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Abstract In this paper, we study quasi hemi-slant (QHS) submanifolds of trans-Sasakian
manifold. We obtain various results satisfied by these submanifolds. Further, we obtain nec-
essary and sufficient conditions for integrability of distributions related to these submanifolds,
for these distributions to define totally geodesic foliations and also for a submanifold of a trans-
Sasakian manifold to be totally geodesic. Moreover, we conclude the necessary and sufficient
condition for a QHS submanifold of a trans-Sasakian manifold to be a local product Riemannian
manifold. At last, we construct an example of a QHS submanifold of a trans-Sasakian manifold.

1 Introduction

The notion of slant submanifold was introduced by B. Y. Chen in 1990 [5] as a generalization
of holomorphic and totally real immersions. Later he collected many consequent results in his
book [2]. Further slant submanifold was generalized as semi-slant, pseudo-slant, bi-slant and
hemi-slant submanifolds etc. in different types of differentiable manifolds.

Many geometers studied invariant [8], anti-invariant [17], semi-invariant [19], slant [16],
semi-slant [9], pseudo-slant [7] and bi-slant [18] submanifolds of trans-Sasakian manifolds in
different times.

The concept of quasi hemi-slant submanifold was introduced recently by R. Prasad et al. in
2020 [13] as a generalization of invariant, anti-invariant, semi-invariant, slant, hemi-slant and
semi-slant submanifolds. Later in 2020-2021, R. Prasad along with some other researchers dis-
cussed this submanifold in various types of manifolds ([11], [12], [14]).

Motivated from the works mentioned above, in this paper, we study quasi hemi-slant (QHS)
submanifolds of trans-Sasakian manifold. This paper consists of four sections. After introduc-
tion, in the second section, we mention some definitions and properties related to the main topic.
The third section deals with some results satisfied by a QHS submanifold of a trans-Sasakian
manifold. In the fourth section, we obtain necessary and sufficient conditions for integrability
of distributions related to this submanifold, for these distributions to define totally geodesic fo-
liations and also for a submanifold of a trans-Sasakian manifold to be totally geodesic. At the
end of the fourth section, we conclude the necessary and sufficient condition for a QHS subman-
ifold of a trans-Sasakian manifold to be local product Riemannian manifold and also make two
other conclusions after observing the results. Finally, at last, we construct an example of a QHS
submanifold of a trans-Sasakian manifold.
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2 Preliminaries

In this section, we mention some definitions and properties related to quasi hemi-slant submani-
folds of trans-Sasakian manifold.

Let M̃ be an odd dimensional differentiable manifold equipped with a metric structure (φ, ξ, η, g)
consisting of a (1,1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g satis-
fying the following relations−

φ2X = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.2)

g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ) ∀X,Y ∈ χ(M̃), (2.3)

then M̃ is called almost contact metric manifold [6].

An odd dimensional almost contact metric manifold M̃(φ, ξ, η, g) is called trans-Sasakian
manifold of type (α, β) (α, β are smooth functions on M̃ ) if [6] ∀X,Y ∈ χ(M̃)

(∇̃Xφ)Y = α[g(X,Y )ξ − η(Y )X] + β[g(φX, Y )ξ − η(Y )φX], (2.4)

∇̃Xξ = −αφX + β[X − η(X)ξ], (2.5)

where ∇̃ is the Levi-Civita connection on M̃ .

Let ϕ be a differentiable map from a manifold M into a manifold M̃ and let the dimensions
of M, M̃ be n, m respectively. If at each point p of M , (ϕ∗)p is a 1-1 map i.e., if rank(ϕ)=n,
then ϕ is called an immersion of M into M̃ .

If an immersion ϕ is one-one i.e., if ϕ(p) 6= ϕ(q) for p 6= q, then ϕ is called an imbedding of
M into M̃ .

If the manifolds M,M̃ satisfy the following two conditions, then M is called a submanifold
of M̃−
(i) M ⊂ M̃ ,
(ii) the inclusion map i from M into M̃ is an imbedding of M into M̃ .

Let M be a submanifold of M̃ and A, h denote the shape operator, second fundamental form
respectively of the immersion of M into M̃ , then the Gauss and Weingarten formulae of M into
M̃ are given by [3]

∇̃XY = ∇XY + h(X,Y ), (2.6)

∇̃XV = AVX +∇⊥XV (2.7)

∀X,Y ∈ Γ(TM), V ∈ Γ(T⊥M), where∇ is the induced connection onM ,∇⊥ is the connection
on the normal bundle T⊥M of M and AV is the shape operator of M with respect to the normal
vector V ∈ Γ(T⊥M). Moreover, AV and h are related by the following equation−

g(h(X,Y ), V ) = g(AVX,Y ). (2.8)

The mean curvature vector is defined by

H = 1
n trace(h) =

1
n

∑n
i=1 h(ei, ei),
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where dim(M) = n and {ei}ni=1 is an orthonormal basis of the tangent space of M .

We have ∀X ∈ Γ(TM),
φX = TX +NX, (2.9)

where TX, NX are the tangential and normal components of φX on M respectively.

Similarly, we have ∀V ∈ Γ(T⊥M),

φV = tV + nV, (2.10)

where tV, nV are the tangential and normal components of φV on M respectively.

A submanifold M is called−

(i) totally umbilical if
h(X,Y ) = g(X,Y )H ∀X,Y ∈ Γ(TM); (2.11)

(ii) totally geodesic if [4]
h(X,Y ) = 0 ∀X,Y ∈ Γ(TM); (2.12)

(iii) minimal if
H = 0. (2.13)

The covariant derivatives of the tangential and normal components given in the equations
(2.9), (2.10) are given by ∀X,Y ∈ Γ(TM), V ∈ Γ(T⊥M),

(∇̃XT )Y = ∇XTY − T∇XY, (2.14)

(∇̃XN)Y = ∇⊥XNY −N∇XY, (2.15)

(∇̃Xt)V = ∇XtV − t∇⊥XV, (2.16)

(∇̃Xn)V = ∇⊥XnV − n∇⊥XV. (2.17)

Quasi hemi-slant submanifold M of a trans-Sasakian manifold M̃ is a submanifold that ad-
mits three orthogonal complementary distributions D, Dθ, D

⊥ such that [13]

(i) TM admits the orthogonal direct decomposition

TM = D ⊕Dθ ⊕D⊥⊕ < ξ >, (2.18)

(ii) the distribution D is invariant i.e., φD = D,
(iii) the distribution Dθ is slant with constant angle θ and hence θ is called slant angle,
(iv) the distribution D⊥ is φ anti-invariant i.e., φD⊥ ⊆ T⊥M .

In the above case, θ is called the quasi hemi-slant angle of M , and M is called proper [13] if
D 6= {0}, Dθ 6= {0}, D⊥ 6= {0} and θ 6= 0, π2 .

Let the dimensions of the distributionsD, Dθ, D
⊥ be n1, n2, n3 respectively, then we obtain

the following particular cases [13]−
(i) if n1 = 0, then M is a hemi-slant submanifold,
(ii) if n2 = 0, then M is a semi-invariant submanifold,
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(iii) if n3 = 0, then M is a semi-slant submanifold.

Now, it can be concluded from the definitions of invariant [8], anti-invariant [17], semi-
invariant [1], slant [16], hemi-slant [15] and semi-slant [9] submanifolds that, quasi hemi-slant
submanifold is a generalization of all these kinds of submanifolds [13].

From the definition of quasi hemi-slant submanifold given above, it is clear that if D 6=
{0}, Dθ 6= {0}, D⊥ 6= {0}, then dim(D) ≥ 2, dim(Dθ) ≥ 2 and dim(D⊥) ≥ 1. Thus, we have
the following remark [13]−

Remark 2.1. For a proper quasi hemi-slant submanifold M , dim(M) ≥ 6.

Note. From now on, in this paper, we will write the term quasi hemi-slant in its abbreviated
form i.e., QHS.

Let M be a QHS submanifold of a trans-Sasakian manifold M̃ and the projections of X ∈
Γ(TM) on the distributions D, Dθ, D

⊥ be P, Q, R respectively, then we have ∀X ∈ Γ(TM),

X = PX +QX +RX + η(X)ξ. (2.19)

Using (2.9) in (2.19) we get

φX = TPX +NPX + TQX +NQX + TRX +NRX .

Since φD = D, φD⊥ ⊆ T⊥M , we have NPX = 0, TRX = 0 and hence we obtain

φX = TPX + TQX +NQX +NRX. (2.20)

Comparing (2.20) with (2.9) we have

TX = TPX + TQX, (2.21)

NX = NQX +NRX. (2.22)

From (2.20) we have the following decomposition−

φ(TM) = TD ⊕ TDθ ⊕NDθ ⊕ND⊥. (2.23)

Again, since NDθ ⊆ Γ(T⊥M), ND⊥ ⊆ Γ(T⊥M), we have another decomposition−

T⊥M = NDθ ⊕ND⊥ ⊕ µ, (2.24)

where µ is the orthogonal complement of NDθ ⊕ND⊥ in Γ(T⊥M) and it is anti-invariant with
respect to φ [13].

3 QHS submanifolds of trans-Sasakian manifold

This section deals with some results satisfied by a QHS submanifold of a trans-Sasakian mani-
fold.

Theorem 3.1. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then
we have ∀X,Y ∈ Γ(TM),

∇XTY −ANYX−T (∇XY )− th(X,Y ) = α[g(X,Y )ξ−η(Y )X]+β[g(TX, Y )ξ−η(Y )TX],
(3.1)

h(X,TY ) +∇⊥XNY −N(∇XY )− nh(X,Y ) = −βη(Y )NX. (3.2)
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Proof. Using (2.9) in (2.4) we get

(∇̃Xφ)Y = α[g(X,Y )ξ − η(Y )X] + β[g(TX, Y )ξ − η(Y )(TX +NX)]. (3.3)

Again, using (2.6), (2.7), (2.9) and (2.10) in (∇̃Xφ)Y = ∇̃XφY − φ(∇̃XY ) we obtain

(∇̃Xφ)Y = ∇XTY+h(X,TY )−ANYX+∇⊥XNY−th(X,Y )−nh(X,Y )−T (∇XY )−N(∇XY ).
(3.4)

Equating tangential and normal components of (3.3), (3.4) we obtain (3.1) and (3.2) respec-
tively. 2

Using (2.14) and (2.15) respectively in (3.1) and (3.2), we can conclude the following−

Corollary 3.1. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then
we have ∀X,Y ∈ Γ(TM),

(∇̃XT )Y = ANYX + th(X,Y ) + α[g(X,Y )ξ − η(Y )X] + β[g(TX, Y )ξ − η(Y )TX], (3.5)

(∇̃XN)Y = −h(X,TY ) + nh(X,Y )− βη(Y )NX. (3.6)

Next, we state the following theorem [13]−

Theorem 3.2. Let M be a QHS submanifold of a trans-Sasakian manifold M̃ of type (α, β),
then we have

TD = D, TDθ = Dθ, TD
⊥ = {0}, tNDθ = Dθ, tND

⊥ = D⊥.

Now, using (2.9) and (2.10) on φ2 = −I + η ⊗ ξ we get the following theorem−

Theorem 3.3. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then
we get
(i) T 2 + nN = −I + η ⊗ ξ on TM,
(ii) NT + tN = 0 on TM,
(iii) Tt+ n2 = −I on T⊥M,
(iv) Nt+ tn = 0 on T⊥M,
where I is the identity operator.

Next, we have the following theorem [10]−

Theorem 3.4. Let M be a QHS submanifold of a trans-Sasakian manifold M̃ of type (α, β),
then we have ∀X,Y ∈ Γ(Dθ),
(i) T 2X = −(cos2θ)X,
(ii) g(TX, TY ) = (cos2θ)g(X,Y ),
(iii) g(NX,NY ) = (sin2θ)g(X,Y ).

Theorem 3.5. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then
we have ∀X ∈ Γ(TM), V ∈ Γ(T⊥M),

∇XtV −AnVX + T (AVX)− t∇⊥XV = βg(NX,V )ξ, (3.7)

h(X, tV ) +∇⊥XnV +N(AVX)− n∇⊥XV = 0. (3.8)

Proof. Using (2.6), (2.7), (2.9) and (2.10) in (∇̃Xφ)V = ∇̃XφV − φ(∇̃XV ) we get

(∇̃Xφ)V = ∇XtV + h(X, tV )−AnVX +∇⊥XnV + T (AVX) +N(AVX)− t∇⊥XV − n∇⊥XV.

Again, applying (2.4) and then (2.9) in the left hand side of the above equation we obtain

β[g(NX,V )ξ] = ∇XtV+h(X, tV )−AnVX+∇⊥XnV+T (AVX)+N(AVX)−t(∇⊥XV )−n(∇⊥XV ).
(3.9)
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Equating tangential and normal components from both sides of (3.9) we get (3.7) and (3.8)
respectively. 2

Now, using (2.16) and (2.17) in (3.7) and (3.8) respectively we conclude the following−

Corollary 3.2. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then
we get ∀X ∈ Γ(TM), V ∈ Γ(T⊥M),

(∇̃Xt)V = AnVX − T (AVX) + βg(NX,V )ξ, (3.10)

(∇̃Xn)V = −h(X, tV )−N(AVX). (3.11)

Theorem 3.6. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then we
have ∀X ∈ Γ(TM),

∇Xξ = −αTX − βT 2X, (3.12)

h(X, ξ) = −αNX − βnNX. (3.13)

Proof. Using (2.6), (2.9) and Theorem 3.3.(i) in (2.5) we obtain

∇Xξ + h(X, ξ) = −α(TX +NX) + β[−T 2 − nN ]X.

Equating tangential and normal components from both sides of the above equation we get (3.12)
and (3.13) respectively. 2

Theorem 3.7. Let M be a QHS submanifold of a trans-Sasakian manifold M̃ of type (α, β),
then we have ∀X,Y ∈ Γ(D⊥),

AφXY = AφYX if and only if φ[X,Y ] = 2βg(X,φY )ξ. (3.14)

Proof. Replacing V by φY in (2.7) and then applying (2.4), (2.6) and the fact that Y ∈ Γ(D⊥)
we get

αg(X,Y )ξ + βg(φX, Y )ξ + φ(∇XY ) + φh(X,Y ) = −AφYX +∇⊥XφY.

Equating tangential components from both sides of the above equation we obtain

AφYX = −αg(X,Y )ξ − βg(φX, Y )ξ − φ(∇XY ). (3.15)

Interchanging X,Y in (3.15) and then subtracting (3.15) from the resultant equation we have

AφXY −AφYX = φ[X,Y ]− 2βg(X,φY )ξ (3.16)

from which we get (3.14). 2

Theorem 3.8. Let M be a QHS submanifold of a trans-Sasakian manifold M̃ of type (α, β),
then we have ∀X,Y ∈ Γ(D ⊕Dθ ⊕D⊥),

g([X,Y ], ξ) = 2αg(TX, Y ), (3.17)

g(∇̃XY, ξ) = αg(TX, Y )− βcos2θg(X,Y ). (3.18)

Proof. Applying (3.12) and Theorem 3.4.(i) on the following equation

g([X,Y ], ξ) = g(∇XY, ξ)− g(∇YX, ξ) = −g(Y,∇Xξ) + g(X,∇Y ξ)

and after simplifying we obtain (3.17).
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Again, using (2.6) we have

g(∇̃XY, ξ) = g(∇XY, ξ) + h(X,Y )η(ξ) = −g(Y,∇Xξ) + h(X,Y ).

Now, applying (3.12) and Theorem 3.4.(i) on the above equation we get (3.18).

Thus the proof is completed. 2

4 Integrability of distributions and decomposition theorems

In this section, we obtain necessary and sufficient conditions for integrability of distributions
related to the QHS submanifolds of a trans-Sasakian manifold, for these distributions to define
totally geodesic foliations and also for a submanifold of a trans-Sasakian manifold to be totally
geodesic. At the end, we make three conclusions after observing the results.

Theorem 4.1. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the invariant distribution D is not integrable.

Proof. LetX,Y ∈ Γ(D), then using (2.6), g(∇̃XY, ξ) = −g(Y, ∇̃Xξ) and then (2.5), g(φX, Y ) =
−g(X,φY ) in the following equation

g([X,Y ], ξ) = g(∇XY −∇YX, ξ)
we get on simplifying,

g([X,Y ], ξ) = 2αg(φX, Y ). (4.1)

Applying (2.19), (2.20) on (4.1) we obtain g([X,Y ], ξ) = 2αg(TPX,PY ) 6= 0. Thus, D is not
integrable. 2

Theorem 4.2. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the distribution D⊕ < ξ > is integrable if and only if ∀X,Y ∈ Γ(D⊕ < ξ >), Z ∈
Γ(Dθ ⊕D⊥),

g(T∇XY − T∇YX,TQZ) + g(nh(X,Y )− nh(Y,X), NQZ +NRZ) = 0. (4.2)

Proof. Using (2.2) in g([X,Y ], Z) = g(∇̃XY,Z)− g(∇̃YX,Z) we get

g([X,Y ], Z) = g(φ∇̃XY, φZ)− g(φ∇̃YX,φZ)

on which applying (2.6), (2.9), (2.10), (2.20) and after simplifying we get

g([X,Y ], Z) = g(T∇XY − T∇YX,TQZ) + g(nh(X,Y )− nh(Y,X), NQZ +NRZ).

Hence g([X,Y ], Z) = 0 if and only if (4.2) holds and thus the proof is completed. 2

Theorem 4.3. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the slant distribution Dθ is not integrable.

Proof. LetX,Y ∈ Γ(Dθ). Applying (2.19) and (2.20) in (4.1) we have g([X,Y ], ξ) = 2αg(TQX+
NQX,QY ) 6= 0 and hence the proof is completed. 2

Theorem 4.4. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the distribution Dθ⊕ < ξ > is integrable if and only if ∀X,Y ∈ Γ(Dθ⊕ < ξ >
), Z ∈ Γ(D ⊕D⊥),

g(n(∇⊥XY )− n(∇⊥YX), NRZ) + cos2θg(AXY −AYX,PZ) = 0. (4.3)

Proof. Using (2.2) in g([X,Y ], Z) = g(∇̃XY,Z)− g(∇̃YX,Z) we get
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g([X,Y ], Z) = g(φ∇̃XY, φZ)− g(φ∇̃YX,φZ)

on which applying (2.7), (2.9), (2.10), (2.20), Theorem 3.4.(ii) and after simplifying we get

g([X,Y ], Z = cos2θg(AXY −AYX,PZ) + g(n(∇⊥XY )− n(∇⊥YX), NRZ).

Therefore, g([X,Y ], Z) = 0 if and only if (4.3) holds and hence the proof is completed. 2

From the above theorem, using (2.18) and (2.24) respectively we conclude the following−

Corollary 4.1. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the distribution Dθ⊕ < ξ > is integrable if ∀X,Y ∈ Γ(Dθ⊕ < ξ >),

AXY −AYX ∈ Γ(Dθ ⊕D⊥), (4.4)

n(∇⊥XY )− n(∇⊥YX) ∈ Γ(NDθ ⊕ µ). (4.5)

Theorem 4.5. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the anti-invariant distribution D⊥ is integrable if and only if ∀X,Y ∈ Γ(D⊥), Z ∈
Γ(D ⊕Dθ)

g(∇⊥XφY −∇⊥Y φX,NQZ) = 0. (4.6)

Proof. Using (2.2) in g([X,Y ], Z) = g(∇̃XY,Z)− g(∇̃YX,Z) we get

g([X,Y ], Z) = g(∇̃XφY, φZ)− g(∇̃Y φX, φZ)

on which applying (2.7), (2.8), (2.20) and Theorem 3.2 we get after simplification,

g([X,Y ], Z) = g(∇⊥XφY −∇⊥Y φX,NQZ).

Thus g([X,Y ], Z) = 0 if and only if (4.6) holds and hence the proof is completed. 2

Using (2.24) in the above theorem we conclude the following−

Corollary 4.2. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the anti-invariant distribution D⊥ is integrable if ∀X,Y ∈ Γ(D⊥), ∇⊥XφY −
∇⊥Y φX ∈ Γ(ND⊥ ⊕ µ).

Theorem 4.6. Let M be a submanifold of a trans-Sasakian manifold M̃ of type (α, β), then
M is totally geodesic if and only if ∀X,Y ∈ Γ(TM), V ∈ Γ(T⊥M),

g(∇XTY −ANYX, tV ) + g(h(X,TY ) +∇⊥XNY, nV ) = 0. (4.7)

Proof. Applying (2.2) we have g(∇̃XY, V ) = g(∇̃XφY, φV ).

Further, using (2.6), (2.7), (2.9), (2.10) in the above equation we obtain on simplifying,

g(∇̃XY, V ) = g(∇XTY −ANYX, tV ) + g(h(X,TY ) +∇⊥XNY, nV ). (4.8)

Now, M is totally geodesic <=> h = 0 <=> ∀X,Y ∈ Γ(TM), ∇̃XY = ∇XY (from
(2.6))<=> g(∇̃XY, V ) = 0 ∀V ∈ Γ(T⊥M). Hence from (4.8) we have, M is totally geodesic
if and only if (4.7) holds. Thus the proof is completed. 2

Theorem 4.7. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the invariant distribution D does not define a totally geodesic foliation on M .
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Proof. Let X,Y ∈ Γ(D). Using (2.5) and the fact that X ∈ Γ(D) in g(∇̃XY, ξ) = −g(Y, ∇̃Xξ)
we get g(∇̃XY, ξ) = −βg(X,Y ) + αg(Y, φX) 6= 0, and hence the proof is completed. 2

Theorem 4.8. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the distribution D⊕ < ξ > defines a totally geodesic foliation on M if and only if
∀X,Y ∈ Γ(D), Z ∈ Γ(Dθ ⊕D⊥), V ∈ Γ(T⊥M),

g(∇XTY, TQZ) = −g(h(X,TY ), NZ), (4.9)

g(∇XTY, tV ) = −g(h(X,TY ), nV ). (4.10)

Proof. Applying (2.2) we have g(∇̃XY,Z) = g(∇̃XφY, φZ) on which using (2.6) and (2.20) we
get

g(∇̃XY, