (I − P∗1) (H) .

We have that
H+ =

⊕
k∈K1

Ker
(
A∗ − λkI

)mk ⊂ D(A∗),
where mk is the index of λk. We also define

A∗+ ∈ L(H+), A∗+z
def
= A∗z (z ∈ H+),

D(A∗−)
def
= H− ∩ D(A∗), A∗−z

def
= A∗z (z ∈ D(A∗−)).

Then, from Theorem 6.17 in [17, p.178], the spectra of A∗+ and of A∗− are respectively Σ1 and
σ(A∗) \ Σ1. In particular, there exists ε > 0 such that

inf
{

Reλ, λ ∈ σ(A∗−)
}
> σ1 + ε. (2.16)

Then, we set
φ+(t)

def
=
(
P∗1e−tA

∗
φ0
)
eσ1t =

(
e−tA

∗
+P∗1φ0

)
eσ1t, (2.17)

φ−(t)
def
=
(
(I − P∗1) e−tA

∗
φ0
)
eσ1t =

(
e−tA

∗
− (I − P∗1)φ0

)
eσ1t. (2.18)

Using that A∗− is the infinitesimal generator of an analytic semigroup and (2.16) (see, for in-
stance, [3, Proposition 2.9, p. 120], we deduce that for some constant C > 0,

‖B∗1φ−(t)‖U1
+ ‖B∗2φ−(t)‖U2

6 C
∥∥φ0∥∥

H e
−εt (t > 0). (2.19)

Moreover, there exist φk,` ∈ H+ ⊂ D(A∗), k ∈ K1 and ` ∈ {0, . . . ,mk} such that

φ+(t) =
∑
k∈K1

eı Imλkt
mk∑
`=0

t`φk,`. (2.20)
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Thus, we deduce from (2.14) that

‖B∗1φ+(t)‖
2
U1
− α(t) ‖B∗2φ+(t)‖

2
U2
→ 0 if t→∞, (2.21)

and using (2.4), we can develop the above expression as in [6]:

‖B∗1φ+(t)‖
2
U1
− α(t) ‖B∗2φ+(t)‖

2
U2

=
∑

k,k′∈K1

eı(Imλk−Imλk′ )t
mk∑
`=0

mk′∑
`′=0

t`+`
′
[
(B∗1φk,`, B

∗
1φk′,`′)U1

− (B∗2φk,`, B
∗
2φk′,`′)U2

]

− 1
4ı

∑
k,k′∈K1

eı(Imλk−Imλk′+ω)t
mk∑
`=0

mk′∑
`′=0

t`+`
′
(B∗2φk,`, B

∗
2φk′,`′)U2

+
1
4ı

∑
k,k′∈K1

eı(Imλk−Imλk′−ω)t
mk∑
`=0

mk′∑
`′=0

t`+`
′
(B∗2φk,`, B

∗
2φk′,`′)U2

.

This implies that ‖B∗1φ+(t)‖
2
U1
− α(t) ‖B∗2φ+(t)‖

2
U2

has the form
N∑
j=1

pj(t)e
iµjt of Lemma 2.3.

From this lemma, we deduce that all the polynomials pj = 0 and in particular the ones associated
with µj = 0 and µj = ω. From (2.11), these polynomials are respectively

∑
k∈K1

∥∥∥∥∥
mk∑
`=0

t`B∗1φk,`

∥∥∥∥∥
2

U1

−

∥∥∥∥∥
mk∑
`=0

t`B∗2φk,`

∥∥∥∥∥
2

U2

= 0

and

− 1
4ı

∑
k∈K1

∥∥∥∥∥
mk∑
`=0

t`B∗2φk,`

∥∥∥∥∥
2

U2

= 0

and we deduce that

∀k ∈ K1, ∀` ∈ {0, . . . ,mk}, B∗1φk,` = 0 and B∗2φk,` = 0.

The above relation combined with (2.17) and (2.20) implies that

B∗1 e
−tA∗P∗1φ0 = 0 and B∗2 e

−tA∗P∗1φ0 = 0 (t > 0).

Thus,
∥∥P∗1φ0∥∥

X = 0 and we deduce that P∗1φ0 = 0. Therefore, φ0 ∈ (ImP1)
⊥, where

P1 =
1

2πı

∮
Γ1

(λI −A)−1
dλ.

In particular,

φ0 ∈

⊕
k∈K1

Ker (A− λkI)mk
⊥ .

By induction, we deduce that φ0 is orthogonal to all the root vectors ofA. Using (H3), we deduce
that φ0 = 0.

