
Palestine Journal of Mathematics

Vol. 12(1)(2023) , 661–671 © Palestine Polytechnic University-PPU 2023

Wavelet based Numerical solution of Allen-Cahn and
Newell-Whitehead-Segel equations by Lifting schemes

L. M. Angadi and A. B. Deshi

Communicated by Suheil Khoury

MSC 2010 Classifications: Primary 65T60, 97N40; Secondary 49K20.

Keywords and phrases: Orthogonal and Biorthogonal wavelets; Lifting schemes; Allen-Cahn equations; Newell-Whitehead-
Segel equations.

Abstract Many of the phenomena that arise in mathematical physics and engineering fields
can be described by partial differential equations (PDEs). In this paper, we present wavelet-
based lifting schemes for the numerical solution of Allen-Cahn and Newell-Whitehead-Segel
equations using different wavelet filter coefficients. The numerical solutions obtained by these
schemes are compared with the exact solution to demonstrate the accuracy and convergence in
low computational time as compared with the existing scheme. Some test problems are taken to
exhibit the applicability and accuracy of the schemes.

1 Introduction

Partial differential equations (PDEs) occur in many branches of applied mathematics, for exam-
ple, in quantum mechanics, hydrodynamics, elasticity, and electromagnetic theory. The analyti-
cal behavior of these equations is a rather involved process and requires applications of advanced
mathematical methods. On the other hand, in recent years, greater importance has been shifted
from analytical techniques to numerical methods. The principal attraction of numerical meth-
ods is that solutions could be obtained for many problems which are not ready for analytical
treatment. The accessibility of modern digital computers paved the way for the development of
efficient methods for solving PDEs [1].
In general, PDEs with or without reaction terms are used as a fundamental tool to model a wide
class of phenomena occurring in the physical and biological sciences. Some of the equations of
this type are:

a) The Newell-Whitehead equation describes the dynamical behavior near the bifurcation
point for the Rayleigh -Benard convection of binary fluid mixtures.

b) The Allen-Cahn equation is a reaction–diffusion equation of mathematical physics which
describes the process of phase separation in multi-component alloy systems, as well as order-
disorder transitions.

c) Newell-Whitehead-Segel equation is one of the most important of amplitude equations,
which describes the appearance of the stripe pattern in two-dimensional systems.
Recently, many authors are proposed for the analytical and numerical solution of these equations;
some of them are: Adomian decomposition method [2], differential transformation method [3],
homotopy perturbation method, and homotopy analysis method [4], Haar wavelet method [5]
etc.
For finding the solutions to PDEs, for most cases, it is necessary to employ discretization meth-
ods to reduce the sets of PDEs to systems of algebraic equations, and such types of equations are
solved by using direct methods. Direct methods are theoretically producing the exact solution
to the system in a finite number of steps. In practice, of course, the solution obtained will be
contaminated by the round-off error. To minimize such round-off error, iterative methods are
frequently used for solving linear systems. For large systems, these methods are inefficient in
terms of both computer storage and computational cost.
The applications of wavelet theory in numerical methods for solving differential equations are
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roughly 25 years old. In the early nineties people were very optimistic because it seemed that
many nice properties of wavelets would automatically lead to efficient numerical methods for
differential equations. The reason for this optimism was the fact that many partial differential
equations (PDEs) have solution containing local phenomena (e.g. formation of shock, hurri-
canes) and interactions between several scales (e.g. turbulence particularly atmospheric turbu-
lence because there is motion on a continuous range of length scales). Such solutions can be
well represented in wavelet basis because of its nice properties; few of them are like compact
support (locality in space) and vanishing moment (locality in scale). Wavelets permit the perfect
representation of a variety of functions and operators. Moreover, wavelets establish a connection
with fast numerical algorithms [6].
In recent times, some of the work on wavelet-based methods is the discrete wavelet transforms
(DWT) and the full approximation scheme (FAS) were introduced in [7 - 8]. The wavelet based
full approximation scheme (WFAS) has been shown to be a very efficient and favorable method
for numerous problems related to computational science and engineering fields [9]. These meth-
ods can be either used as an iterative solver or as a preconditioning technique, offering in many
cases better performance than some of the most innovative and existing FAS algorithms. Due to
the efficiency and potentiality of WFAS, further have been carried out for its enrichment. In or-
der to realize this task, work was built that is orthogonal/Biorthogonal discrete wavelet transform
using lifting scheme [10]. Wavelet-based lifting techniques were introduced by Sweldens [11],
which permit some improvements on the properties of existing wavelet transforms. Wavelet-
based numerical solution of elasto-hydrodynamic lubrication problems via lifting scheme was
introduced by Shiralashetti et al. [12]. The technique has some numerical benefits as a reduced
number of operations which are fundamental in the context of the iterative solvers. Evidently,
all attempts to simplify wavelet solutions for PDE are welcome. In PDE, matrices arising from
systems are dense with non-smooth diagonal and smooth away from the diagonal. This smooth-
ness of the matrix transforms into smallness using wavelet transform and it leads to design the
effective wavelets based lifting scheme.
The lifting scheme is a new approach to construct the so-called second-generation wavelets that
are not necessarily translations and dilations of one function. The latter we refer to as first-
generation wavelets or classical methods. The lifting scheme has some additional advantages
in comparison to classical wavelets. This transform works for signals of an arbitrary size with
correct treatment of boundaries. Another feature of the lifting scheme is that all constructions
are derived in the spatial domain. This is in contrast to the traditional approach, which relies
heavily on the frequency domain.
The lifting scheme starts with a set of well-known filters; thereafter lifting steps are used, in
an attempt to improve (lift) the properties of a corresponding wavelet decomposition. This pro-
cedure has some mathematical benefits as a reduced number of operations which are essential
in the context of iterative solvers. In addition to this, the present paper illustrates the applica-
tion of the lifting scheme for the numerical solution of Allen-Cahn and Newell-Whitehead-Segel
equations.
The present paper is organized as follows: in section 2, preliminaries of wavelet filter coefficients
and lifting scheme are given. The method of solution is explained in section 3, Numerical results
of the problems are presented in section 4 and finally, conclusion of the proposed work is given
in section 5.

