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Abstract In this paper, we study the Finsler manifold with square metric and navigation data
(h,W ). We proved the necessary and sufficiant condition for conformal vector field satisfies the
system of PDEs. Further, we find the conformal vector fields on Finsler manifold with square
metric of weakly isotropic flag curvature.

1 Introduction

There is a special and important class of Finsler metrics in Finsler geometry which can be ex-
pressed in the form F = αφ(βα), where α is a Riemannian metric and β is a 1-form and φ = φ(s)
is a C∞ positive function on an open interval. We call this class of metrics as (α, β)-metrics.
When φ = 1+ s, the Finsler metric F = α+β is called Randers metric. When φ = 1+ s2 + 2s,
the Finsler metric F = (α+β)2

α is called Square metric. Square metrics were first introduced by
L. Berwald in 1929 (see [8, 7]).

Zermelo’s navigation problem is to determine the shortest time paths for an object with con-
stant internal force in R2 under the influence of an external force. Later, Z. Shen discussed the
navigation problem in a more general setting (see [2, 3]).

The conformal vector fields on a manifold M are vector fields induced by a local one-
parameter group of conformal transformations ofM . Z. Shen and Q. Xia were studied conformal
vector fields on Randers manifolds of weakly isotropic flag curvature (see [6]). X. Cheng, Li Yin
and T. Li are completely determined conformal vector fields on conic Kropina manifolds via nav-
igation data of weakly isotropic flag curvature (see [4]). In this paper, we give several equivalent
characterizations for conformal vector fields on a Finsler space and establish the relationships
between the curvatures of a given Finsler metric F . Finally, we determine the conformal vec-
tor fields on a Finsler manifold with square metric via navigation data of weakly isotropic flag
curvature. Above results are established in the section-3 and section-4.

2 Preliminaries

Definition 2.1. [1] A Minkowski norm on vector field V is a continuous function is denoted by
F : V −→ [0,∞), such that it satisfies the following properties:

(i) F is smooth on V \{0},

(ii) F is 1-homogeneous function,

(iii) ∀ y = yiei ∈ V \{0}, the symmetric bilinear form gy : V × V −→ R is defined by

(u, v) 7−→ 1
2
∂2

∂s∂t
(F 2(y + su+ tv))/t=s=0

is positive definite.
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Definition 2.2. [1] By a Finsler space, we mean a triple Fn = (M,D,L), where M denotes n-
dimensional differential manifolds, D is an open subset of tangent vector bundle TM endowed
with the differentiable structure of the manifold TM andL : D −→ R is a differentiable mapping
having the following properties:

(i) L(x, y) > 0, for (x, y) ∈ D,

(ii) L(x, λy) = |λ|L(x, y), for any (x, y) ∈ D and λ ∈ R, such that (x, λy) ∈ D,

(iii) The d-tensor field gij(x, y) =
1
2 ∂̇i∂̇jL

2(x, y), (x, y) ∈ D,
where ∂̇i = ∂

∂yi , is non-degenerate on D.
The metric tensor and angular metric tensor of Finsler space are given by
gij = ∂̇i∂̇j

L2

2 , gij = (gij)−1 and hij = gij − lilj .
where ∂̇i = ∂

∂yi , li = ∂̇iL and li = yi/L.

Let (M,F ) be an n-dimensional smooth Finsler manifold. Let ϕ : M −→ M be a diffeo-
morphism on M and ϕ∗ : TxM −→ Tϕ(x) be the tangent map at the point of x. ϕ is called a
conformal transformation if there is a smooth scalar function ρ = ρ(x) on M , such that

F (ϕ(x), ϕ∗(y)) = e2ρ(x)F (x, y), (2.1)

where y ∈ TxM . ρ = ρ(x) is called a conformal factor of ϕ.
A vector field V on a Finsler manifold (M,F ) is called a conformal vector field with a

conformal factor ρ = ρ(x) if the one-parameter transformation ϕt generated by V is a conformal
transformation, that is