Let us finish this section by giving some ideas to adapt the above proof in order to show
Theorem 1.4. The arguments are classical and thus we skip the details. We only consider the
case N = 2 and the case of Bj ∈ L(Ui,H), the other cases can be done similarly (note that we
would need in particular to replace the space H by the space [H1−γ ,H−γ ]1/2, see Remark 1.2
and Remark 1.5). Assume z0, z1 ∈ H and assume ε > 0. We want to obtain u1 ∈ L2(0, T ;U1),
u2 ∈ L2(0, T ;U2) satisfying (1.5) such that the solution of (1.4) (with initial condition z0) verifies∥∥z(T )− z1∥∥

H 6 ε.
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Then we replace the functional J of the proof of Theorem 1.1 by

Jε(ϕ
0)

def
=

1
2
∥∥ϕ0∥∥2

X +
(
z0, e−TA

∗
ϕ0
)
H
−
(
z1, ϕ0)

H + ε
∥∥ϕ0∥∥

H (ϕ0 ∈ H).

Then we have that Jε is convex, continuous in H. Moreover, one can show that

lim inf
‖ϕ0‖H→∞

Jε(ϕ0)

‖ϕ0‖H
> ε

so that Jε is coercive in H (see, for instance, [10]). Consequently, there exists a minimizer
φ0 ∈ H of Jε and the rest of the proof is the same as the proof of Theorem 1.1.

3 Examples

Here, we present some examples of application of Theorem 1.1. We focus in the case where A is
not self-adjoint, and we refer the reader to [6] for several interesting examples in the self-adjoint
case.

3.1 Coupled heat equations

Assume Ω is a bounded open set of Rd, with regular boundary. Let us consider m > 2 and a
nonempty open subset ω of Ω. We consider the following coupled system of heat equations:

∂tyj − dj∆yj +
m∑
k=1

(aj,k · ∇yk + bj,kyk) = 1ωuj in (0, T )×Ω,

yj = 0 on (0, T )× ∂Ω,

yj(0, ·) = y0
j in Ω.

(3.1)

Here dj ∈ R∗+, aj,k ∈ Rd, bj,k ∈ R (j, k ∈ {1, . . . ,m}). Using the Carleman estimates for
the heat equation (see, [14] or [12]), it is well-known that the above system is null-controllable
in L2(Ω)m with controls uj ∈ L2(0, T ;L2(ω)) (1 6 j 6 m). In the literature, there are lot
of works devoted to the possibility to decrease the number of controls while keeping the null-
controllability property. One can refer for instance to [1] for a survey of results until 2011.

Applying Theorem 1.1, we deduce here the following result:

Corollary 3.1. Assume y0 =
(
y0
j

)
j=1,...,m ∈ L2(Ω)m. Then for any T > 0, there exist uj ∈

L2(0, T ;L2(ω)), j = 1, . . . ,m with

m∏
j=1

∑
k 6=j

‖uk(t, ·)‖L2(ω)

 = 0 a.e. t ∈ (0, T )

such that the solution y of (3.1) satisfies y(T, ·) = 0.

Proof. We set

H def
= L2(Ω)m, D(A) def

=
[
H2(Ω) ∩H1

0 (Ω)
]m

, A = A0 +A1,

where
D(A0)

def
= D(A), D(A1)

def
=
[
H1

0 (Ω)
]m

= D(A1/2
0 ),

A0y
def
= (−dj∆yj)j=1,...,m , A1y

def
=

(
m∑
k=1

[aj,k · ∇yk + bj,kyk]

)
j=1,...,m

.

We also set
Ui

def
= L2(ω), Bjuj

def
= 1ωujej (j = 1, . . . ,m),

where (e1, . . . , em) is the canonical basis of Rm. To check (H1), (H2) and (H3), we use Remark
1.3 since the eigenvalues µj of A0 satisfy (1.9) from some 1 6 p < ∞ (by using Weyl formula,
see, for instance, [2, Section 1.6] ).
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3.2 The Oseen system

Assume Ω is a bounded open set of Rd, with regular boundary. Assume Γ is a nonempty open
subset of ∂Ω. Let us consider the controllability of the Oseen system:

∂ty − ν∆y +∇p+
(
yS · ∇

)
y + (y · ∇) yS = 0 in (0, T )×Ω,

div y = 0 in (0, T )×Ω,

y = u1Γ on (0, T )× ∂Ω,

y(0, ·) = y0 in Ω.