2 Preliminaries of wavelet filter coefficients and Lifting scheme

The lifting scheme starts with a set of well-known filters; thereafter lifting steps are used in an
attempt to improve the properties of the corresponding wavelet decomposition [13].
Now, we have discussed about different wavelet filters as follows:

a) Haar wavelet filter coefficients
We know that low pass filter coefficients [a0, a1]

T
=
[

1√
2
, 1√

2

]T
and high pass filter coeffi-

cients [b0, b1]
T
=
[

1√
2
, 1√

2

]T
play an important role in decomposition.
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b) Daubechies wavelet filter coefficients
Daubechies introduced scaling functions having the shortest possible support. The scaling func-
tion φN has support[0, N − 1], while the corresponding wavelet ψN has support in the interval

[
1 − N

2 ,
N
2

]
.

We have low pass filter coefficients [a0, a1, a2, a3]
T
=
[

1+
√

3
4
√

2
, 3+

√
3

4
√

2
, 3−

√
3

4
√

2
, 1−

√
3

4
√

2

]T
and

high pass filter coefficients [b0, b1, b2, b3]
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c) Biorthogonal (CDF (2,2)) wavelets
Let’s consider the (5, 3) biorthogonal spline wavelet filter pair, the low pass filter pair are
(ã−1, ã0, ã1) =
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But, we have bk = (−1)kã1−k and b̃k = (−1)ka1−k, the high pass filter pair are b0 =
1
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Foundations of lifting scheme:
Consider numbers a, b as two neighboring samples of a sequence, and then these have some
correlation which we would like to take advantage. The simple linear transform which replaces
a and b by average s and difference d i.e.

s =
a + b

2
& d = b − a

The idea is that if a and b are highly correlated, the expected absolute value of their difference
d will be small and can be represented with fever bits. In the case that a = b, the difference is
simply zero. We have not lost any information because we can always recover a and b from the
given s and d as:

a = s − d

2
& b = s +

d

2

Finally, a wavelet transforms built through lifting consists of three steps: split. Predict and update
as given in Figure 1 [14].

Fig. 1. Steps in lifting scheme

Split: Splitting the signal into two disjoint sets of samples.
Predict: If the signal contains some structure, then we can expect a correlation between a sample
and its nearest neighbors. i.e. dj− 1 = oddj− 1 − P(evenj− 1)
Update: Given an even entry, we have predicted that the next odd entry has the same value, and
stored the difference. We then update our even entry to reflect our knowledge of the signal. i.e.
sj− 1 = evenj− 1 + U(dj− 1)
The general lifting stages for decomposition and reconstruction of a signal are given in Figure 2.
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Fig. 2. Lifting wavelet algorithm

The detailed algorithm using different wavelets is given in the next section.

