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Abstract The authors establish some new oscillation criteria for a class of even-order func-
tional differential equations with a superlinear neutral term using comparison methods and inte-
gral conditions. The results obtained are complement and improve a number of existing ones in
the literature. An example is provided to illustrate the main results.

1 Introduction

This paper is concerned with the oscillatory behavior of solutions of the even-order nonlinear
differential equation with a superlinear neutral term

(b(t)z(n−1)(t))′ + q(t)xβ(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)xα(τ(t)), n ≥ 4 is an even natural number, α and β are the ratios of
odd positive integers with α > 1. Throughout this paper, we always assume that the following
conditions are satisfied:

(H1) b : [t0,∞)→ (0,∞) is a continuous function with b′(t) ≥ 0, and∫ ∞
t0

1
b(t)

dt =∞;

(H2) p, q : [t0,∞) → R are continuous functions with p(t) > 0, q(t) ≥ 0, and q(t) is not
identically zero for large t;

(H3) τ, σ : [t0,∞) → R are continuous functions such that τ ′(t) > 0, τ(t) ≤ t, σ(t) ≤ t, and
limt→∞ τ(t) = limt→∞ σ(t) =∞;

(H4) there exists a constant κ ∈ (0, 1) such that

lim
t→∞

(
t

τ(t)

)(n−1)/κ 1
p1/α(t)

= 0. (1.2)

By a solution of (1.1), we mean a function x ∈ C ([tx,∞),R) for some tx ≥ t0 such that
z ∈ Cn−1 ([tx,∞),R), bz(n−1) ∈ C1 ([tx,∞),R) and x satisfies (1.1) on [tx,∞). We only
consider those solutions of (1.1) that exist on some half-line [tx,∞) and satisfy the condition

sup {|x(t)| : T1 ≤ t <∞} > 0 for any T1 ≥ tx;

we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of equation (1.1) is
said to be oscillatory if it has arbitrarily large zeros on [tx,∞); otherwise it is called nonoscilla-
tory. Equation (1.1) itself is termed oscillatory if all its solutions are oscillatory.

In recent years, the problem of investigating the oscillatory behavior of solutions of various
classes of differential equations has received great attention; we refer the reader to the mono-
graphs [1, 14], the papers [2, 3, 4, 5, 6, 7, 10, 11, 16, 18, 21, 22, 23, 24] and the reference cited
therein. However, there are few results dealing with the oscillation of differential equations with
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a superlinear neutral term; for example, see [9, 12, 17, 25, 26], where first, second and third-order
differential equations of the type (1.1) are studied.

In this paper, we first reduce the nonlinear equation (1.1) into a linear one and then we
obtain some new criteria for the oscillation of all solutions of (1.1) via couple of first-order delay
differential equations whose oscillatory characters are known. Also the results presented in this
paper will provide an answer to the interesting problem raised in the paper [13].

For the reader’s convenience, and to simplify notation, we define:

R0(t) :=
(

1
b(t)

∫ ∞
t

q(s)p−
β
α (τ−1(σ(s)))ds

)
,

Rm(t) :=
∫ ∞
t

Rm−1(s)ds for m = 1, 2, ..., n− 3;

F0(t) :=
(

1
b(t)

∫ ∞
t

q(s)
(
h1/κ(s)

) β
α−1

p−
β
α (τ−1(σ(s)))ds

)
,

Fm(t) :=
∫ ∞
t

Fm−1(s)ds for m = 1, 2, ..., n− 3;

and
h(t) := τ−1(η(t)),

where η ∈ C1([t0,∞),R) and τ−1 is the inverse function of τ .
In the sequel, all functional inequalities are supposed to hold for all t large enough. Without

loss of generality, we deal only with positive solutions of (1.1); since if x(t) is a solution of (1.1),
then −x(t) is also a solution.

2 Main Results

We begin with the following auxiliary lemmas that are essential in the proofs of our main results.