(3.2)

Here ν > 0 is the viscosity of the fluid and yS ∈W 1,∞(Ω). Usually, for physical motivation, one
has d = 2, 3 and yS is a stationary state. Note moreover that for the controllability of (3.2), one
can take yS ∈ L∞(Ω) (see [11]), but to simplify the presentation we take yS more regular. In the
above system, the control u is located at the boundary ; in the case of distributed controls, there
are several works devoted to the controllability of the Stokes or the Navier-Stokes system. Let
us quote for instance [11, 7, 16]. Some of these studies are devoted to the case of controls with
some vanishing components: see, for instance, [13], [8] and [4]. Let us also quote [9] where the
authors obtain the local null controllability of the Navier-Stokes system in dimension 3 with a
control having two vanishing components. Their method is quite different to the previous works
and is based on results of Gromov.

Let us define

H def
=
{
y ∈ L2(Ω)d ; div y = 0, y · n = 0 on ∂Ω

}
.

We denote by P : L2(Ω)d → H the orthogonal projection (the Leray projector). Due to the
incompressibility condition, the controls have to satisfy the condition∫

Γ

u · n dγ = 0 in (0, T ). (3.3)

Applying Theorem 1.1, we deduce here the following result:

Corollary 3.2. Assume y0 ∈ H. Then for any T > 0, there exists u ∈ L2(0, T ;L2(Γ))d satisfying
(3.3) and

d∏
j=1

∑
k 6=j

‖uk(t, ·)‖L2(Γ)

 = 0 a.e. t ∈ (0, T )

such that the solution y of (3.2) satisfies Py(T, ·) = 0. In particular, taking u ≡ 0 in (T,∞), we
deduce that the solution y of (3.2) satisfies y ≡ 0 in (T,∞).

Remark 3.3. As in [6], instead of using the canonical basis of Rd to decompose u, we could use
an orthonormal basis (τ1(x), . . . , τd−1(x), n(x)), x ∈ Γ, where n the normal to ∂Ω (so that τj(x)
is a tangential vector of ∂Ω at the point x). The proof below would be exactly the same and
we would obtain a controllability result for which at each instant of time, the control is either
tangential or normal.

Proof of Corallry 3.2. We consider the following operators

D(A) def
=
{
y ∈

[
H2(Ω) ∩H1

0 (Ω)
]d

; div y = 0
}
, A

def
= A0 +A1,

where
D(A0)

def
= D(A), D(A1)

def
=
{
y ∈

[
H1

0 (Ω)
]d

; div y = 0
}
= D(A1/2

0 ),

A0y
def
= P (−ν∆y) , A1y

def
= P

((
yS · ∇

)
y + (y · ∇) yS

)
.

To introduce the control operator, we write

Ui
def
=

{
ui ∈ L2(Γ) ;

∫
Γ

uini dγ = 0
}
,
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and we consider the Dirichlet operators Di : Ui → H defined by w def
= Diui is the solution of

λ0w − ν∆w +∇π +
(
yS · ∇

)
w + (w · ∇) yS = 0 in Ω,

divw = 0 in Ω,

w = uiei1Γ on ∂Ω,

(3.4)

for some λ0 > 0 large enough. Then we define Bi : Ui → D(A∗)′ by Bi
def
= (λ0I − A)PDi.

Following [20], one can write (3.2) under the form
Py′ +APy =

3∑
j=1

Bjuj in (0, T ),

Py(0) = Py0,

(3.5)

and

(I − P )y =
3∑
j=1

(I − P )Djuj in (0, T ). (3.6)

To check (H1), (H2) and (H3), we use Remark 1.3 since the eigenvalues µj ofA0 satisfy (1.9)
from some 1 6 p <∞ (see [18]).

3.3 The Boussinesq system

Assume Ω is a bounded open set of R3, with regular boundary. Assume ω is a nonempty open
subset of Ω. Let us consider the controllability of the Boussinesq system:

∂ty − ν∆y +∇p = u11ωe1 + θe3 in (0, T )×Ω,

∂tθ − ∆θ + y · ∇θS = u21ω in (0, T )×Ω,

div y = 0 in (0, T )×Ω,

(y, θ) = 0 on (0, T )× ∂Ω,

(y, θ)(0, ·) = (y0, θ0) in Ω,

(3.7)

where (e1, e2, e3) is the canonical basis of R3. Here ν > 0 is the viscosity of the fluid and
θS ∈ W 3,∞(Ω). In [5], the author obtained that the above system is null-controllable for any
T > 0. We keep the same notation for H as in the previous section. Applying Theorem 1.1, we
deduce here the following result:

Corollary 3.4. Assume (y0, θ0) ∈ H × L2(Ω). Then for any T > 0, there exists (u1, u2) ∈
L2(0, T ;L2(ω))2 satisfying

‖u1(t, ·)‖L2(ω) ‖u2(t, ·)‖L2(ω) = 0 a.e. t ∈ (0, T )

such that the solution (y, θ) of (3.7) satisfies (y, θ)(T, ·) = 0.

The proof is similar to the proofs in the previous sections and we skip it.
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