Oscillatory behavior of even-order functional differential equations with a superlinear neutral term

C. Dharuman, N. Prabaharan, E. Thandapani and E. Tunç
Communicated by Cemil Tunç

MSC 2010 Classifications: Primary $34 \mathrm{C} 10,34 \mathrm{~K} 11,34 \mathrm{~K} 40$.
Keywords and phrases: Oscillation, even-order differential equation, superlinear neutral term.

Abstract

The authors establish some new oscillation criteria for a class of even-order functional differential equations with a superlinear neutral term using comparison methods and integral conditions. The results obtained are complement and improve a number of existing ones in the literature. An example is provided to illustrate the main results.

1 Introduction

This paper is concerned with the oscillatory behavior of solutions of the even-order nonlinear differential equation with a superlinear neutral term

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+q(t) x^{\beta}(\sigma(t))=0, \quad t \geq t_{0}>0 \tag{1.1}
\end{equation*}
$$

where $z(t)=x(t)+p(t) x^{\alpha}(\tau(t)), n \geq 4$ is an even natural number, α and β are the ratios of odd positive integers with $\alpha>1$. Throughout this paper, we always assume that the following conditions are satisfied:
$\left(H_{1}\right) b:\left[t_{0}, \infty\right) \rightarrow(0, \infty)$ is a continuous function with $b^{\prime}(t) \geq 0$, and

$$
\int_{t_{0}}^{\infty} \frac{1}{b(t)} d t=\infty
$$

$\left(H_{2}\right) p, q:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions with $p(t)>0, q(t) \geq 0$, and $q(t)$ is not identically zero for large t;
$\left(H_{3}\right) \tau, \sigma:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions such that $\tau^{\prime}(t)>0, \tau(t) \leq t, \sigma(t) \leq t$, and $\lim _{t \rightarrow \infty} \tau(t)=\lim _{t \rightarrow \infty} \sigma(t)=\infty ;$
$\left(H_{4}\right)$ there exists a constant $\kappa \in(0,1)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(\frac{t}{\tau(t)}\right)^{(n-1) / \kappa} \frac{1}{p^{1 / \alpha}(t)}=0 \tag{1.2}
\end{equation*}
$$

By a solution of (1.1), we mean a function $x \in C\left(\left[t_{x}, \infty\right), \mathbb{R}\right)$ for some $t_{x} \geq t_{0}$ such that $z \in C^{n-1}\left(\left[t_{x}, \infty\right), \mathbb{R}\right), b z^{(n-1)} \in C^{1}\left(\left[t_{x}, \infty\right), \mathbb{R}\right)$ and x satisfies (1.1) on $\left[t_{x}, \infty\right)$. We only consider those solutions of (1.1) that exist on some half-line $\left[t_{x}, \infty\right)$ and satisfy the condition

$$
\sup \left\{|x(t)|: T_{1} \leq t<\infty\right\}>0 \text { for any } T_{1} \geq t_{x}
$$

we tacitly assume that (1.1) possesses such solutions. Such a solution $x(t)$ of equation (1.1) is said to be oscillatory if it has arbitrarily large zeros on $\left[t_{x}, \infty\right)$; otherwise it is called nonoscillatory. Equation (1.1) itself is termed oscillatory if all its solutions are oscillatory.

In recent years, the problem of investigating the oscillatory behavior of solutions of various classes of differential equations has received great attention; we refer the reader to the monographs [1, 14], the papers $[2,3,4,5,6,7,10,11,16,18,21,22,23,24]$ and the reference cited therein. However, there are few results dealing with the oscillation of differential equations with
a superlinear neutral term; for example, see $[9,12,17,25,26]$, where first, second and third-order differential equations of the type (1.1) are studied.

In this paper, we first reduce the nonlinear equation (1.1) into a linear one and then we obtain some new criteria for the oscillation of all solutions of (1.1) via couple of first-order delay differential equations whose oscillatory characters are known. Also the results presented in this paper will provide an answer to the interesting problem raised in the paper [13].

For the reader's convenience, and to simplify notation, we define:

$$
\begin{gathered}
R_{0}(t):=\left(\frac{1}{b(t)} \int_{t}^{\infty} q(s) p^{-\frac{\beta}{\alpha}}\left(\tau^{-1}(\sigma(s))\right) d s\right), \\
R_{m}(t):=\int_{t}^{\infty} R_{m-1}(s) d s \text { for } m=1,2, \ldots, n-3 \\
F_{0}(t):=\left(\frac{1}{b(t)} \int_{t}^{\infty} q(s)\left(h^{1 / \kappa}(s)\right)^{\frac{\beta}{\alpha}-1} p^{-\frac{\beta}{\alpha}}\left(\tau^{-1}(\sigma(s))\right) d s\right), \\
F_{m}(t):=\int_{t}^{\infty} F_{m-1}(s) d s \text { for } m=1,2, \ldots, n-3 ;
\end{gathered}
$$

and

$$
h(t):=\tau^{-1}(\eta(t)),
$$

where $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and τ^{-1} is the inverse function of τ.
In the sequel, all functional inequalities are supposed to hold for all t large enough. Without loss of generality, we deal only with positive solutions of (1.1); since if $x(t)$ is a solution of (1.1), then $-x(t)$ is also a solution.

2 Main Results

We begin with the following auxiliary lemmas that are essential in the proofs of our main results.
Lemma 2.1 ([19, Lemma 1]). Let $f(t) \in C^{n}([T, \infty),(0, \infty))$ such that the derivative $f^{(n)}(t)$ is nonpositive on $[T, \infty)$ and not identically zero on any interval of the form $\left[T^{\prime}, \infty\right), T^{\prime} \geq T$. Then there exist a $T^{*} \geq T^{\prime}$ and an integer $\ell, 0 \leq \ell \leq n-1$, with $n+\ell$ odd so that

$$
\begin{aligned}
&(-1)^{\ell+j} f^{(j)}(t)>0 \\
& f^{(i)}(t) \text { on }\left[T^{*}, \infty\right) \text { for } j=\ell, \ldots, n-1 \\
& \text { on }\left[T^{*}, \infty\right) \text { for } i=1, \ldots, \ell-1 \quad \text { when } \ell>1
\end{aligned}
$$

Lemma 2.2 ([19, Lemma 2]). Let $f(t)$ be as in Lemma 2.1 and $T^{*} \geq T^{\prime}$ be assigned to $f(t)$ by Lemma 2.1. Moreover, let λ be a number with $0<\lambda<1$. If $\lim _{t \rightarrow \infty} f(t) \neq 0$, then there exists $a T^{* *} \geq T^{*} / \lambda$ such that

$$
\begin{equation*}
f(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} f^{(n-1)}(t) \text { for } t \geq T^{* *} \tag{2.1}
\end{equation*}
$$

Lemma 2.3 ([8, Lemma 1]). Let $f(t)$ be as in Lemma 2.1 for $T^{\prime} \geq T$, and $T^{*} \geq T^{\prime}$ be assigned to $f(t)$ by Lemma 2.1. Then for every $\kappa \in(0,1)$ there exists a $T^{* *} \geq T^{*}$ such that

$$
\begin{equation*}
\frac{f(t)}{f^{\prime}(t)} \geq \kappa \frac{t}{\ell} \quad \text { for } t \geq T^{* *} \tag{2.2}
\end{equation*}
$$

Lemma 2.4 ([15]). If $a>0$ and $0<\gamma \leq 1$, then

$$
a^{\gamma} \leq \gamma a+(1-\gamma)
$$

where equality holds when $\gamma=1$.
Now, we present our first oscillation result for (1.1) in the case where $\beta>\alpha$.

Theorem 2.5. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta>\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that

$$
\begin{equation*}
\eta(t) \leq \sigma(t), \eta(t)<\tau(t), \text { and } \lim _{t \rightarrow \infty} \eta(t)=\infty \tag{2.3}
\end{equation*}
$$

If, for every $d_{1}>0$ and $d_{2}>0$, the even-order linear delay differential inequalities

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{1} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{2} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.5}
\end{equation*}
$$

have no positive solutions, then (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0, x(\sigma(t))>0$, and $x(\tau(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. From the definition of $z(t)$, we see that

$$
\begin{align*}
x^{\alpha}(t) & =\frac{1}{p\left(\tau^{-1}(t)\right)}\left(z\left(\tau^{-1}(t)\right)-x\left(\tau^{-1}(t)\right)\right) \\
& \geq \frac{1}{p\left(\tau^{-1}(t)\right)}\left(z\left(\tau^{-1}(t)\right)-\frac{z^{\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}{p^{\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\right) \tag{2.6}
\end{align*}
$$

Applying Lemma 2.4 in (2.6) yields

$$
\begin{equation*}
x^{\alpha}(t) \geq \frac{1}{p\left(\tau^{-1}(t)\right)}\left[z\left(\tau^{-1}(t)\right)-\frac{1}{p^{\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\left(\frac{1}{\alpha} z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)+\left(1-\frac{1}{\alpha}\right)\right)\right] \tag{2.7}
\end{equation*}
$$

It follows from $\left(H_{1}\right)$ and (1.1) that

$$
z^{(n-1)}(t)>0 \text { and } z^{(n)}(t) \leq 0 \text { for } t \geq t_{1}
$$

Thus, by Lemma 2.1, there exists a $t_{2} \geq t_{1}$ and an odd integer $\ell \in\{1,3,5, \ldots, n-1\}$ such that

$$
\begin{aligned}
(-1)^{\ell+j} z^{(j)}(t) & >0 \text { for } j=\ell, \ldots, n-1 \\
z^{(i)}(t)>0 & \text { for } i=1, \ldots, \ell-1 \quad \text { when } \ell>1
\end{aligned}
$$

for $t \geq t_{2}$, and so we shall distinguish the following two cases:

$$
\text { (I) } \ell \geq 3 \text { for } t \geq t_{2} \text {, or (II) } \ell=1 \text { for } t \geq t_{2}
$$