Lemma 2.1 ([19, Lemma 1]). Let f(t) ∈ Cn([T,∞), (0,∞)) such that the derivative f (n)(t) is
nonpositive on [T,∞) and not identically zero on any interval of the form [T ′,∞), T ′ ≥ T . Then
there exist a T ∗ ≥ T ′ and an integer `, 0 ≤ ` ≤ n− 1, with n+ ` odd so that

(−1)`+jf (j)(t) > 0 on [T ∗,∞) for j = `, . . . , n− 1,

f (i)(t) > 0 on [T ∗,∞) for i = 1, . . . , `− 1 when ` > 1.

Lemma 2.2 ([19, Lemma 2]). Let f(t) be as in Lemma 2.1 and T ∗ ≥ T ′ be assigned to f(t) by
Lemma 2.1. Moreover, let λ be a number with 0 < λ < 1. If limt→∞ f(t) 6= 0, then there exists
a T ∗∗ ≥ T ∗/λ such that

f(t) ≥ λ

(n− 1)!
tn−1f (n−1)(t) for t ≥ T ∗∗. (2.1)

Lemma 2.3 ([8, Lemma 1]). Let f(t) be as in Lemma 2.1 for T ′ ≥ T , and T ∗ ≥ T ′ be assigned
to f(t) by Lemma 2.1. Then for every κ ∈ (0, 1) there exists a T ∗∗ ≥ T ∗ such that

f(t)

f ′(t)
≥ κ t

`
for t ≥ T ∗∗. (2.2)

Lemma 2.4 ([15]). If a > 0 and 0 < γ ≤ 1, then

aγ ≤ γa+ (1− γ),

where equality holds when γ = 1.

Now, we present our first oscillation result for (1.1) in the case where β > α.
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Theorem 2.5. Let conditions (H1)–(H4) and β > α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that

η(t) ≤ σ(t), η(t) < τ(t), and lim
t→∞

η(t) =∞. (2.3)

If, for every d1 > 0 and d2 > 0, the even-order linear delay differential inequalities

(b(t)z(n−1)(t))′ + d1q(t)p
−β/α(τ−1(σ(t)))z(h(t)) ≤ 0 (2.4)

and
(b(t)z(n−1)(t))′ + d2q(t)p

−β/α(τ−1(σ(t)))z(h(t)) ≤ 0 (2.5)

have no positive solutions, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0, and
x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. From the definition of z(t), we see that

xα(t) =
1

p(τ−1(t))

(
z(τ−1(t))− x(τ−1(t))

)
≥ 1

p(τ−1(t))

(
z(τ−1(t))− z

1
α (τ−1(τ−1(t)))

p
1
α (τ−1(τ−1(t)))

)
. (2.6)

Applying Lemma 2.4 in (2.6) yields

xα(t) ≥ 1
p(τ−1(t))

[
z(τ−1(t))− 1

p
1
α (τ−1(τ−1(t)))

(
1
α
z(τ−1(τ−1(t))) +

(
1− 1

α

))]
. (2.7)

It follows from (H1) and (1.1) that

z(n−1)(t) > 0 and z(n)(t) ≤ 0 for t ≥ t1.

Thus, by Lemma 2.1, there exists a t2 ≥ t1 and an odd integer ` ∈ {1, 3, 5, . . . , n− 1} such that

(−1)`+jz(j)(t) > 0 for j = `, . . . , n− 1,

z(i)(t) > 0 for i = 1, . . . , `− 1 when ` > 1,

for t ≥ t2, and so we shall distinguish the following two cases:

(I) ` ≥ 3 for t ≥ t2, or (II) ` = 1 for t ≥ t2.

Suppose (I) holds. Then,

z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) > 0, · · · , z(n−1)(t) > 0, z(n)(t) ≤ 0
(2.8)

for t ≥ t2. Since (n − 1) ≥ ` ≥ 3, in view of (2.2), there exists a tκ ≥ t2 for every κ ∈ (0, 1)
such that

z(t)

z′(t)
≥ κ t

`
≥ κ t

n− 1
for t ≥ tκ, (2.9)

which implies (
z(t)

t(n−1)/κ

)′
=
κtz′(t)− (n− 1)z(t)

κt(n−1)/κ+1 ≤ 0 for t ≥ tκ. (2.10)

Since z(t) → ∞ as t → ∞, there exists t3 ≥ tκ such that z(τ−1(τ−1(t))) ≥ 1 and using this in
(2.6), we get

xα(t) ≥ 1
p(τ−1(t))

[
z(τ−1(t))− z(τ−1(τ−1(t)))

p
1
α (τ−1(τ−1(t)))

]
, t ≥ t3. (2.11)
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Since τ(t) ≤ t and τ ′(t) > 0, τ−1 is increasing and moreover t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)). (2.12)

By virtue of (2.10) and (2.12), it follows that

(τ−1(t))(n−1)/κz(τ−1(τ−1(t))) ≤ (τ−1(τ−1(t)))(n−1)/κz(τ−1(t)). (2.13)

Combining (2.11) and (2.13), we conclude that

xα(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1−

(
τ−1(τ−1(t))

τ−1(t)

)(n−1)/κ 1
p

1
α (τ−1(τ−1(t)))

]
(2.14)

for t ≥ t3 for some t3 ≥ tκ. From (H4), there exist a ε1 ∈ (0, 1) and a t4 ≥ t3 such that(
τ−1(τ−1(t))

τ−1(t)

)(n−1)/κ

p−
1
α (τ−1(τ−1(t))) ≤ (1− ε1) for t ≥ t4.

Using this in (2.14) gives

xα(t) ≥ ε1z(τ−1(t))

p(τ−1(t))
for t ≥ t4. (2.15)

From (1.1) and (2.15), we obtain

(b(t)z(n−1)(t))′ + ε
β/α
1 q(t)p−β/α(τ−1(σ(t)))zβ/α(τ−1(σ(t))) ≤ 0. (2.16)

In view of the fact that η(t) ≤ σ(t) and z′(t) > 0, inequality (2.16) takes the form

(b(t)z(n−1)(t))′ + ε
β/α
1 q(t)p−β/α(τ−1(σ(t)))zβ/α(τ−1(η(t))) ≤ 0, t ≥ t4. (2.17)

Since z(t) > 0 and z′(t) > 0 on [t4,∞), there exists a t5 ≥ t4 and a constant c > 0 such that

z(t) ≥ c for t ≥ t5. (2.18)

From (2.17) and (2.18), we see that z is a positive solution of the differential inequality

(b(t)z(n−1)(t))′ + d1q(t)p
−β/α(τ−1(σ(t)))z(h(t)) ≤ 0, t ≥ t5, (2.19)

where d1 = ε
β/α
1 c

β
α−1 > 0, i.e., (2.4) has a positive solution, which is a contradiction.

Next, we consider (II). Then,

z(t) > 0, (−1)j+1z(j)(t) > 0, j = 1, 2, . . . , n− 1, and z(n)(t) ≤ 0 (2.20)

for t ≥ t2. Since ` = 1, in view of (2.2), there exists a tκ ≥ t2 for every κ ∈ (0, 1) such that

z(t)

z′(t)
≥ κ t

1
, t ≥ tκ, (2.21)

from which we see that (
z(t)

t1/κ

)′
≤ 0 for t ≥ tκ. (2.22)

By (2.12) and (2.22),

(τ−1(t))1/κz(τ−1(τ−1(t))) ≤ (τ−1(τ−1(t)))1/κz(τ−1(t)) (2.23)

for t ≥ t3 for some t3 ≥ tκ. Combining (2.7) and (2.23), we obtain

xα(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1− 1

p
1
α (τ−1(τ−1(t)))

(
1
α

(
τ−1(τ−1(t))

τ−1(t)

)1/κ

+

(
1− 1

α

)
z(τ−1(t))

)]
, t ≥ t3.
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Since z(t) > 0 and z′(t) > 0, we again see that (2.18) holds, and so the latter inequality takes
the form

xα(t) ≥ z(τ−1(t))

p(τ−1(t))

[
1− p− 1

α (τ−1(τ−1(t)))

(
1
α

(
τ−1(τ−1(t))

τ−1(t)

)1/κ

+

(
1− 1

α

)
c

)]
(2.24)

for t ≥ t4 for some t4 ≥ t3. From (H5), for any ε2 ∈ (0, 1) there exists t5 ≥ t4 such that

p−
1
α (τ−1(τ−1(t)))

(
1
α

(
τ−1(τ−1(t))

τ−1(t)

)1/κ

+

(
1− 1

α

)
c

)
≤ 1− ε2, t ≥ t5,

and using this in (2.24) implies

xα(t) ≥ ε2z(τ−1(t))

p(τ−1(t))
, for t ≥ t5. (2.25)

Using (2.25) in (1.1) yields

(b(t)z(n−1)(t))′ + ε
β/α
2 q(t)p−β/α(τ−1(σ(t)))zβ/α(τ−1(σ(t))) ≤ 0.

Since η(t) ≤ σ(t) and z′(t) > 0, the latter inequality takes the form

(b(t)z(n−1)(t))′ + ε
β/α
2 q(t)p−β/α(τ−1(σ(t)))zβ/α(τ−1(η(t))) ≤ 0. (2.26)

In view of (2.18) and β > α, we see that z is a positive solution of the differential inequality

(b(t)z(n−1)(t))′ + d2q(t)p
−β/α(τ−1(σ(t)))z(h(t)) ≤ 0, t ≥ t5, (2.27)

where d2 = ε
β/α
2 c

β
α−1 > 0. That is, (2.5) has a positive solution, which is again a contradiction.

The proof is now completed.

Theorem 2.6. Let conditions (H1)–(H4) and β = α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If, for any ε1, ε2 ∈
(0, 1), the even-order linear delay differential inequalities

(b(t)z(n−1)(t))′ + ε1q(t)p
−1(τ−1(σ(t)))z(h(t)) ≤ 0 (2.28)

and
(b(t)z(n−1)(t))′ + ε2q(t)p

−1(τ−1(σ(t)))z(h(t)) ≤ 0 (2.29)

have no positive solutions, then (1.1) is oscillatory.

Proof. The proof follows from Theorem 2.5 with β = α, and hence details are omitted.

Theorem 2.7. Let conditions (H1)–(H4) and β < α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If, for every d3 > 0
and d4 > 0, the even-order linear delay differential inequalities

(b(t)z(n−1)(t))′ + d3q(t)
(
h(n−1)/κ(t)

) β
α−1

p−β/α(τ−1(σ(t)))z(h(t)) ≤ 0 (2.30)

and

(b(t)z(n−1)(t))′ + d4q(t)
(
h1/κ(t)

) β
α−1

p−β/α(τ−1(σ(t)))z(h(t)) ≤ 0 (2.31)

have no positive solutions, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0, and
x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. As in the proof of Theorem 2.5, we again have two
cases to consider: (I) ` ≥ 3 or (II) ` = 1 for t ≥ t2. If case (I) holds, proceeding as in the proof
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of Theorem 2.5, we see that (2.10) holds for t ≥ tκ ≥ t2 and we again arrive at (2.17) for t ≥ t4.
By (2.10), there exist a t3 ≥ tκ and a constant d5 > 0 such that

z(t) ≤ d5t
(n−1)/κ for t ≥ t3. (2.32)

Using (2.32) in (2.17) and applying the fact that β/α < 1 yields

(b(t)z(n−1)(t))′ + d3q(t)
(
h(n−1)/κ(t)

) β
α−1

p−β/α(τ−1(σ(t)))z(h(t)) ≤ 0 (2.33)

for t ≥ t4 for some t4 ≥ t3, where d3 = ε
β/α
1 d

β
α−1
5 > 0. That is, (2.30) has a positive solution, a

contradiction.
Next, assume that case (II) holds. Proceeding as in the proof of Theorem 2.5, we see that

(2.22) holds for t ≥ tκ ≥ t2 and we again arrive at (2.26) for t ≥ t5. By (2.22), there exist a
t3 ≥ tκ and a constant d6 > 0 such that

z(t) ≤ d6t
1/κ for t ≥ t3. (2.34)

Using (2.34) in (2.26) and applying the fact that β/α < 1 yields

(b(t)z(n−1)(t))′ + d4q(t)
(
h1/κ(t)

) β
α−1

p−β/α(τ−1(σ(t)))z(h(t)) ≤ 0, (2.35)

where d4 = ε
β/α
2 d

β
α−1
6 > 0 and t ≥ t5. That is, (2.31) has a positive solution, which is again a

contradiction. This completes the proof of the Theorem.

Next, we derive results concerning with the oscillatory behavior of (1.1) via comparison with
first-order delay differential equations whose oscillatory characters are known.

Theorem 2.8. Let conditions (H1)–(H4) and β > α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If for some constants
λ1, κ1 ∈ (0, 1), the first-order linear delay differential equations

y′(t) +
d1λ1

(n− 1)!
hn−1(t)

b(h(t))
q(t)p−β/α(τ−1(σ(t)))y(h(t)) = 0 (2.36)

and
w′(t) + κ1d2h(t)Rn−3(t)w(h(t)) = 0 (2.37)

are oscillatory for every constants d1 > 0 and d2 > 0, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0, and
x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. As in the proof of Theorem 2.5, we again have two
cases to consider: (I) ` ≥ 3 or (II) ` = 1 for t ≥ t2. If case (I) holds, proceeding as in the proof
of Theorem 2.5, we again arrive at (2.19) for t ≥ t5. Since z(t) > 0 and z′(t) > 0 for t ≥ t5, we
have limt→∞ z(t) 6= 0. Thus, by Lemma 2.2, for every λ ∈ (0, 1), there exists tλ ≥ t5 such that

z(t) ≥ λ

(n− 1)!
tn−1z(n−1)(t) for t ≥ tλ, (2.38)

from which we see that

z(h(t)) ≥ λ

(n− 1)!
hn−1(t)z(n−1)(h(t)) for t ≥ t6, (2.39)

where h(t) ≥ tλ for t ≥ t6 for some t6 ≥ tλ. Using (2.39) in (2.19) yields

(b(t)z(n−1)(t))′ +
d1λ

(n− 1)!
hn−1(t)q(t)p−β/α(τ−1(σ(t)))z(n−1)(h(t)) ≤ 0,

for every λ with 0 < λ < 1. With y(t) = b(t)z(n−1)(t), we see that y(t) is a positive solution of
the first-order linear delay differential inequality

y′(t) +
d1λ

(n− 1)!
hn−1(t)

b(h(t))
q(t)p−β/α(τ−1(σ(t)))y(h(t)) ≤ 0, t ≥ t6. (2.40)
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It follows from [20, Theorem 1] that the delay differential equation (2.36) corresponding to
(2.40) also has a positive solution for all λ1 ∈ (0, 1), but this contradicts our assumption on Eq.
(2.36).

Next, assume that case (II) holds. As in the proof of Theorem 2.5, we again see that (2.21)
and (2.27) hold for t ≥ t5. Integrating (2.27) from t ≥ t5 to∞ gives

z(n−1)(t) ≥ d2R0(t)z(h(t)).

Integrating the latter inequality from t to∞ a total of n− 3 times, we obtain

z′′(t) + d2Rn−3(t)z(h(t)) ≤ 0. (2.41)

Using (2.21) in (2.41) yields

z′′(t) + κd2Rn−3(t)h(t)z
′(h(t)) ≤ 0. (2.42)

Withw(t) = z′(t), we see thatw(t) is a positive solution of the first-order linear delay differential
inequality

w′(t) + κd2h(t)Rn−3(t)w(h(t)) ≤ 0 (2.43)

for every κ ∈ (0, 1). The remainder of the proof is similar to case (I) and hence it is omitted.
This completes the proof of the theorem.

Theorem 2.9. Let conditions (H1)–(H4) and β = α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If for some constants
λ1, κ1 ∈ (0, 1), the first-order linear delay differential equations

y′(t) +
λ1ε1

(n− 1)!
hn−1(t)

b(h(t))
q(t)p−1(τ−1(σ(t)))y(h(t)) = 0 (2.44)

and
w′(t) + κ1ε2h(t)Rn−3(t)w(h(t)) = 0 (2.45)

are oscillatory for any ε1, ε2 ∈ (0, 1), then (1.1) is oscillatory.

Proof. The proof follows from Theorem 2.8 with β = α, and hence the details are omitted.

Corollary 2.10. Let conditions (H1)–(H4) and β ≥ α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If

lim
t→∞

∫ t

h(t)

hn−1(s)

b(h(s))
q(s)p−β/α(τ−1(σ(s)))ds =∞ (2.46)

and

lim
t→∞

∫ t

h(t)

h(s)Rn−3(s)ds =∞, (2.47)

then equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.8, we again arrive at (2.40) for t ≥ t6 and (2.43)
for t ≥ t5. Integrating (2.40) from h(t) to t and then using the fact that y is a decreasing function,
we see that ∫ t

h(t)

hn−1(s)

b(h(s))
q(s)p−β/α(τ−1(σ(s)))ds ≤ (n− 1)!

d1λ
,

which contradicts (2.46).
Next, integrating (2.43) from h(t) to t and then using the fact that w is a decreasing function,

we see that ∫ t

h(t)

h(s)Rn−3(s)ds ≤
1
κd2

which contradicts (2.47) and completes the proof.
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Theorem 2.11. Let conditions (H1)–(H4) and β < α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If for some constants
λ1, κ1 ∈ (0, 1), the first-order linear delay differential equations

y′(t) +
d3λ1

(n− 1)!
q(t)

(
h(n−1)/κ(t)

) β
α−1

b(h(t))pβ/α(τ−1(σ(t)))
hn−1(t)y(h(t)) = 0 (2.48)

and
w′(t) + κ1d4h(t)Fn−3(t)w(h(t)) = 0 (2.49)

are oscillatory for every constants d3 > 0 and d4 > 0, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0, and
x(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of Theorem 2.7, we again
have two cases to consider: (I) ` ≥ 3 or (II) ` = 1 for t ≥ t2. If case (I) holds, we again arrive
at (2.33) for t ≥ t4. Since z(t) > 0 and z′(t) > 0 for t ≥ t2, we have limt→∞ z(t) 6= 0 and so
by Lemma 2.2, for every λ ∈ (0, 1), there exists tλ ≥ t2 such that (2.38) holds for t ≥ tλ. Using
(2.38) in (2.33) gives

(b(t)z(n−1)(t))′ +
d3λ

(n− 1)!
q(t)

(
h(n−1)/κ(t)

) β
α−1

pβ/α(τ−1(σ(t)))
hn−1(t)z(n−1)(h(t)) ≤ 0

for t ≥ t4. With y(t) = b(t)z(n−1)(t), we see that y(t) is a positive solution of the first-order
linear delay differential inequality

y′(t) +
d3λ

(n− 1)!
q(t)

(
h(n−1)/κ(t)

) β
α−1

b(h(t))pβ/α(τ−1(σ(t)))
hn−1(t)y(h(t)) ≤ 0. (2.50)

It follows from [20, Theorem 1] that the delay differential equation (2.48) corresponding to
(2.50) also has a positive solution for all λ1 ∈ (0, 1), but this contradicts our assumption on Eq.
(2.48).

Next, assume that case (II) holds. Then again (2.21) holds for every κ ∈ (0, 1) and for
t ≥ tκ ≥ t2. Proceeding as in the proof of Theorem 2.7, we again arrive at (2.35) for t ≥ t5.
Integrating (2.35) from t ≥ t5 to∞, we obtain

z(n−1)(t) ≥ d4F0(t)z(h(t)).

Integrating the latter inequality from t to∞ a total of n− 3 times, we obtain

z′′(t) + d4Fn−3(t)z(h(t)) ≤ 0, t ≥ t5. (2.51)

Thus, if we set w(t) = z′(t) and using (2.21) in (2.51), then we conclude that w is a positive
solution of

w′(t) + κd4h(t)Fn−3(t)w(h(t)) ≤ 0.

The rest of the proof is similar to case (I) and hence the details are omitted. This completes the
proof.

Similar to what we did above, we obtain the following Corollary.

Corollary 2.12. Let conditions (H1)–(H4) and β < α hold. Assume further that there exists a
positive nondecreasing function η ∈ C1([t0,∞),R) such that (2.3) holds. If

lim
t→∞

∫ t

h(t)

(
h(n−1)/κ(s)

) β
α−1

b(h(s))pβ/α(τ−1(σ(s)))
q(s)hn−1(s)ds =∞ (2.52)

and

lim
t→∞

∫ t

h(t)

h(s)Fn−3(s)ds =∞, (2.53)

then equation (1.1) is oscillatory.
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We conclude this paper with the following example.

Example 2.13. Consider the nonlinear delay differential equation with a superlinear neutral term(
x(t) + txα

(
t

3

))(n)

+
a

tn−2x
α

(
t

2

)
= 0, t ≥ 1, (2.54)

where α > 1, a > 0 and n ≥ 4.
Here b(t) = 1, p(t) = t, τ(t) = t/3, σ(t) = t/2, and q(t) = a/tn−2. Choosing η(t) = t

4 , we
see that (2.3) holds, and a simple calculation shows that

h(t) = τ−1(η(t)) = 3t/4, τ−1(σ(t)) = 3t/2, τ−1(t) = 3t, and τ−1(τ−1(t)) = 9t.

Choosing κ = 1/3, we see that

lim
t→∞

(
t

τ(t)

)(n−1)/κ 1
p1/α(t)

= lim
t→∞

33(n−1) 1
t1/α

= 0,

i.e., condition (H4) holds. Further

R0(t) =
2at2−n

3(n− 2)
and Rn−3(t) =

2a
3(n− 2)!

1
t
.

Now conditions (2.46) and (2.47) become

lim
t→∞

∫ t

3t
4

(
3s
4

)n−1
a

sn−2

(
2
3s

)
ds = lim

t→∞

2a
3

(
3
4

)n−1
t

4
=∞

and

lim
t→∞

∫ t

3t
4

3s
4

2a
3(n− 2)!

1
s
ds = lim

t→∞

a

2(n− 2)!
t

4
=∞,

that is, conditions (2.46) and (2.47) are satisfied. Hence, by Corollary 2.10, equation (2.54) is
oscillatory.

3 Conclusion

In this paper, we present new comparison theorems that compare the higher-order equation (1.1)
with a couple of first-order delay differential equations. There are many results available in the
literature on the oscillation of first order delay differential equations, and so it would be possible
to formulate many criteria for the oscillation of (1.1) based on the results in this paper. Further,
the results obtained in this paper provide an answer to the interesting problem mentioned in the
paper [13] for α > 1, that is, equation (1.1) with a superlinear neutral term.
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