3 Method of solution

Consider that the general nonlinear parabolic PDE is of the form,

∂ u

∂ t
=

∂ 2 u

∂ x 2 + a u + b un , 0 ≤ x ≤ 1 & t > 0 (3.1)

Where a , b are constants and n is positive integer [15].

a) For b = − b′ & n = 3, Eq. (3.1) becomes Newell-Whitehead equation i.e.

∂ u

∂ t
=

∂ 2 u

∂ x 2 + a u − b′ u 3 , 0 ≤ x ≤ 1 & t > 0

(3.2)

b) For a = 1 , b = − 1 & n = 3 , Eq. (3.1) becomes Allen-Cahn equation i.e.

∂ u

∂ t
=

∂ 2 u

∂ x 2 + u − u 3 , 0 ≤ x ≤ 1 & t > 0

(3.3)

c) For a = 1 , b = − 1 & n = 4 , Eq. (3.1) becomes Newell-Whitehead-Segel
equation i.e.

∂ u
∂ t = ∂ 2 u

∂ x 2 + u − u 4 , 0 ≤ x ≤ 1 & t > 0 (3.4)

After discretizing the equation (2) or (3) or (4) through the finite difference method (FDM), we
get a system of algebraic equations. Through this system we can write the system as

A u = b (3.5)
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whereA isN×N coefficient matrix, b isN× N matrix and u isN× N matrix to be determined.
Where N = 2J , N is the number of grid points and J is the level of resolution.
Solve Eq. (3.5) through the iterative method, we get an approximate solution. Approximate
solution containing some error, therefore required solution equals sum of approximate solution
and error. There are many methods to minimize such error to get the accurate solution. Some of
them are FAS, WFAS etc. Now we are using the advanced technique based on different wavelets
called as lifting scheme. Recently, lifting schemes have been useful in signal analysis and im-
age processing in the area of science and engineering. But currently it extends to approximations
in numerical analysis [6]. Here, we are discussing the algorithm of the lifting schemes as follows:

a) Haar wavelet Lifting scheme (HWLS)
In [9], Daubechies and Sweldens have shown that every wavelet filter can be decomposed into
lifting steps. More details of the advantages as well as other important structural advantages of
the lifting technique can be available in [10]. The representation of Haar wavelet via lifting form
presented as;
Decomposition:
Consider approximate solution S = u like as signal and then apply the HWLS decomposition
(finer to coarser) procedure as,

d(1) = S2j − S2j−1, s(1) = S2j−1 + 1
2d

(1), S1 =
√

2 s(1)

and D = 1√
2
d(1)

}
(3.6)

In this stage finally, we get new approximation as,

S = [S1 D] (3.7)

Reconstruction:
Now apply the HWLS reconstruction (coarser to finer) procedure as,

d(1) =
√

2 D, s(1) = 1√
2
S1, S2j−1 = s(1) − 1

2d
(1)

and S2j = d(1) + S2j−1

}
(3.8)

which is the required solution of the given equation.

b) Daubechies wavelet Lifting scheme (DWLS)
As discussed in the previous section a, we follow the same procedure, but we used a different
wavelet, i.e. Daubechies 4th order wavelet coefficient. The DWLS procedure is as follows;
Decomposition:

s(1) = S2j−1 +
√

3S2j , d(1) = S2j −
√

3
4 s

(1) −
(√

3−2
4

)
s
(j−1)
1 ,

s(2) = s(1) − d(j+1)
1 , S1 =

√
3−1√

2
s(2) and

D =
√

3+1√
2
d(1)

 (3.9)

Here, we get new approximation as,
S = [S1 D] (3.10)

Reconstruction:
Now, we apply the DWLS reconstruction (coarser to finer) procedure as,

d(1) =
√

2√
3+1

D,

s(2) =
√

2√
3−1

S1,

s
(j)
1 = s(2) + d

(j+1)
1 ,

S2j = d(1) +
√

3
4 s

(j)
1 +

√
3−2
4 s

(j−1)
1 and

S2j−1 = s(1) −
√

3S2j


(3.11)

which is the required solution of the given equation.