Suppose (I) holds. Then,

$$
\begin{equation*}
z(t)>0, \quad z^{\prime}(t)>0, \quad z^{\prime \prime}(t)>0, \quad z^{\prime \prime \prime}(t)>0, \quad \cdots \quad, \quad z^{(n-1)}(t)>0, \quad z^{(n)}(t) \leq 0 \tag{2.8}
\end{equation*}
$$

for $t \geq t_{2}$. Since $(n-1) \geq \ell \geq 3$, in view of (2.2), there exists a $t_{\kappa} \geq t_{2}$ for every $\kappa \in(0,1)$ such that

$$
\begin{equation*}
\frac{z(t)}{z^{\prime}(t)} \geq \kappa \frac{t}{\ell} \geq \kappa \frac{t}{n-1} \quad \text { for } t \geq t_{\kappa} \tag{2.9}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(\frac{z(t)}{t^{(n-1) / \kappa}}\right)^{\prime}=\frac{\kappa t z^{\prime}(t)-(n-1) z(t)}{\kappa t^{(n-1) / \kappa+1}} \leq 0 \text { for } t \geq t_{\kappa} \tag{2.10}
\end{equation*}
$$

Since $z(t) \rightarrow \infty$ as $t \rightarrow \infty$, there exists $t_{3} \geq t_{\kappa}$ such that $z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \geq 1$ and using this in (2.6), we get

$$
\begin{equation*}
x^{\alpha}(t) \geq \frac{1}{p\left(\tau^{-1}(t)\right)}\left[z\left(\tau^{-1}(t)\right)-\frac{z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}{p^{\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\right], \quad t \geq t_{3} \tag{2.11}
\end{equation*}
$$

Since $\tau(t) \leq t$ and $\tau^{\prime}(t)>0, \tau^{-1}$ is increasing and moreover $t \leq \tau^{-1}(t)$. Thus,

$$
\begin{equation*}
\tau^{-1}(t) \leq \tau^{-1}\left(\tau^{-1}(t)\right) \tag{2.12}
\end{equation*}
$$

By virtue of (2.10) and (2.12), it follows that

$$
\begin{equation*}
\left(\tau^{-1}(t)\right)^{(n-1) / \kappa} z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \leq\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)^{(n-1) / \kappa} z\left(\tau^{-1}(t)\right) \tag{2.13}
\end{equation*}
$$

Combining (2.11) and (2.13), we conclude that

$$
\begin{equation*}
x^{\alpha}(t) \geq \frac{z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)}\left[1-\left(\frac{\tau^{-1}\left(\tau^{-1}(t)\right)}{\tau^{-1}(t)}\right)^{(n-1) / \kappa} \frac{1}{p^{\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\right] \tag{2.14}
\end{equation*}
$$

for $t \geq t_{3}$ for some $t_{3} \geq t_{\kappa}$. From $\left(H_{4}\right)$, there exist a $\epsilon_{1} \in(0,1)$ and a $t_{4} \geq t_{3}$ such that

$$
\left(\frac{\tau^{-1}\left(\tau^{-1}(t)\right)}{\tau^{-1}(t)}\right)^{(n-1) / \kappa} p^{-\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \leq\left(1-\epsilon_{1}\right) \quad \text { for } t \geq t_{4}
$$

Using this in (2.14) gives

$$
\begin{equation*}
x^{\alpha}(t) \geq \frac{\epsilon_{1} z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)} \quad \text { for } t \geq t_{4} \tag{2.15}
\end{equation*}
$$

From (1.1) and (2.15), we obtain

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\epsilon_{1}^{\beta / \alpha} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z^{\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) \leq 0 \tag{2.16}
\end{equation*}
$$

In view of the fact that $\eta(t) \leq \sigma(t)$ and $z^{\prime}(t)>0$, inequality (2.16) takes the form

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\epsilon_{1}^{\beta / \alpha} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z^{\beta / \alpha}\left(\tau^{-1}(\eta(t))\right) \leq 0, t \geq t_{4} \tag{2.17}
\end{equation*}
$$

Since $z(t)>0$ and $z^{\prime}(t)>0$ on $\left[t_{4}, \infty\right)$, there exists a $t_{5} \geq t_{4}$ and a constant $c>0$ such that

$$
\begin{equation*}
z(t) \geq c \quad \text { for } t \geq t_{5} \tag{2.18}
\end{equation*}
$$

From (2.17) and (2.18), we see that z is a positive solution of the differential inequality

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{1} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0, t \geq t_{5} \tag{2.19}
\end{equation*}
$$

where $d_{1}=\epsilon_{1}^{\beta / \alpha} c^{\frac{\beta}{\alpha}-1}>0$, i.e., (2.4) has a positive solution, which is a contradiction.
Next, we consider (II). Then,

$$
\begin{equation*}
z(t)>0,(-1)^{j+1} z^{(j)}(t)>0, j=1,2, \ldots, n-1, \quad \text { and } z^{(n)}(t) \leq 0 \tag{2.20}
\end{equation*}
$$

for $t \geq t_{2}$. Since $\ell=1$, in view of (2.2), there exists a $t_{\kappa} \geq t_{2}$ for every $\kappa \in(0,1)$ such that

$$
\begin{equation*}
\frac{z(t)}{z^{\prime}(t)} \geq \kappa \frac{t}{1}, \quad t \geq t_{\kappa} \tag{2.21}
\end{equation*}
$$

from which we see that

$$
\begin{equation*}
\left(\frac{z(t)}{t^{1 / \kappa}}\right)^{\prime} \leq 0 \text { for } t \geq t_{\kappa} \tag{2.22}
\end{equation*}
$$

By (2.12) and (2.22),

$$
\begin{equation*}
\left(\tau^{-1}(t)\right)^{1 / \kappa} z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \leq\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)^{1 / \kappa} z\left(\tau^{-1}(t)\right) \tag{2.23}
\end{equation*}
$$

for $t \geq t_{3}$ for some $t_{3} \geq t_{\kappa}$. Combining (2.7) and (2.23), we obtain

$$
x^{\alpha}(t) \geq \frac{z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)}\left[1-\frac{1}{p^{\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\left(\frac{1}{\alpha}\left(\frac{\tau^{-1}\left(\tau^{-1}(t)\right)}{\tau^{-1}(t)}\right)^{1 / \kappa}+\frac{\left(1-\frac{1}{\alpha}\right)}{z\left(\tau^{-1}(t)\right)}\right)\right], t \geq t_{3}
$$

Since $z(t)>0$ and $z^{\prime}(t)>0$, we again see that (2.18) holds, and so the latter inequality takes the form

$$
\begin{equation*}
x^{\alpha}(t) \geq \frac{z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)}\left[1-p^{-\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)\left(\frac{1}{\alpha}\left(\frac{\tau^{-1}\left(\tau^{-1}(t)\right)}{\tau^{-1}(t)}\right)^{1 / \kappa}+\frac{\left(1-\frac{1}{\alpha}\right)}{c}\right)\right] \tag{2.24}
\end{equation*}
$$

for $t \geq t_{4}$ for some $t_{4} \geq t_{3}$. From $\left(H_{5}\right)$, for any $\epsilon_{2} \in(0,1)$ there exists $t_{5} \geq t_{4}$ such that

$$
p^{-\frac{1}{\alpha}}\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)\left(\frac{1}{\alpha}\left(\frac{\tau^{-1}\left(\tau^{-1}(t)\right)}{\tau^{-1}(t)}\right)^{1 / \kappa}+\frac{\left(1-\frac{1}{\alpha}\right)}{c}\right) \leq 1-\epsilon_{2}, t \geq t_{5}
$$

and using this in (2.24) implies

$$
\begin{equation*}
x^{\alpha}(t) \geq \frac{\epsilon_{2} z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)}, \quad \text { for } t \geq t_{5} \tag{2.25}
\end{equation*}
$$

Using (2.25) in (1.1) yields

$$
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\epsilon_{2}^{\beta / \alpha} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z^{\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) \leq 0
$$

Since $\eta(t) \leq \sigma(t)$ and $z^{\prime}(t)>0$, the latter inequality takes the form

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\epsilon_{2}^{\beta / \alpha} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z^{\beta / \alpha}\left(\tau^{-1}(\eta(t))\right) \leq 0 \tag{2.26}
\end{equation*}
$$

In view of (2.18) and $\beta>\alpha$, we see that z is a positive solution of the differential inequality

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{2} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0, t \geq t_{5} \tag{2.27}
\end{equation*}
$$

where $d_{2}=\epsilon_{2}^{\beta / \alpha} c^{\frac{\beta}{\alpha}-1}>0$. That is, (2.5) has a positive solution, which is again a contradiction. The proof is now completed.

Theorem 2.6. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta=\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If, for any $\epsilon_{1}, \epsilon_{2} \in$ $(0,1)$, the even-order linear delay differential inequalities

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\epsilon_{1} q(t) p^{-1}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\epsilon_{2} q(t) p^{-1}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.29}
\end{equation*}
$$

have no positive solutions, then (1.1) is oscillatory.
Proof. The proof follows from Theorem 2.5 with $\beta=\alpha$, and hence details are omitted.
Theorem 2.7. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta<\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If, for every $d_{3}>0$ and $d_{4}>0$, the even-order linear delay differential inequalities

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{3} q(t)\left(h^{(n-1) / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1} p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{4} q(t)\left(h^{1 / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1} p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.31}
\end{equation*}
$$

have no positive solutions, then (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0, x(\sigma(t))>0$, and $x(\tau(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. As in the proof of Theorem 2.5, we again have two cases to consider: (I) $\ell \geq 3$ or (II) $\ell=1$ for $t \geq t_{2}$. If case (I) holds, proceeding as in the proof
of Theorem 2.5, we see that (2.10) holds for $t \geq t_{\kappa} \geq t_{2}$ and we again arrive at (2.17) for $t \geq t_{4}$. By (2.10), there exist a $t_{3} \geq t_{\kappa}$ and a constant $d_{5}>0$ such that

$$
\begin{equation*}
z(t) \leq d_{5} t^{(n-1) / \kappa} \quad \text { for } t \geq t_{3} \tag{2.32}
\end{equation*}
$$

Using (2.32) in (2.17) and applying the fact that $\beta / \alpha<1$ yields

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{3} q(t)\left(h^{(n-1) / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1} p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.33}
\end{equation*}
$$

for $t \geq t_{4}$ for some $t_{4} \geq t_{3}$, where $d_{3}=\epsilon_{1}^{\beta / \alpha} d_{5}^{\frac{\beta}{\alpha}-1}>0$. That is, (2.30) has a positive solution, a contradiction.

Next, assume that case (II) holds. Proceeding as in the proof of Theorem 2.5, we see that (2.22) holds for $t \geq t_{\kappa} \geq t_{2}$ and we again arrive at (2.26) for $t \geq t_{5}$. By (2.22), there exist a $t_{3} \geq t_{\kappa}$ and a constant $d_{6}>0$ such that

$$
\begin{equation*}
z(t) \leq d_{6} t^{1 / \kappa} \quad \text { for } t \geq t_{3} \tag{2.34}
\end{equation*}
$$

Using (2.34) in (2.26) and applying the fact that $\beta / \alpha<1$ yields

$$
\begin{equation*}
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+d_{4} q(t)\left(h^{1 / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1} p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z(h(t)) \leq 0 \tag{2.35}
\end{equation*}
$$

where $d_{4}=\epsilon_{2}^{\beta / \alpha} d_{6}^{\frac{\beta}{\alpha}-1}>0$ and $t \geq t_{5}$. That is, (2.31) has a positive solution, which is again a contradiction. This completes the proof of the Theorem.

Next, we derive results concerning with the oscillatory behavior of (1.1) via comparison with first-order delay differential equations whose oscillatory characters are known.
Theorem 2.8. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta>\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If for some constants $\lambda_{1}, \kappa_{1} \in(0,1)$, the first-order linear delay differential equations

$$
\begin{equation*}
y^{\prime}(t)+\frac{d_{1} \lambda_{1}}{(n-1)!} \frac{h^{n-1}(t)}{b(h(t))} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) y(h(t))=0 \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{\prime}(t)+\kappa_{1} d_{2} h(t) R_{n-3}(t) w(h(t))=0 \tag{2.37}
\end{equation*}
$$

are oscillatory for every constants $d_{1}>0$ and $d_{2}>0$, then (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0, x(\sigma(t))>0$, and $x(\tau(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. As in the proof of Theorem 2.5, we again have two cases to consider: (I) $\ell \geq 3$ or (II) $\ell=1$ for $t \geq t_{2}$. If case (I) holds, proceeding as in the proof of Theorem 2.5, we again arrive at (2.19) for $t \geq t_{5}$. Since $z(t)>0$ and $z^{\prime}(t)>0$ for $t \geq t_{5}$, we have $\lim _{t \rightarrow \infty} z(t) \neq 0$. Thus, by Lemma 2.2, for every $\lambda \in(0,1)$, there exists $t_{\lambda} \geq t_{5}$ such that

$$
\begin{equation*}
z(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} z^{(n-1)}(t) \quad \text { for } t \geq t_{\lambda} \tag{2.38}
\end{equation*}
$$

from which we see that

$$
\begin{equation*}
z(h(t)) \geq \frac{\lambda}{(n-1)!} h^{n-1}(t) z^{(n-1)}(h(t)) \quad \text { for } t \geq t_{6} \tag{2.39}
\end{equation*}
$$

where $h(t) \geq t_{\lambda}$ for $t \geq t_{6}$ for some $t_{6} \geq t_{\lambda}$. Using (2.39) in (2.19) yields

$$
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\frac{d_{1} \lambda}{(n-1)!} h^{n-1}(t) q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) z^{(n-1)}(h(t)) \leq 0
$$

for every λ with $0<\lambda<1$. With $y(t)=b(t) z^{(n-1)}(t)$, we see that $y(t)$ is a positive solution of the first-order linear delay differential inequality

$$
\begin{equation*}
y^{\prime}(t)+\frac{d_{1} \lambda}{(n-1)!} \frac{h^{n-1}(t)}{b(h(t))} q(t) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right) y(h(t)) \leq 0, t \geq t_{6} \tag{2.40}
\end{equation*}
$$

It follows from [20, Theorem 1] that the delay differential equation (2.36) corresponding to (2.40) also has a positive solution for all $\lambda_{1} \in(0,1)$, but this contradicts our assumption on Eq. (2.36).

Next, assume that case (II) holds. As in the proof of Theorem 2.5, we again see that (2.21) and (2.27) hold for $t \geq t_{5}$. Integrating (2.27) from $t \geq t_{5}$ to ∞ gives

$$
z^{(n-1)}(t) \geq d_{2} R_{0}(t) z(h(t))
$$

Integrating the latter inequality from t to ∞ a total of $n-3$ times, we obtain

$$
\begin{equation*}
z^{\prime \prime}(t)+d_{2} R_{n-3}(t) z(h(t)) \leq 0 \tag{2.41}
\end{equation*}
$$

Using (2.21) in (2.41) yields

$$
\begin{equation*}
z^{\prime \prime}(t)+\kappa d_{2} R_{n-3}(t) h(t) z^{\prime}(h(t)) \leq 0 \tag{2.42}
\end{equation*}
$$

With $w(t)=z^{\prime}(t)$, we see that $w(t)$ is a positive solution of the first-order linear delay differential inequality

$$
\begin{equation*}
w^{\prime}(t)+\kappa d_{2} h(t) R_{n-3}(t) w(h(t)) \leq 0 \tag{2.43}
\end{equation*}
$$

for every $\kappa \in(0,1)$. The remainder of the proof is similar to case (I) and hence it is omitted. This completes the proof of the theorem.

Theorem 2.9. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta=\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If for some constants $\lambda_{1}, \kappa_{1} \in(0,1)$, the first-order linear delay differential equations

$$
\begin{equation*}
y^{\prime}(t)+\frac{\lambda_{1} \epsilon_{1}}{(n-1)!} \frac{h^{n-1}(t)}{b(h(t))} q(t) p^{-1}\left(\tau^{-1}(\sigma(t))\right) y(h(t))=0 \tag{2.44}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{\prime}(t)+\kappa_{1} \epsilon_{2} h(t) R_{n-3}(t) w(h(t))=0 \tag{2.45}
\end{equation*}
$$

are oscillatory for any $\epsilon_{1}, \epsilon_{2} \in(0,1)$, then (1.1) is oscillatory.
Proof. The proof follows from Theorem 2.8 with $\beta=\alpha$, and hence the details are omitted.
Corollary 2.10. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta \geq \alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{h(t)}^{t} \frac{h^{n-1}(s)}{b(h(s))} q(s) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(s))\right) d s=\infty \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{h(t)}^{t} h(s) R_{n-3}(s) d s=\infty \tag{2.47}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Proceeding as in the proof of Theorem 2.8, we again arrive at (2.40) for $t \geq t_{6}$ and (2.43) for $t \geq t_{5}$. Integrating (2.40) from $h(t)$ to t and then using the fact that y is a decreasing function, we see that

$$
\int_{h(t)}^{t} \frac{h^{n-1}(s)}{b(h(s))} q(s) p^{-\beta / \alpha}\left(\tau^{-1}(\sigma(s))\right) d s \leq \frac{(n-1)!}{d_{1} \lambda}
$$

which contradicts (2.46).
Next, integrating (2.43) from $h(t)$ to t and then using the fact that w is a decreasing function, we see that

$$
\int_{h(t)}^{t} h(s) R_{n-3}(s) d s \leq \frac{1}{\kappa d_{2}}
$$

which contradicts (2.47) and completes the proof.

Theorem 2.11. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta<\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If for some constants $\lambda_{1}, \kappa_{1} \in(0,1)$, the first-order linear delay differential equations

$$
\begin{equation*}
y^{\prime}(t)+\frac{d_{3} \lambda_{1}}{(n-1)!} \frac{q(t)\left(h^{(n-1) / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1}}{b(h(t)) p^{\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right)} h^{n-1}(t) y(h(t))=0 \tag{2.48}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{\prime}(t)+\kappa_{1} d_{4} h(t) F_{n-3}(t) w(h(t))=0 \tag{2.49}
\end{equation*}
$$

are oscillatory for every constants $d_{3}>0$ and $d_{4}>0$, then (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0, x(\sigma(t))>0$, and $x(\tau(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Proceeding as in the proof of Theorem 2.7, we again have two cases to consider: (I) $\ell \geq 3$ or (II) $\ell=1$ for $t \geq t_{2}$. If case (I) holds, we again arrive at (2.33) for $t \geq t_{4}$. Since $z(t)>0$ and $z^{\prime}(t)>0$ for $t \geq t_{2}$, we have $\lim _{t \rightarrow \infty} z(t) \neq 0$ and so by Lemma 2.2, for every $\lambda \in(0,1)$, there exists $t_{\lambda} \geq t_{2}$ such that (2.38) holds for $t \geq t_{\lambda}$. Using (2.38) in (2.33) gives

$$
\left(b(t) z^{(n-1)}(t)\right)^{\prime}+\frac{d_{3} \lambda}{(n-1)!} \frac{q(t)\left(h^{(n-1) / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1}}{p^{\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right)} h^{n-1}(t) z^{(n-1)}(h(t)) \leq 0
$$

for $t \geq t_{4}$. With $y(t)=b(t) z^{(n-1)}(t)$, we see that $y(t)$ is a positive solution of the first-order linear delay differential inequality

$$
\begin{equation*}
y^{\prime}(t)+\frac{d_{3} \lambda}{(n-1)!} \frac{q(t)\left(h^{(n-1) / \kappa}(t)\right)^{\frac{\beta}{\alpha}-1}}{b(h(t)) p^{\beta / \alpha}\left(\tau^{-1}(\sigma(t))\right)} h^{n-1}(t) y(h(t)) \leq 0 \tag{2.50}
\end{equation*}
$$

It follows from [20, Theorem 1] that the delay differential equation (2.48) corresponding to (2.50) also has a positive solution for all $\lambda_{1} \in(0,1)$, but this contradicts our assumption on Eq. (2.48).

Next, assume that case (II) holds. Then again (2.21) holds for every $\kappa \in(0,1)$ and for $t \geq t_{\kappa} \geq t_{2}$. Proceeding as in the proof of Theorem 2.7, we again arrive at (2.35) for $t \geq t_{5}$. Integrating (2.35) from $t \geq t_{5}$ to ∞, we obtain

$$
z^{(n-1)}(t) \geq d_{4} F_{0}(t) z(h(t))
$$

Integrating the latter inequality from t to ∞ a total of $n-3$ times, we obtain

$$
\begin{equation*}
z^{\prime \prime}(t)+d_{4} F_{n-3}(t) z(h(t)) \leq 0, \quad t \geq t_{5} \tag{2.51}
\end{equation*}
$$

Thus, if we set $w(t)=z^{\prime}(t)$ and using (2.21) in (2.51), then we conclude that w is a positive solution of

$$
w^{\prime}(t)+\kappa d_{4} h(t) F_{n-3}(t) w(h(t)) \leq 0 .
$$

The rest of the proof is similar to case (I) and hence the details are omitted. This completes the proof.

Similar to what we did above, we obtain the following Corollary.
Corollary 2.12. Let conditions $\left(H_{1}\right)-\left(H_{4}\right)$ and $\beta<\alpha$ hold. Assume further that there exists a positive nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that (2.3) holds. If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{h(t)}^{t} \frac{\left(h^{(n-1) / \kappa}(s)\right)^{\frac{\beta}{\alpha}-1}}{b(h(s)) p^{\beta / \alpha}\left(\tau^{-1}(\sigma(s))\right)} q(s) h^{n-1}(s) d s=\infty \tag{2.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{h(t)}^{t} h(s) F_{n-3}(s) d s=\infty \tag{2.53}
\end{equation*}
$$

then equation (1.1) is oscillatory.

We conclude this paper with the following example.
Example 2.13. Consider the nonlinear delay differential equation with a superlinear neutral term

$$
\begin{equation*}
\left(x(t)+t x^{\alpha}\left(\frac{t}{3}\right)\right)^{(n)}+\frac{a}{t^{n-2}} x^{\alpha}\left(\frac{t}{2}\right)=0, \quad t \geq 1 \tag{2.54}
\end{equation*}
$$

where $\alpha>1, a>0$ and $n \geq 4$.
Here $b(t)=1, p(t)=t, \tau(t)=t / 3, \sigma(t)=t / 2$, and $q(t)=a / t^{n-2}$. Choosing $\eta(t)=\frac{t}{4}$, we see that (2.3) holds, and a simple calculation shows that

$$
h(t)=\tau^{-1}(\eta(t))=3 t / 4, \tau^{-1}(\sigma(t))=3 t / 2, \tau^{-1}(t)=3 t, \text { and } \tau^{-1}\left(\tau^{-1}(t)\right)=9 t
$$

Choosing $\kappa=1 / 3$, we see that

$$
\lim _{t \rightarrow \infty}\left(\frac{t}{\tau(t)}\right)^{(n-1) / \kappa} \frac{1}{p^{1 / \alpha}(t)}=\lim _{t \rightarrow \infty} 3^{3(n-1)} \frac{1}{t^{1 / \alpha}}=0
$$

i.e., condition $\left(H_{4}\right)$ holds. Further

$$
R_{0}(t)=\frac{2 a t^{2-n}}{3(n-2)} \text { and } R_{n-3}(t)=\frac{2 a}{3(n-2)!} \frac{1}{t}
$$

Now conditions (2.46) and (2.47) become

$$
\lim _{t \rightarrow \infty} \int_{\frac{3 t}{4}}^{t}\left(\frac{3 s}{4}\right)^{n-1} \frac{a}{s^{n-2}}\left(\frac{2}{3 s}\right) d s=\lim _{t \rightarrow \infty} \frac{2 a}{3}\left(\frac{3}{4}\right)^{n-1} \frac{t}{4}=\infty
$$

and

$$
\lim _{t \rightarrow \infty} \int_{\frac{3 t}{4}}^{t} \frac{3 s}{4} \frac{2 a}{3(n-2)!} \frac{1}{s} d s=\lim _{t \rightarrow \infty} \frac{a}{2(n-2)!} \frac{t}{4}=\infty
$$

that is, conditions (2.46) and (2.47) are satisfied. Hence, by Corollary 2.10, equation (2.54) is oscillatory.

3 Conclusion

In this paper, we present new comparison theorems that compare the higher-order equation (1.1) with a couple of first-order delay differential equations. There are many results available in the literature on the oscillation of first order delay differential equations, and so it would be possible to formulate many criteria for the oscillation of (1.1) based on the results in this paper. Further, the results obtained in this paper provide an answer to the interesting problem mentioned in the paper [13] for $\alpha>1$, that is, equation (1.1) with a superlinear neutral term.

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Difference and Functional Differentia Equations, Kluwer Academic Publishers, Dordrecht (2000).
[2] R. P. Agarwal, M. Bohner, T. Li and C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput. 225, 787-794 (2013).
[3] J. Alzabut, M. Bohner and S. R. Grace, Oscillation of nonlinear third-order difference equations with mixed neutral terms, Adv. Differ. Equ. 2021, Article ID 3, 1-18 (2021).
[4] M. A. Arahet, S. H. Saker and C. Tunç, Gaps between zeros of solutions for a certain class of third-order differential equations, Arab Journal of Basic and Applied Sciences 26, 453-461 (2019).
[5] B. Baculíková and J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl. 62, 4472-4478 (2011).
[6] B. Baculíková, J. Džurina and T. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Differential Equations 2011, No. 143, 1-9 (2011).
[7] B. Baculíková and J. Džurina, Oscillation theorems for higher order neutral differential equations, Appl. Math. Comput. 219, 3769-3778 (2012).
[8] B. Baculíková and J. Džurina, On certain inequalities and their applications in the oscillation theory, $A d v$. Differ. Equ. 2013, Article ID 165, 1-8 (2013).
[9] M. Bohner, B. Sudha, K. Tangavelu and E. Thandapani, Oscillation criteria for second-order differential equations with superlinear neutral term, Nonlinear Stud. 26, 425-434 (2019).
[10] G. E. Chatzarakis, I. Jadlovská and E. Tunç, Improved oscillation criteria for even-order neutral differential equations, Analysis 41, 213-219 (2021).
[11] E. M. Elabbasy, C. Cesarano, O. Bazighifan and O. Moaaz, Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation, Symmetry 11, 1-9 (2019).
[12] S. R. Grace, I. Jadlovská and E. Tunç, Oscillatory and asymptotic behavior of third-order nonlinear differential equations with a superlinear neutral term, Turk. J. Math. 44, 1317-1329 (2020).
[13] J. R. Graef, S. R. Grace and E. Tunç, Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term, Opuscula Math. 39, 39-47 (2019).
[14] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford (1991).
[15] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Reprint of the 1952 edition, Cambridge University Press, Cambridge (1988).
[16] T. Li and Yu. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett. 61, 35-41 (2016).
[17] X. Lin and X. H. Tang, Oscillation of solutions of neutral differential equations with a superlinear neutral term, Appl. Math. Lett. 20, 1016-1022 (2007).
[18] O. Moaaz, J. Awrejcewicz and O. Bazighifan, A new approach in the study of oscillation criteria of evenorder neutral differential equations, Mathematics 8, 1-8 (2020).
[19] Ch. G. Philos, Some comparison criteria in oscillation theory, J. Austral Math. Soc. (Series A) 36, 176-186 (1984).
[20] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math. 36, 168-178 (1981).
[21] S. H. Saker and J. R. Graef, Oscillation of third-order nonlinear neutral functional dynamic equations on time scales, Dynam. Syst. Appl. 21, 583-606 (2012).
[22] E. Thandapani, S. Padmavathy and S. Pinelas, Oscillation criteria for odd-order nonlinear differential equations with advanced and delayed arguments, Electron. J. Differ. Equ. 2014, No. 174, 1-13 (2014).
[23] C. Tunç, On the non-oscillation of solutions of some nonlinear differential equations of third order, Nonlinear Dyn. Syst. Theory 7, 419-430 (2007).
[24] C. Tunç and O. Tunç, On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order, Journal of Advanced Research 7, 165-168 (2016).
[25] E. Tunç and O. Özdemir, Oscillatory behavior of second-order damped differential equations with a superlinear neutral term, Opuscula Math. 40, 629-639 (2020).
[26] E. Tunç and S.R. Grace, Oscillatory behavior of solutions to third-order nonlinear differential equations with a superlinear neutral term, Electron. J. Differential Equations 2020, No. 32, 1-11 (2020).

Author information

C. Dharuman, Department of Mathematics, SRM Institute of Science and Technology, Ramapuram Campus, Chennai-600 089, India.
E-mail: cdharuman55@gmail. com
N. Prabaharan, Department of Mathematics, SRM Institute of Science and Technology, Ramapuram Campus, Chennai-600 089, India.
E-mail: prabaharan.n83@gmail.com
E. Thandapani, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, 600005, India.
E-mail: ethandapani@yahoo.co.in
E. Tunç, Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, 60240, Tokat, Turkey.
E-mail: ercantunc72@yahoo.com
Received: September 24th, 2021
Accepted: December 26th, 2021

