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Abstract In the present paper, we prove sharp inequalities involving generalized normalized
δ-Casorati curvature and normalized δ-Casorati curvature for slant submanifolds of Golden Rie-
mannian space forms. Moreover, we also characterize those submanifolds for which the equality
cases hold. Some special cases of these inequalities are given.

1 Introduction

The theory of Chen’s invariants has been very interesting topic in the field of differential geom-
etry of submanifolds after introducing Chen’s δ- invariants by B. Y. Chen [3]. Since then, many
geometers considered such invariants and Chen like inequalities in many classes of submanifolds
in different ambient spaces ( for instance, see [16, 17], [18], [21], [23, 24]). One can also observe
that Casorati curvature of submanifolds in a Riemannian Geometry is an extrinsic invariant de-
fined as the normalized square of the length of the second fundamental form and it was preferred
by Casorati over the Gaussian curvature because corresponds better with the common intuition
of curvature. We see that some optimal inequalities for the Casorati curvatures of submanifolds
in different ambient spaces were derived in [8], [9], [14], [15],[22].

On the other hand, the golden ratio has attracted attention of many researchers of diverse
interests for more than 2000 years. In fact, it will be fair to say that this number has inspired
thinkers of all disciplines like no other number in the history of number theory.

C. Hretcanu and M. Crasmareanu ([11], [12]) studied induced structure on an invariant sub-
manifold in a golden Riemannian manifold and showed that the golden structure induces on
every invariant submanifold a golden structure. In 2014, M. Ozkan [19] investigated golden
semi-Riemannian manifolds and defined the horizontal lift of golden structures in a tangent bun-
dle.

In 1990, B. Y. Chen introduced some fundamental results concerning slant immersions [5]. O.
Bahadir and S. Uddin characterized slant submanifolds of a Riemannian manifold with Golden
structure and provided some non-trivial examples of slant submanifolds of Golden Riemannian
manifolds [1].

In this paper, we study slant submanifolds in golden Riemannian manifolds. In Section 2, we
provide some basic formulas and definition to make this paper self contained. In Section 3, we
prove sharp inequalities that involve the generalized normalized δ-Casorati curvature and nor-
malized δ-Casorati curvature for slant submanifolds in golden Riemannian space forms. More-
over, we give some special cases of these inequalities as a consequence for different classes of
submanifolds.

2 Preliminaries

2.1 Riemannian Invariants

[4] Let Nn be n-dimensional Riemannian submanifold of m-dimensional Riemannian manifold
(N , g) and g be the metric tensor induced on N . If ∇ is the Levi-Civita connection on N and ∇
is the covariant differentiation induced on N , then the Gauss and Weingarten formulas are given
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by

∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TN )

and

∇XN = −SNX +∇⊥XN, ∀X ∈ Γ(TN ),∀N ∈ Γ(TN⊥)

where h is the second fundamental form of N , ∇⊥ is the connection on the normal bundle
and SN is the shape operator of N with respect to N . The shape operator SN and the second
fundamental form h are related by

g(SNX,Y ) = g(h(X,Y ), N) ∀X,Y ∈ Γ(TN ),∀N ∈ Γ(TN⊥).

We write the Gauss equation as follows [25]

R(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,W ), h(Y,Z))

+g(h(X,Z), h(Y,W )) (2.1)

for all vector fields X,Y, Z,W ∈ TN .
Let us consider a local orthonormal tangent frame {E1, . . . , En} of the tangent bundle TN

of N and a local orthonormal normal frame {En+1, . . . , Em} of the normal bundle T⊥N of N
in N . Then, at any point p ∈ N , the scalar curvature τ is given by

τ =
∑

i≤i<j≤n

R(Ei, Ej , Ej , Ei)

and the normalized scalar curvature ρ of N is defined as

ρ =
2τ

n(n− 1)
.

The mean curvature vector denoted by H of N is given by

H =
n∑
i=1

1
n
h(Ei, Ei).

Conveniently, let us put

hrij = g(h(Ei, Ej), Er)

for i, j = {1, . . . , n} and r = {n+ 1, . . . ,m}. Then the squared norm of mean curvature vector
of N is defined as

||H||2 = 1
n2

m∑
r=n+1

{ n∑
i=1

hrii

}2

.

and the squared norm of second fundamental form h is denoted by

C = 1
n
||h||2, (2.2)

where

||h||2 =
m∑

r=n+1

n∑
i,j=1

(
hrij
)2
.

It is known as the Casorati curvature C of N .
Let us assume that L be a s-dimensional subspace of TN , s ≥ 2, and {E1, . . . , Es} be an

orthonormal basis of L, then the scalar curvature of the s−plane section L is given by

τ(L) =
∑

i≤i<j≤s

R(Ei, Ej , Ej , Ei)
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and the Casorati curvature of the subspace L is as follows

C(L) = 1
s

m∑
r=n+1

s∑
i,j=1

(
hrij
)2

The normalized δ-Casorati curvatures δc(n) and δ̂c(n) are defined as

[δc(n− 1)]p =
1
2
Cp +

n+ 1
2n(n− 1)

inf{C(L)|L : a hyperplane of TpN}

and

[δ̂c(n− 1)]p = 2Cp −
2n− 1

2n
sup{C(L)|L : a hyperplane of TpN}.

The generalized normalized δ-Casorati curvatures δC(r;n − 1) and δ̂C(r;n − 1) of the sub-
manifold Nn are defined for any positive real number r 6= n(n− 1) as

[δc(r;n− 1)]p = rCp

+
(n− 1)(n+ r)(n2 − n− r)

rn
inf{C(L)|L : a hyperplane of TpN}

if 0 < r < n2 − n, and

[δ̂c(r;n− 1)]p = rCp

− (n− 1)(n+ r)(r − n2 + n)

rn
sup{C(L)|L : a hyperplane of TpN}

if r > n2 − n.
A point p ∈ N is said to be an invariantly quasi-umbilical point if there existm−n orthogonal

unit normal vectors {En+1, . . . , Em} such that the shape operator with respect to all directions
Er have an eigenvalue of multiplicity n−1 and that for each Er the distinguished eigendirection
is the same. The submanifold N is said to be an invariantly quasi-umbilical submanifold if each
of its points is an invariantly quasi-umbilical point [2].

2.2 Golden Riemannian manifolds

Let (N , g) be (n +m)-dimensional Riemannian manifold and let F be a (1, 1)-tensor field on
N . If F satisfies the following equation

L(X) = Xn + anX
n−1 + ...+ a2X + a1I = 0,

where I is the identity transformation and (for X = F ) Fn−1(p), Fn−2(p), ..., F (p), I are lin-
early independent at every point p ∈ N . Then the polynomial L(X) is called the structure
polynomial. If we select the structure polynomial L(X) = X2 + I (or L(X) = X2 − I) we get
an almost complex structure (or an almost product structure) [7, 10, 1] .

Let (N , g) be (n +m)-dimensional Riemannian manifold and let ϕ be a (1, 1)-tensor field
on N . If ϕ satisfies the following equation

ϕ2 − ϕ− I = 0,

where I is the identity transformation. Then the tensor field ϕ is called a golden structure on
N . If the Riemannian metric g is ϕ compatible, then (N , g, ϕ) is called a Golden Riemannian
manifold [10, 13, 1]. We have the following relation for ϕ-compatible metric

g(ϕX, Y ) = g(X,ϕY )

∀X,Y ∈ Γ(TN ), where Γ(TN ) is the set of all vector fields on N . If we interchange X by ϕX
in above equation, we get

g(ϕX,ϕY ) = g(ϕ2X,Y ) = g(ϕX, Y ) + g(X,Y )
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Let N be an (n + m)-dimensional differentiable manifold with a tensor field F of type (1, 1)
on N such that F 2 = I, F 6= ±I . Then F is called an almost product structure. If an almost
product structure F admits a Riemannian metric g such that

g(FX, Y ) = g(X,FY ),∀X,Y ∈ Γ(TN ),

then (N , g) is called almost product Riemannian manifold.
An almost product structure F induces a Golden structure as follows

ϕ =
1
2
(I +

√
5F )

Conversely, if ϕ is a golden structure then

F =
1√
5
(2ϕ− I)

is an almost product structure [7, 1].
Example 1 [1, 12] Consider the Euclidean 4-spaceR4 with standard coordinates (x1, x2, x3, x4).

Let ϕ be an (1, 1) tensor field on R4 defined by

ϕ(x1, x2, x3, x4) = (ψx1, ψx2, (1− ψ)x3, (1− ψ)x4)

for any vector field (x1, x2, x3, x4) ∈ R4, where ψ = 1+
√

5
2 and 1 − ψ = 1−

√
5

2 are the roots of
the equation x2 = x+ 1. Then we obtain

ϕ2(x1, x2, x3, x4) = (ψ2x1, ψ
2x2, (1− ψ)

2
x3, (1− ψ)

2
x4)

= (ψx1, ψx2, (1− ψ)x3, (1− ψ)x4) + (x1, x2, x3, x4).

Thus, we have ϕ2 − ϕ− I = 0. Moreover, we get

< ϕ(x1, x2, x3, x4), (y1, y2, y3, y4) >=< (x1, x2, x3, x4), ϕ(y1, y2, y3, y4) >

for each vector fields (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ R4, where <,> is the standard metric on
R4. Hence, (R4, <,>, ϕ) is a Golden Riemannian manifold.

Let (N , g) be a submanifold of a Golden Riemannian manifold (N , g, ϕ), where g is the
induced metric on N . Then, for any X ∈ Γ(TN ) we can write

ϕX = PX +QX,

where P and Q are the projections of TN onto TN and trTN , respectively, that is, PX and
QX are tangent and transversal components of ϕX . We can also write

g(PX, Y ) = g(X,PY ).

For each nonzero vector X tangent to N at p, let θ(X) be the angle between TN and ϕX . If
θ(X) is independent of the choice of p ∈ N and X ∈ TpN then N is called a slant submanifold.
If the slant angle θ = 0 and θ = π

2 , then N is an ϕ-invariant and ϕ-anti-invariant submanifold,
respectively. A slant submanifold which is neither invariant nor anti-invariant is called proper
slant (or θ-slant proper) submanifold.

Inspired by the characterization given in [5, 6], we give the following characterization for
slant submanifolds of Golden Riemannian manifolds.

Theorem 2.1. [1] Let (N , g) be a submanifold of a Golden Riemannian manifold (N , g, ϕ).
Then, N is slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that

P 2 = λ(ϕ+ I).

Furthermore, if θ is slant angle of N , then λ = cos2θ.
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Theorem 2.2. [1] Let (N , g) be a slant submanifold of a Golden Riemannian manifold (N , g, ϕ).
Then, for any X,Y ∈ Γ(TN ), we have

g(PX,PY ) = cos2θ(g(X,Y ) + g(X,PY )).

Now, let us suppose that Np and Nq be two real-space forms with constant sectional cur-
vatures cp and cq, respectively. Then, the Riemannian curvature tensor R of a locally golden
product space form (N = Np(cp)×Nq(cq), g, ϕ) is given by [20]:

R(X,Y )Z =
(
− (1− ψ)cp − ψcq

2
√

5

)
{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX

− g(ϕX,Z)ϕY }+
(
− (1− ψ)cp + ψcq

4

)
{g(ϕY,Z)X

− g(ϕX,Z)Y + g(Y,Z)ϕX − g(X,Z)ϕY } (2.3)

3 Main results

We prove sharp inequalities involving the generalized normalized δ-Casorati curvature for slant
submanifold of a locally golden product space form (N = Np(cp)×Nq(cq), g, ϕ).

Theorem 3.1. Let N be an n-dimensional slant submanifold of a locally golden product space
form (N = Np(cp)×Nq(cq), g, ϕ). Then

(i) The generalized normalized δ-Casorati curvature δc(r;n− 1) satisfies

ρ ≤ δc(r;n− 1)
n(n− 1)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ− cos2θ
{ 1
n− 1

+
1

n(n− 1)
trP

}}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.1)

for any real number r such that 0 < r < n(n− 1).

(ii) The generalized normalized δ-Casorati curvature δ̂c(r;n− 1) satisfies

ρ ≤ δ̂c(r;n− 1)
n(n− 1)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ− cos2θ
{ 1
n− 1

+
1

n(n− 1)
trP

}}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.2)

for any real number r > n(n− 1).

Moreover, the equalities hold in the relations (3.1) and (3.2) if and only ifNn is an invariantly
quasi-umbilical submanifold with trivial normal connection inN , such that with respect to some
orthonormal tangent frame {E1, . . . , En} and orthonormal normal frame {En+1, . . . , En+m},
the shape operators Sr, r ∈ {n+ 1, . . . , n+m}, take the following forms:

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 n(n−1)

r
b


, Sn+2 = · · · = Sn+m = 0. (3.3)
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Proof. (i) Since N is a locally golden product space form, from (2.3) and Gauss equation, we
have

2τ(p) =
(
− (1− ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2ϕ

}
−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ(n+ trP )

+
(
− (1− ψ)cp + ψcq

4

)
2(n− 1)trϕ+ n2||H||2 − nC, (3.4)

where we have used (2.2).
Now, let L be a hyperplane of TpN and Q be a quadratic polynomial in the components of

the second fundamental form, defined as:

Q = rC + (n− 1)(n+ r)(n2 − n− r)
rn

C(L)− 2τ(p)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2ϕ

}
−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ(n+ trP )

+
(
− (1− ψ)cp + ψcq

4

)
2(n− 1)trϕ. (3.5)

We can assume without loss of generality that L is spanned by {E1, . . . , En−1}. Then we have

Q =
r

n

n+m∑
α=n+1

n∑
i,j=1

(hαij)
2 +

(n+ r)(n2 − n− r)
rn

n+m∑
α=n+1

n−1∑
i,j=1

(hαij)
2 − 2τ(p)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2ϕ

}
−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ(n+ trP )

+
(
− (1− ψ)cp + ψcq

4

)
2(n− 1)trϕ. (3.6)

Taking into accounts (3.4) and (3.6), we obtain

Q =
n+ r

n

n+m∑
α=n+1

n∑
i,j=1

(hαij)
2 +

(n+ r)(n2 − n− r)
rn

n+m∑
α=n+1

n−1∑
i,j=1

(hαij)
2

−
n+m∑
α=n+1

( n∑
i=1

hαii
)2
.

One can easily derive that

Q =
n+m∑
α=n+1

n−1∑
i=1

[n2 + n(r − 1)− 2r
r

(hαii)
2 +

2(n+ r)

n
(hαin)

2
]

+
n+m∑
α=n+1

[2(n+ r)(n− 1)
r

n−1∑
i<j=1

(hαij)
2 − 2

n∑
i<j=1

hαiih
α
jj

+
r

n
(hαnn)

2
]
. (3.7)

From (3.7), we can find the critical points

hc = (hn+1
11 , hn+1

12 , . . . , hn+1
nn , . . . , hn+m11 , . . . , hn+mnn )
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of Q are the solutions of the following system of linear homogeneous equations:

∂Q
∂hαii

=
2(n+ r)(n− 1)

r
hαii − 2

n∑
l=1

hαll = 0,

∂Q
∂hαnn

=
2r
n
hαnn − 2

n−1∑
l=1

hαll = 0,

∂Q
∂hαij

=
4(n+ r)(n− 1)

r
hαij = 0,

∂Q
∂hαin

=
4(n+ r)

n
hαin = 0, (3.8)

where i, j = {1, 2, . . . , n− 1}, i 6= j, and α ∈ {n+ 1, . . . , n+m}.
Hence, every solution hc has hrij = 0 for i 6= j and the corresponding determinant to the

first two sets of equations of the above system (3.8) is zero (there exist solutions for non-totally
geodesic submanifolds). Moreover, we find that the Hessian matrix H(Q) has the following
eigenvalues:

λ11 = 0, λ22 =
2(n3 − n2 + r2)

rn
, λ33 = · · · = λnn =

2(n+ r)(n− 1)
r

,

λij =
4(n+ r)(n− 1)

r
, λin =

4(n+ 1)
n

, ∀ i, j ∈ {1, 2, . . . , n− 1}, i 6= j.

Thus, it follows know that Q is parabolic and reaches a minimum Q(hc) = 0 for the solution hc
of the system (3.8). It implies that Q ≥ 0 and hence we have

2τ(p) ≤ rC + (n− 1)(n+ r)(n2 − n− r)
rn

C(L)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
n(n− 1) + tr2ϕ

}
−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ(n+ trP )

+
(
− (1− ψ)cp + ψcq

4

)
2(n− 1)trϕ,

whereby, we obtain

ρ ≤ r

n(n− 1)
C + (n+ r)(n2 − n− r)

rn2 C(L)

(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ

{ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ

for every tangent hyperplane L of TpN . If we take the infimum over all tangent hyperplanes L,
the result trivially follows. Moreover, the equality sign holds if and only if

hαij = 0, ∀ i, j ∈ {1, . . . , n}, i 6= j (3.9)

and

hαnn =
n(n− 1)

r
hα11 =

n(n− 1)
r

hα22 · · · =
n(n− 1)

r
hαn−1n−1, (3.10)

∀ α ∈ {n+ 1, . . . , n+m}.
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In the light of (3.9) and (3.10), we conclude that the equality sign holds in the inequality (3.1)
if and only if the submanifold N is invariantly quasi-umbilical with trivial normal connection in
N , such that with respect to suitable orthonormal tangent and normal orthonormal frames, the
shape operators take the form of (3.3).

(ii) In the same manner, we can establish an inequality in the second part of the theorem.

Next, We give sharp inequalities involving the normalized δ-Casorati curvature for slant sub-
manifold of a locally golden product space form (N = Np(cp)×Nq(cq), g, ϕ).

Theorem 3.2. Let N be an n-dimensional slant submanifold of a locally golden product space
form (N = Np(cp)×Nq(cq), g, ϕ). Then

(i) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) +
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ

{ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.11)

(ii) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) +
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

)
cos2θ

{ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.12)

Moreover, the equalities hold in the relations (3.11) and (3.12) if and only if Nn is an invari-
antly quasi-umbilical submanifold with trivial normal connection inN , such that with respect to
some orthonormal tangent frame {E1, . . . , En} and orthonormal normal frame {En+1, . . . , En+m},
the shape operators Sr, r ∈ {n+ 1, . . . , n+m}, take the following forms:

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 2b


, Sn+2 = · · · = Sn+m = 0. (3.13)

and

Sn+1 =



2b 0 0 . . . 0 0
0 2b 0 . . . 0 0
0 0 2b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2b 0
0 0 0 . . . 0 b


, Sn+2 = · · · = Sn+m = 0. (3.14)
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As a consequence of theorem 3.1, we give sharp inequalities that involve generalized nor-
malized δ-Casorati curvature for invariant and anti-invariant submanifolds in golden Riemannian
space forms. We know that invariant submanifolds are slant submanifolds with θ = 0. We have
the following result.

Corollary 3.3. Let N be an n-dimensional invariant submanifold of a locally golden product
space form (N = Np(cp)×Nq(cq), g, ϕ). Then

(i) The generalized normalized δ-Casorati curvature δc(r;n− 1) satisfies

ρ ≤ δc(r;n− 1)
n(n− 1)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

){ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.15)

for any real number r such that 0 < r < n(n− 1).

(ii) The generalized normalized δ-Casorati curvature δ̂c(r;n− 1) satisfies

ρ ≤ δ̂c(r;n− 1)
n(n− 1)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

){ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.16)

for any real number r > n(n− 1).

Moreover, the equalities hold in the relations (3.15) and (3.16) if and only if Nn is an invari-
antly quasi-umbilical submanifold with trivial normal connection inN , such that with respect to
some orthonormal tangent frame {E1, . . . , En} and orthonormal normal frame {En+1, . . . , En+m},
the shape operators Sr, r ∈ {n+ 1, . . . , n+m}, take the following forms:

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 n(n−1)

r
b


, Sn+2 = · · · = Sn+m = 0. (3.17)

Anti-invariant submanifolds are slant submanifolds with θ = π
2 , we have the following result

for anti-invariant submanifolds in a locally golden product space form.

Corollary 3.4. Let N be an n-dimensional anti-invariant submanifold of a locally golden prod-
uct space form (N = Np(cp)×Nq(cq), g, ϕ). Then

(i) The generalized normalized δ-Casorati curvature δc(r;n− 1) satisfies

ρ ≤ δc(r;n− 1)
n(n− 1)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.18)

for any real number r such that 0 < r < n(n− 1).
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(ii) The generalized normalized δ-Casorati curvature δ̂c(r;n− 1) satisfies

ρ ≤ δ̂c(r;n− 1)
n(n− 1)

+
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.19)

for any real number r > n(n− 1).

Moreover, the equalities hold in the relations (3.18) and (3.19) if and only if Mn is an invari-
antly quasi-umbilical submanifold with trivial normal connection inN , such that with respect to
some orthonormal tangent frame {E1, . . . , En} and orthonormal normal frame {En+1, . . . , En+m},
the shape operators Sr, r ∈ {n+ 1, . . . , n+m}, take the following forms:

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 n(n−1)

r
b


, Sn+2 = · · · = Sn+m = 0. (3.20)

Now, we give sharp inequalities that involve normalized δ-Casorati curvature for invariant
and anti-invariant submanifolds in golden Riemannian space forms as special cases of Theorem
3.2. We have the following results.

Corollary 3.5. Let N be an n-dimensional invariant submanifold of a locally golden product
space form (N = Np(cp)×Nq(cq), g, ϕ). Then

(i) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) +
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

){ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.21)

for any real number r such that 0 < r < n(n− 1).

(ii) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) +
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

−
(
− (1− ψ)cp − ψcq

2
√

5

){ 1
n− 1

+
1

n(n− 1)
trP

}
+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.22)

for any real number r > n(n− 1).

Moreover, the equalities hold in the relations (3.21) and (3.22) if and only if Nn is an invari-
antly quasi-umbilical submanifold with trivial normal connection inN , such that with respect to
some orthonormal tangent frame {E1, . . . , En} and orthonormal normal frame {En+1, . . . , En+m},
the shape operators Sr, r ∈ {n+ 1, . . . , n+m}, take the following forms:
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Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 n(n−1)

r
b


, Sn+2 = · · · = Sn+m = 0 (3.23)

and

Sn+1 =



2b 0 0 . . . 0 0
0 2b 0 . . . 0 0
0 0 2b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2b 0
0 0 0 . . . 0 b


, Sn+2 = · · · = Sn+m = 0. (3.24)

For, anti-invariant submanifolds, we have

Corollary 3.6. Let N be an n-dimensional anti-invariant submanifold of a locally golden prod-
uct space form (N = Np(cp)×Nq(cq), g, ϕ). Then

(i) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) +
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.25)

for any real number r such that 0 < r < n(n− 1).

(ii) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) +
(
− (1− ψ)cp − ψcq

2
√

5

){
1 +

1
n(n− 1)

tr2ϕ
}

+
(
− (1− ψ)cp + ψcq

4

) 2
n
trϕ (3.26)

for any real number r > n(n− 1).

Moreover, the equalities hold in the relations (3.25) and (3.26) if and only if Nn is an invari-
antly quasi-umbilical submanifold with trivial normal connection inN , such that with respect to
some orthonormal tangent frame {E1, . . . , En} and orthonormal normal frame {En+1, . . . , En+m},
the shape operators Sr, r ∈ {n+ 1, . . . , n+m}, take the following forms:

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . b 0
0 0 0 . . . 0 n(n−1)

r
b


, Sn+2 = · · · = Sn+m = 0 (3.27)
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and

Sn+1 =



2b 0 0 . . . 0 0
0 2b 0 . . . 0 0
0 0 2b . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2b 0
0 0 0 . . . 0 b


, Sn+2 = · · · = Sn+m = 0. (3.28)

Remark : The proofs of the theorem 3.3 and theorem 3.4 are similar to theorem 3.1. In fact,
using theorem 3.1 we can obtain these results by putting θ = 0 and θ = π

2 respectively. On the
similar way, we can prove theorem 3.5 and theorem 3.6.

Acknowledgment

The authors express our sincere thanks to the referees for his valuable comments in the improve-
ment of the paper.

References
[1] O. Bahadir and S. Uddin, Slant submanifolds of Golden Riemannian manifolds, J. Math. Ext. 13(4),

(2019), 23-39.

[2] D. E. Blair, Quasi-umbilical, minimal submanifolds of Euclidean space, Simon Stevin 51 (1977), 3-22 .

[3] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993),
568-578.

[4] B.-Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific, Hackensack,
2011.

[5] B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), 135-147.

[6] B.-Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.

[7] M. Crasmareanu and C. Hretcanu, Golden differential geometry, Chaos Solitons Fractals, 38 (2008), no.
5, pp. 1229-1238.

[8] S. Decu, S. Haesen and L. Verstraelen, Optimal inequalities involving Casorati curvatures, Bull. Transylv.
Univ. Brasov, Ser. B 14 (2007), 85-93 .

[9] S. Decu, S. Haesen and L. Verstraelen, Optimal inequalities characterising quasi-umbilical submanifolds,
J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article ID 79.

[10] S.I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math. Sem. Rep. 22 (1970), 199-
218.

[11] C. Hretcanu and M. Crasmareanu, On some invariant submanifolds in a Riemannian manifold with golden
structure, An. Stiins. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 53 (2007), 199-211.

[12] C. Hretcanu and M. Crasmareanu, Applications of the golden ratio on Riemannian manifolds, Turkish J.
Math. 33 (2009), 179-191.

[13] C. Hretcanu, Submanifolds in Riemannian manifold with Golden structure, Workshop on Finsler geometry
and its applications, Hungary, (2007).

[14] C. W. Lee, J. W. Lee and G. E. Vilcu, Optimal inequalities for the normalized δ-Casorati curvatures of
submanifolds in Kenmotsu space forms, Advances Geom. 17 (2017), 1-13.

[15] C. W. Lee, J. W. Lee and G. E. Vilcu, D. W. Yoon, Optimal inequalities for the Casorati curvatures of the
submanifolds of generalized space form endowed with semi-symmetric metric connections, Bull. Korean
Math. Soc. 52 (2015), 1631-1647.

[16] X. Liu, On Ricci curvature of totally real submanifolds in a quaternion projective space, Arch. Math. 38
(2002), no. 4, 297-305.

[17] X. Liu and W. Dai, Ricci curvature of submanifolds in a quaternion projective space, Commun. Korean
Math. Soc. 17(4) (2002), 625-633.



744 Ashwag Jaber Almekhildy and Oǧuzhan Bahadir*
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