666 L. M. Angadi and A. B. Deshi

c) Biorthogonal wavelet Lifting scheme (BWLS)
As discussed in the previous sections a and b, we follow the same procedure here we used
another wavelet, i.e. a biorthogonal wavelet (CDF (2,2)). The BWLS procedure is as follows;
Decomposition:

d(1) = S2j − 1
2 [S2j−1 + S2j+2] ,

s(1) = S2j−1 +
1
4

[
d
(1)
j−1 + d(1)

]
,

D = 1√
2
d(1),

S1 =
√

2 s(1)

 (3.12)

In this stage finally, we get new signal as,

S = [S1 D] (3.13)

Reconstruction:
Now, we apply the BWLS reconstruction (coarser to finer) procedure as

s(1) = 1√
2
S1,

d(1) =
√

2D,

S2j−1 = s(1) − 1
4

[
d
(1)
j−1 + d(1)

]
S2j = d(1) + 1

2 [S2j−1 + S2j+2)] ,

 (3.14)

which is the required solution of the given equation.
The coefficients s(j)1 and d(j)1 are the average and detailed coefficients respectively, of the approx-
imate solution ua. The new approaches are tested through some of the numerical problems and
the results are shown in the next section.

4 Numerical examples

In this section, we applied Lifting scheme for the numerical solution of Allen-Cahn and Newell-
Whitehead-Segel equations and also show the validity and applicability of HWLS, DWLS and
BWLS. The error is computed by

Emax = max |ue (x , t) − ua (x , t) | ,

where u e (x , t) and u a (x , t) are exact and approximate solution respectively.
Problem 4.1: Consider the Newell-Whitehead equation, (In Eq.(3.2); , a = 3 , b′ = 4 )

i.e.
∂ u

∂ t
=

∂ 2 u

∂ x 2 + 3u − 4u 3 , 0 ≤ x ≤ 1 & t > 0 (4.1)

subject to the I.C.: u (x , 0) =
√

3
4

[
e
√

6 x

e
√

6 x + e

√
6

2 x

]

and B.C.s:
u ( 0 , t ) =

√
3

4

[
1

1 + e
− 9

2 t

]
u ( 1 , t ) =

√
3

4

[
e
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6

e
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6 + e

√
6

2 − 9
2 t

]


Which has the exact solution u (x , t ) =
√

3
4

[
e
√

6 x

e
√

6 x + e

√
6

2 x − 9
2 t

]
[16].

Using the methods described in the section 3, we find the numerical solutions and in comparison
with the exact solutions are presented in figure 3. The maximum absolute errors with CPU time
of the methods are presented in table 1.
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Fig. 3. Comparison of numerical solutions with the exact solution of problem 4.1.
Table 1. Maximum error and CPU time (in seconds) of the methods of problem.4.1.
N ×N Method Emax Setup time Running

time
Total time

4 × 4
FDM 1.0812e-02 2.7698 0.0019 2.7717

HWLS 1.0812e-02 0.0010 0.0028 0.0038
DWLS 1.0812e-02 0.0003 0.0095 0.0098
BWLS 1.0812e-02 0.0003 0.0040 0.00043

.
16 × 16

FDM 3.9352e-03 3.4449 0.0024 3.4473

HWLS 3.9352e-03 0.0010 0.0032 0.0042
DWLS 3.9352e-03 0.0003 0.0102 0.0105
BWLS 3.9352e-03 0.0004 0.0044 0.0048

64× 64 FDM 1.0881e-03 6.7603 0.0039 6.7642

HWLS 1.0881e-03 0.0010 0.0030 0.0040
DWLS 1.0881e-03 0.0003 0.0097 0.0100
BWLS 1.0881e-03 0.0003 0.0041 0.0044

Problem 4.2: Next, consider the Allen-Cahn equation, ( i.e. Eq.(3.3))

∂ u

∂ t
=

∂ 2 u

∂ x 2 + u − u 3 , 0 ≤ x ≤ 1 & t > 0 (4.2)

subject to the I.C.: u (x , 0) =
sinh

(
x√

2

)
1 + cosh

(
x√

2

)
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and B.C.s:
u ( 0 , t ) = 0

u ( 1 , t ) = e
1√

2 − e
− 1√

2

e
1√

2 + e
− 1√

2 + 2 e
− ( 3

2) t


Which has the exact solution u (x , t ) = = e

x√
2 − e

− x√
2

e
x√

2 + e
− x√

2 + 2 e
− ( 3

2) t
[15].

By applying the methods explained in the section 3, we obtain the numerical solutions and
compared with exact solutions are presented in figure 4 and the maximum absolute errors with
CPU time of the methods are presented in table 2.

Fig. 4. Comparison of numerical solutions with the exact solution of problem 4.2.
Table 2. Maximum error and CPU time (in seconds) of the methods of problem 4.2.
N ×N Method Emax Setup time Running

time
Total time

4 × 4
FDM 1.1747e-03 3.7246 0.0019 3.7265

HWLS 1.1747e-03 0.0010 0.0029 0.0039
DWLS 1.1747e-03 0.0003 0.0098 0.0101
BWLS 1.1747e-03 0.0003 0.0040 0.0043

.
16 × 16

FDM 3.2847e-04 3.5575 0.0023 3.5598

HWLS 3.2847e-04 0.0010 0.0029 0.0039
DWLS 3.2847e-04 0.0003 0.0096 0.0099
BWLS 3.2847e-04 0.0004 0.0040 0.0044

64× 64 FDM 1.0187e-04 7.2244 0.0040 7.2284
HWLS 1.0187e-04 0.0010 0.0030 0.0040
DWLS 1.0187e-04 0.0003 0.0097 0.0100
BWLS 1.0187e-04 0.0004 0.0044 0.0048

Problem 4.3: Next, consider the Newell-Whitehead-Segel equation, ( i.e. Eq.(3.4))

∂ u

∂ t
=

∂ 2 u

∂ x 2 + u − u 4 , 0 ≤ x ≤ 1 & t > 0 (4.3)



Lifting scheme to solve AC and NWS equations 669

subject to the I.C.: u (x , 0) =
[

1
2 tanh

{
− 3 x

2
√

10

}
+ 1

2

]2/3

and B.C.s: u ( 0 , t ) =
[ 1

2 tanh
{ 21

20 t
}

+ 1
2

]2/3

u ( 1 , t ) =
[

1
2 tanh

{
− 3

2
√

10

(
1 − 7√

10
t
)}

+ 1
2

]


Which has the exact solution u (x , t ) =
[

1
2 tanh

{
− 3

2
√

10

(
x − 7√

10
t
)}

+ 1
2

]2/3

[16].
By applying the methods explained in the section 3, we obtain the numerical solutions and
compared with exact solutions are presented in figure 5. The maximum absolute errors with
CPU time of the methods are presented in table 3

Fig. 5. Comparison of numerical solutions with the exact solution of problem 4.3.

Table 3 Maximum error and CPU time (in seconds) of the methods of problem 4.3.
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N ×N Method Emax Setup time Running
time

Total time

4 × 4
FDM 3.7098e-03 3.3340 0.0019 3.3359

HWLS 3.7098e-03 0.0009 0.0029 0.0038
DWLS 3.7098e-03 0.0003 0.0100 0.0103
BWLS 3.7098e-03 0.0003 0.0040 0.0043

.
16 × 16

FDM 1.1184e-03 4.2557 0.0025 4.2582

HWLS 1.1184e-03 0.0010 0.0032 0.0042
DWLS 1.1184e-03 0.0003 0.0104 0.0107
BWLS 1.1184e-03 0.0004 0.0043 0.0047

64× 64 FDM 2.9054e-04 13.3630 0.0051 13.3681
HWLS 2.9054e-04 0.0010 0.0033 0.0043
DWLS 2.9054e-04 0.0003 0.0105 0.0108
BWLS 2.9054e-04 0.0004 0.0045 0.0049

5 Conclusions

In this paper, we find the wavelets-based numerical solution of Allen-Cahn and Newell-Whitehead-
Segel equations by Lifting schemes using different wavelet filters. We observe that:

a) From the above figures (3-5), the numerical solutions obtained by different Lifting schemes
agree with the exact solution.

b) Also, from the tables, the convergence of the presented schemes, i.e., the error decreases
when the level of resolution N increases.

c) In addition, the calculations involved in lifting schemes are simple, straight-forward and
low computation cost compared to classical method, i.e. FDM.
Hence, the presented Lifting schemes in particular HWLS & BWLS are very effective for solv-
ing non-linear partial differential equations.
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