F (ϕt(x), (ϕt)∗(y)) = e2ρt(x)F (x, y), ∀x ∈M,y ∈ TxM, (2.2)

where ρt(x) :=
∫ t

0 σ(ϕs(x))ds. In this case, it is easy to see that σ(x) = dρt(x)
dt |t=0 and ρ0(x) =

0. Let Φt be a lifting of ϕt onto the tangent bundle TM , that is

Φt(x, y) := (ϕt(x), (ϕt)∗(y)). (2.3)

Obviously, {Φt} is also a one-parameter transformation group on TM . Then (2.2) is equivalent
to the following,

Φ
∗
tF = e2ρt(x)F. (2.4)

Then the vector field V is called a homothetic vector field on M if ρ is constant and V is called a
Killing vector field if ρ = 0. Recently, Z.Shen and Q.Xia have obtained the equivalent conditions
that V is a conformal vector field on a Finsler manifold (M,F ).

It is known that a Finsler metric is a Randers metric if and only if it is a solution of Zermelo’s
navigation problem on a manifold M with a Riemannian metric h =

√
hij(x)yiyj under the

influence of an external force field W = W i(x) ∂
∂xi with ‖ W ‖h< 1. Here, ‖ W ‖h denotes the

norm of W with respect to h. The condition ‖W ‖h< 1 is essential for obtaining a positive def-
inite Randers metric by Zermelo’s navigation problem. Let h =

√
hij(x)yiyj be a Riemannian

metric and W =W i(x) ∂
∂xi be a vector field with ‖W ‖h< 1. Then the solution of the following

Zermelo’s navigation problem

h

(
x,

y

F (x, y)
− Vx

)
= 1, y ∈ TxM, (2.5)

that is, √
hij(x)

(
yi

F
−W i

)(
yj

F
−W j

)
= 1,

is a function, where Wi = hijW
j , W0 =Wiy

i and can be expressed as

F =
√
h2 +W 2

0 −W0 (2.6)

Then we can get (h,W ) with ‖ W ‖h= 1 from (2.6) such that F is determined from (2.5) by
h and W . Thus there is an one-to-one correspondence between a square metric F and a pair



674 M. R. Rajeshwari and S. K. Narasimhamurthy

(h,W ) with ‖ W ‖h= 1 and it is easy to see that a square metric can be regarded as the limit of
the navigation problem for Randers metrics when ‖ W ‖h→ 1 (see [2, 4]). We also call the pair
(h,W) the navigation data of a square metric F .

The flag curvature in Finsler geometry is a natural analogue of sectional curvature in Rie-
mannian geometry. For a Finsler manifold (M,F ), the flag curvature K = K(p, y) of F is a
function of flag P ∈ TxM and flagpole y ∈ TxM at x with y ∈ P. We say Finsler matric F is
of weakly isotropic flag curvature K if K = 3θ

F + σ, where σ = σ(x) is a scalar function and
θ = θiy

i is a 1-form on M .
Let F = (α+β)2

α be a square metric on a Finsler manifold M of dimention n ≥ 3. Suppose
that F is of weakly isotropic flag curvature KF = 3θ

F + σ. According to Schur lemma, h is of
constant curvature µ(x)(µ = constant, when n ≥ 3) and W is conformal with respect to h,

Wi;j +Wj;i = 0, (2.7)

where “;” denotes the covariant derivative with respect to Levi-Civita connection of h. In this
case, KF = σ = µ ≥ 0 and θ = 0. Further, we can completely determine the local structure of
square metrics of weakly isotropic flag curvature.

Lemma 2.3. [6] Let (M,F ) be an n-dimensional smooth Finsler manifold and V be a vector
field on M . Then, in local coordinates, the following conditions are equivalent:

(i) V = V i ∂
∂xi is a conformal vector field on (M,F ) with a conformal factor ρ = ρ(x);

(ii) ∂gij
∂xp V

p = gpj
∂V p

∂xi + gip
∂V p

∂xj + 2Cijp ∂V
p

∂xq y
q = 4ρgij;

(iii) Vi|j + Vj|i + 2CpijVp|qy
q = 4ρgij;

(iv) ∂F
∂xiV

i + ∂F
∂yi

∂V i

∂xj y
j = 2ρF ,

where gij and Cijp are the coefficients of the fundamental tensor g and Cartan torsion C respec-
tively, Cpij = gpqCijq. Vi = gijV

j and “|" denotes the covariant derivative with respect to Chern
connection of F .

Now, let XV = V i ∂
∂xi + yj ∂V

i

∂xj
∂
∂yi be a vector field on TM . Actually, XV is the induced

tangent vector field of the one-parameter transformation group {Φt} on TM . From condition (4)
of above Lemma 2.1, it is easy to see that a vector field V = V i ∂

∂xk on M is a conformal vector
field on Finsler manifold (M,F ) with conformal factor ρ = ρ(x) if and only ifXV (F 2) = 4ρF 2.

3 Conformal Vector Field on Square Metric

In this section we investigate the explicit expression of conformal vector field on square metric.

Theorem 3.1. Let F = (α+β)2

α be a square metric on a Finsler manifold M with navigation
data (h,W ). Then a vecor field V on (M,F ) is a conformal vector field with conformal factor
λ = λ(x) and s = β

α if and only if V satisfies the following system

Vi;j + Vj;i = 4λ(1 + s)2hij , (3.1)

V ibj;i + biVi;j =
λs(1 + 3s)

bj
. (3.2)

In Theorem (3.1), the conditions (3.1) and (3.2) for a vector field on a square metric to be a
conformal vector field are similar to the conditions in (3.3) of Proposition 3.1 in [6] for conformal
vector fields on Randers manifolds. However, their proofs are quite different.
We need the following lemma to prove the main Theorem (3.1).

Lemma 3.2. [5] Let F = (α+β)2

α be square metric on a Finsler manifold M . Then a vector field
V on (M,F ) is a conformal vector field with conformal factor ρ = ρ(x) and s = β

α if and only
if V satisfies the following

Vi;j + Vj;i = 4ρ(1 + s)2aij , (3.3)
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V ibj;i + biVi;j =
s(ρ(1 + s)− (1− s)λ)

bj
. (3.4)

where we use (aij) to raise and lower the indices of V and β, “;" denotes the covariant derivative
with respect to the Levi-Civita connection of Riemannian metric α and λ = λ(x) is a scalar
function on M .

Now, we prove our main Theorem (3.1).
Proof. of Theorem (3.1): It is easy to check that (3.1) and (3.2) mean that V is a conformal
vector field by Lemma (3.2). Hence, we just need to prove the necessity. By the assumption,
V is a conformal vector field on square metric (M,F ) with conformal factor λ(x). By a direct
computation, we have

XV (α
2) = 2Vi;jyiyj , XV (β) = (V ibj;i + biVi;j)y

j ,

Then, by Lemma (3.2), we have

XV (α
2) = 4ρ(1 + s)2aij , XV (β) =

s(ρ(1 + s)− (1− s)λ)
bj

.

Since square metric F = (α+β)2

α with navigation data (h,W) and the above identities that

λ2[XV (α
2)− 4ρ(1 + s)2aij ] = −h2XV (λ

2), (3.5)

λ2
[
XV (W0)−

s(ρ(1 + s)− (1− s)λ)
W0

]
= −W 2

0XV (λ
2). (3.6)

By (3.5) and (3.6), we get

h2
[
XV (W0)−

s(ρ(1 + s)− (1− s)λ)
W0

]
= −W0[XV h

2 − 4ρ(1 + s)2h2]. (3.7)

On the other hand, a direct computation shows

XV (h
2) = 2Vi;jyiyj , XV (W0) = (V iWj;i +W iVi;j)y

j , (3.8)

where “;” denotes the covariant derivative with respect to Levi-Civita connection of Riemannian
metric h. Plugging (3.7) into (3.6) yields

h2
[
V iWj;iy

j +W iVi;jy
j − s(ρ(1 + s)− (1− s)λ)

W0

]
= 2W0[Vi;jy

iyj − 2ρ(1 + s)2hijy
iyj ].

(3.9)
Taking the derivatives with respect to yj , yk, yl on both sides of (3.7) respectively, we get the
following

hjk

[
V iWl;i +W iVi;l −

s(ρ(1 + s)− (1− s)λ)
Wl

]
+ hjl

[
V iWk;i +W iVi;k −

s(ρ(1 + s)− (1− s)λ)
Wk

]
+ hkl

[
V iWj;i +W iVi;j −

s(ρ(1 + s)− (1− s)λ)
Wj

]
=Wj(Vk;l + Vl;k − 4ρ(1 + s)2hlk)

+Wk(Vj;l + Vl;j − 4ρ(1 + s)2hjl) +Wl(Vk;j + Vj;k − 4ρ(1 + s)2hkj). (3.10)

At any point x ∈M , take an orthonormal frame ei with respect to h on TxM such that e1 =W .
Then hij = δij , W

i =W 1δ1i and Wi =W1δ1i. Taking k = l 6= j in (3.10), we can get

V iWj;i+W iVi;j −
s(ρ(1 + s)− (1− s)λ)

Wj
= 2Wj(Vl;l − 2ρ(1+ s)2) + 2Wl(Vl;j + Vj;l), l 6= j.

(3.11)
Taking k = j = l in (3.10), we get

V iWj;i +W iVi;j −
s(ρ(1 + s)− (1− s)λ)

Wj
= 2Wj(Vj;j − 2ρ(1 + s)2), 1 ≤ j ≤ n. (3.12)
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Case I: dimM = n ≤ 2. Assuming n = 2 and letting j = 1, l = 2 in (3.11) and j = 1 in (3.12)
respectively, we obtain

V iW1;i+W
iVi;1−

s(ρ(1 + s)− (1− s)λ)
W1

= 2W1(V2;2−4ρ(1+s)2) = 2W1(V1;1−2ρ(1+s)2).

(3.13)
which implies that V1;1 = V2;2. Put τ(x) = 1

2(V1;1 − 2(1 + s)2ρ). The above identies become

V iW1;i +W iVi;1 −
s(ρ(1 + s)− (1− s)λ)

W1
= 4W1τ(x). (3.14)

Similarly, letting j = 2 and l = 1 in (3.11) and j = 2 in (3.12), we obtain

V iW2;i +W iVi;2 = V1;2 + V2;1. (3.15)

Hence, by V1;1 = V2;2 = 2(τ + λ) and (3.14), we obtain

Vi;j + Vj;i = 4(τ + λ)hij , (3.16)

for 1 ≤ i, j ≤ 2. By (3.14) and (3.15), we can get

V iWj;i +W iVi;j = 2(2τ + 2λ− ρ)Wj =
s((2τ + 2ρ)(1 + s)− (1− s)λ)

Wj
, (3.17)

for 1 ≤ i, j ≤ 2. In the case of n = 1, we can get (3.16) and (3.14) from (3.10) obviously.
Case II : dim M = n ≥ 3. Since the left-hand sides of (3.11) is independent of the index l, for
each j, we can take k 6= j and l 6= j, such that we have

Wj(Vl;l − 2ρ(1 + s)2) +Wl(Vl;j + Vj;l) =Wj(Vk;k − 2ρ(1 + s)2) +Wk(Vk;j + Vj;k). (3.18)

Letting j 6= 1, k 6= 1 and l = 1 in (3.18), we obtain

V1;j + Vj;1 = 0, j 6= 1. (3.19)

Letting j 6= 1, l = 1 in (3.11) and by use of (3.19), we obtain

V iWj;i +W iVi;j = 0, j 6= 1. (3.20)

Taking j = 1 in (3.12) yields

V iW1;i +W iVi;1 −
s(ρ(1 + s)− (1− s)λ)

W1
= 2W1(Vj;j − 2ρ(1 + s)2).

Now, we put τ(x) = 1
2((V1;1 − 2ρ(1 + s)2)). Then the identity above can be written as

V iW1;i +W iVi;1 −
s(ρ(1 + s)− (1− s)λ)

W1
= 4τW1. (3.21)

By (3.20) and (3.21), we get

V iWj;i +W iVi;j =
s((2τ + 2ρ)(1 + s)− (1− s)λ)

Wj
, (3.22)

in the original coordinate system for 1 ≤ i, j ≤ n. Plugging (3.22) into (3.10) and letting l = 1,
j 6= 1, k 6= 1, we have

Vk;j + Vj;k = 4(τ + ρ)hij , (3.23)
in the original coordinate system for 1 ≤ i, j ≤ n. From (3.16) and (3.17), we see that (3.22)
and (3.23) hold for any n.
In the following, we would like to determine τ . By ‖W ‖2

h=W iWi = 1 we can getWi;jW
i = 0.

Contracting (3.22) with W j yields

Vi;jW
iW j = s((2τ + 2ρ)(1 + s)− (1− s)λ), (3.24)

On the other hand, contracting (3.23) with W iW j , we have

Vi;jW
iW j = 2(τ + ρ). (3.25)

Comparing (3.25) with (3.24), we get τ = λ − ρ. Then, by (3.23) and (3.22), we get (3.1) and
(3.2). 2
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4 The Conformal Vector Fields on Square Metrics of Weakly Isotropic Flag
Curvature

In this section, we will give the explicit expressions of conformal vector fields on a square metric
(M,F ) of weakly isotropic flag curvature via solving the system of PDEs (3.1) and (3.2).

Theorem 4.1. Let F = (α+β)2

α be a square metric on a Finsler manifold M of dimension n ≥ 3
given by (2.6) with navigation data (h,W ). Suppose V is a conformal vector field on (M,F )
with conformal factor λ(x), and F is of weakly isotropic flag curvature KF = 3θ

F + σ. Then in
some local co-ordinate system for the local standard expression of F , V is given by one of the
following,

(i) V = 2εx(1 + s)2 + d, where ε is constant and d is non-zero constant vector in Rn with
|d| = 1.

(ii) V = Qx+ µ〈d, x〉x+ d, where µ is positive constant, d is non-zero constant vector in Rn

with |d| = 1 and Q is a skew symmetric matrix with Qd = 0 and QTQ + µddT = µE, T
denote the transpose of matrix and E is an identity matrix. In this case λ = ρ = 0 and
K = 0.

For the above purpose, we first give the following lemma.

Lemma 4.2. Let (M,h) be a Riemannian manifold and V be a conformal vector field on (M,h)
with conformal factor λ(x) defined by (3.1). Suppose W̄ (x) is a general solution of the equation
(2.7) and T0(x) is a special solution of the equation Ti;j+Tj;i = 4λ(1+s)2hij . Then the general
solution of (3.1) is given by V = W̄ (x) + T0(x), where we raise and lower the indices of V ,
W̄ and T by α = (hij), “; ” denotes the covariant derivative with respect to the Levi-Civita
connection of Riemannian metric h.

Proof. Suppose the general solution of equation (3.1) is given by

V = W̄ (x) + T0(x). (4.1)

Then W̄ (x) is the general solution of the equation (2.7) and T0(x) is the special solution of
equation

Ti;j + Tj;i = 4λ(1 + s)2hij . (4.2)

By Theorem (3.1), we know that, if V is a conformal vector field on square metric (M,F ), then
V must be a conformal vector field of h, that is, V satisfies (3.1).
Now substituting (2.7) and (4.2) into (4.1) we get (3.1), that is Vi;j + Vj;i = 4λ(1 + s)2hij . 2
When h is of constant sectional curvature, we have the Lemma 5.2.9 in [3]. Now, we prove the
main Theorem (4.1) in this section.
Proof. Let F = (α+β)2

α be a square metric on a manifold M of dimensional n ≥ 3 given by
(2.6) with navigation data (h,W). Assume that F is of weakly isotropic flag curvature. KF =
3θ
F + σ(x). Then, h is of nonnegative constant sectional curvature µ and W is a Killing vector
field. Hence, there is a local coordinate system, in which h can be expressed by

h =

√
(1 + µ|x|2)|y|2 − µ〈y, x〉2

1 + µ|x|2
, (4.3)

and W = (W i) is determined by

W i = qikx
k + µ〈d, x〉xi + di, (4.4)

where Q = (qij) is a skew symmetric matrix with Qd = 0 and QTQ + µdT d = µE and d =

(di) ∈ Rn is a nonzero constant vector with |d| = 1. Here we have unified the conclusion (i) and
(ii) in Lemma (2.3). Actually, we can prove that Q = 0 when µ = 0(see case I below). It means
that W = d is a nonzero constant vector field when µ = 0. Denote ξ = ξ(x) :=

√
1 + µ|x|2. By

(4.3) we have
hij = ξ−2δij − µξ−4xixj , hij = ξ2(δij + µxixj). (4.5)
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Then, we have

Wi := hijW
j =

qijx
j + di

1 + µ|x|2
, (4.6)

Further, the connection coefficents Γkij of h is given by

Γ
k
ij = −

µ(xiδkj + xjδ
k
i )

1 + µ|x|2
. (4.7)

Hence, by (4.5) and (4.6), we get

Wi;j = ξ−2qij + µξ−4(xiqjkx
k − xjqikxk + djxi − dixj), (4.8)

where we use δij to raise and to lower the indices of the vectors x, d in Rn, and qij = δikq
k
j . It

is easy to see that (Wi) determined by (4.8) is the general solution of Wi;j +Wj;i = 0.
Further, by (4.6) and (4.5), we have

‖W‖2
h = hijWiWj =

〈Qx,Qx〉+ 2〈Qx, d〉+ µ〈d, x〉2 + 〈d, d〉
1 + µ|x|2

.

Since ‖W‖h = 1, the above is equivalent to

1 + µ|x|2 = 〈Qx,Qx〉+ 2〈Qx, d〉+ µ〈x, d〉2 + 〈d, d〉. (4.9)

Replacing x with −x in (4.9) and adding the obtained equation to (4.9) yield

〈Qx, d〉 = 0, (4.10)

µ|x|2 = 〈Qx,Qx〉+ µ〈x, d〉2. (4.11)

In the following, we focus to determine V and the related coefficients. By the assumption, V
is conformal vector field with conformal factor λ on square metric (M,F ) satisfying (3.1), i.e.,
Ti;j + Tj;i = 4λ(1 + s)2hij . Note that h is of nonnegative constant sectional curvature µ. By
Lemma 5.2.9 in [3], the conformal factor λ = λ(x) satisfies λ;i;j + µλhij = 0 and we can get a
general formula for λ which is given by

λ =
ε+ 〈a, x〉√

1 + µ|x|2
, (4.12)

where ε is a constant and a = (ai) is a constant column vector in Rn.
Further, we construct a special solution of equation Ti;j + Tj;i = 4λ(1 + s)2hij .
Let

Ti = 2ξ−2λxi(1 + s)2 − 2ξ−2(1 + ξ)−1|x|2ai. (4.13)

By (4.7) and (4.13), we get

Ti;j = 2λ(1 + s)2aij + 2ξ−4(ajxi − aixj). (4.14)

Obviously, T is a special solution of the equation Ti;j + Tj;i = 4λ(1 + s)2hij .
From Lemma 5.2.9 in [3], Vi =Wi + Ti is the general solution of equation (3.1). Moreover, we
obtain

V i = 2(εξ + 〈a, x〉)xi(1 + s)2 − 2(1 + ξ)−1|x|2ai + (qikx
k + µ〈d, x〉xi + di). (4.15)

Now, we are going to determine λ, ε and vector a and matrix Q in (4.15). By (4.5) and (4.13),
we obtain

T i = 2[εξ + 〈a, x〉]xi(1 + s)2 − 2(1 + ξ)−1|x|2ai. (4.16)

Substituting V i =W i + T i and Vi =Wi + Ti into (3.2) yield

T iWj;i +W iTi;j =
λs(1 + 3s)

Wj
. (4.17)
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Substituting (4.4), (4.6), (4.8), (4.14) and (4.16) into (4.17), we obtain

2[(1 + ξ)µε〈d, x〉x− (1 + ξ)〈a,Qx+ d〉x+ ξ(1 + ξ)〈d, x〉a− ξ|x|2Qa

+ (1 + ξ)(ε+ 〈a, x〉)Qx− (1 + ξ)µε|x|2d− µ〈a, x〉|x|2d](1 + s)2

− (ε+ 〈a, x〉)s(1 + 3s)ξ5(1 + ξ)

(Qx+ d)
= 0. (4.18)

Case I: µ = 0. In this case, ξ = 1. By (4.11), we get Q = 0. Thus, (4.17) is reduced to

2(〈d, x〉a− 〈a, d〉x)(1 + s)2 − 2(ε+ 〈a, x〉)s(1 + 3s) = 0. (4.19)

Multiplying d2 and dT on both sides of (4.18), we have

2(ε+ 〈a, x〉)s(1 + 3s) = 0. (4.20)

Plugging (4.20) into (4.19) yields

(〈d, x〉a− 〈a, d〉x)2(1 + s)2 = 0.

Since the above identity holds for any x ∈ Rn and d is a nonzero constant vector, we assert that
a = 0. By (4.15), we get

V = d+ 2εx(1 + s)2.

In this case, by (4.12), λ = ε and V is a homothetic vector field. Furthermore, h = |y|, W = d
is a nonzero constant vector with |d| = 1.
Case II: µ > 0. In this case, ξ =

√
1 + µ|x|2 is an irrational function. Then (4.18) can be

written as in the following form

A(x)ξ6 +B(x)ξ5 + C(x)ξ2 +D(x)ξ +E(x) = 0, (4.21)

wehre

A(x) = −(ε+ 〈a, x〉)s(1 + 3s)
(Qx+ d)

= 0.

B(x) = −(ε+ 〈a, x〉)s(1 + 3s)
(Qx+ d)

= 0.

C(x) = 2〈d, x〉a(1 + s)2,

D(x) = 2µε〈d, x〉x(1 + s)2 − 2〈a,Qx+ d〉x(1 + s)2 + 2〈d, x〉a(1 + s)2

−2|x|2Qa+ 2(ε+ 〈a, x〉)Qx(1 + s)2 − 2µε|x|2d(1 + s)2,

E(x) = 2µε〈d, x〉x(1 + s)2 − 2〈a,Qx+ d〉x(1 + s)2 + 2(ε+ 〈a, x〉)Qx(1 + s)2

−2µε|x|2d(1 + s)2 − 2µ〈d, x〉|x|2d(1 + s)2.

Further, (4.21) is equivalent to

A(x)ξ6 + C(x)ξ2 +E(x) = 0, B(x)ξ4 +D(x)ξ = 0.

which are equivalent to the following equations, respectively,

− (ε+ 〈a, x〉)s(1 + 3s)ξ6

(Qx+ d)
+ 2ξ2〈d, x〉a(1 + s)2 + 2µε〈d, x〉x(1 + s)2 − 2〈a,Qx+ d〉x(1 + s)2

+ 2(ε+ 〈a, x〉)Qx(1 + s)2 − 2µε|x|2d(1 + s)2 − 2µ〈a, x〉|x|2d(1 + s)2 = 0, (4.22)

− (ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)
+ 2µε〈d, x〉x(1 + s)2 − 2〈a,Qx+ d〉x(1 + s)2 + 2〈d, x〉a(1 + s)2

− 2|x|2Qa+ 2(ε+ 〈a, x〉)Qx(1 + s)2 − 2µε|x|2d(1 + s)2 = 0. (4.23)
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Plugging ξ2 − 1 = µ|x|2 and (4.23) into (4.22), we have

µ|x|2
[
−(ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)
+ 2(〈d, x〉a− 〈a, x〉d)(1 + s)2

]
+ 2|x|2Qa = 0.

i.e,

µ

[
−(ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)
+ 2(〈d, x〉a− 〈a, x〉d)(1 + s)2

]
+ 2Qa = 0. (4.24)

By replacing x with −x in (4.23) and adding the obtained equation to (4.23), we obtained the
following

− (ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)
+ 2µε〈d, x〉(1 + s)2 − 2〈a,Qx〉x(1 + s)2

+ 2〈a, x〉Qx(1 + s)2 − 2µε|x|2d(1 + s)2 − 2|x|2Qa = 0, (4.25)

2〈d, x〉a(1 + s)2 − 2〈a, d〉x+ εQx(1 + s)2 = 0. (4.26)

Similarly, by replacing x with −x in (4.24) and adding the obtained equation to (4.24), we can
get

2|x|2Qa = 0, (4.27)

(2〈d, x〉a− 2〈a, x〉d)(1 + s)2 = 0. (4.28)

Since the above identities hold for all x ∈ Rn, we haveQa = 0 by (4.27). Hence, (4.25) becomes

− (ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)
+[µε〈d, x〉(1+s)2−〈a,Qx〉(1+s)2]x+ 〈a, x〉Qx(1+s)2−µε|x|2d(1+s)2 = 0.

Multiplying xT on both sides of the above identity yields 〈a,Qx〉 = 0 for all x ∈M .
We assert that a = 0. Or else, if a 6= 0, by (4.28), we have

a(1 + s)2 =
〈a, x〉
〈d, x〉

d(1 + s)2. (4.29)

By (4.26) and by 〈a,Qx〉 = 0 we have

〈a, x〉(1 + s)2 =
〈d, x〉
〈a, d〉

|a|2(1 + s)2. (4.30)

From (4.29) and (4.30), we get

a = λ̄d, λ̄(1 + s)2 =
|a|2

〈a, d〉
(1 + s)2. (4.31)

Multiplying xT on both sides of (4.24) yields

µ

[
−ξ4 (ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)

]
xT − 2xTQa = 0. (4.32)

Letting x = d in (4.24) and by Qd = 0, we have

µ

[
−ξ4 (ε+ 〈a, d〉)s(1 + 3s)ξ4

d

]
dT = 0.

Letting x = d in (4.24) yields

2µ[a|d|2 − 〈a, d〉d](1 + s)2 + 2Qa = 0, (4.33)
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From (4.33), we can assert that a = 0. In fact, if a 6= 0, by multiplying aT on both sides of
(4.33), we have the following

2µ[〈a, d〉2 − |a|2|d|2](1 + s)2 = 0.

which means that a = ρ̄d by µ > 0 and Cauchy-Schwarz inequality. Substituting it into (4.24)
and by Qd = 0, we get (see [5])

µ

[
−ξ4 (ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)

]
= 0. (4.34)

By (4.23), Qa = 0 and 〈a,Qx〉 = 0, we can obtain

− µ
[
−ξ4 (ε+ 〈a, x〉)s(1 + 3s)ξ4

(Qx+ d)

]
+ [2µε〈d, x〉 − 〈a, d〉]〈a, x〉(1 + s)2

− 2µε|x|2〈a, d〉(1 + s)2 + 〈d, x〉|a|2(1 + s)2 = 0,

from we get

(µε〈a, x〉+ |a|2)〈d, x〉(1 + s)2 = 〈a, d〉(〈a, x〉+ µε|x|2)(1 + s)2. (4.35)

By a = λ̄d, we can obtain the following

λ̄µε〈d, x〉2(1 + s)2 = λ̄µε|d|2|x|2(1 + s)2, (4.36)

for all x ∈M . (4.36) implies that λ̄ = 0 or ε = 0.
(i) If λ̄ = 0, then a = 0. It is a contradiction.
(ii) If ε = 0, by (4.26), 〈d, x〉a− 〈a, d〉x = 0. Then λ̄〈d, x〉d = λ̄|d|2x, which implies that λ̄ = 0,
and then a = 0. It is also a contradiction.
Hence, we have a = 0. From (4.25), we obtain (µε〈d, x〉x−µε|x|2d)(1+s)2 = 0, which implies
that ε = 0. By (4.12), we have λ = 0. Further, by (4.15), we have

V = Qx+ µ〈d, x〉x+ d.

In this case, ρ = λ = 0, K = 0. This completes the proof. 2
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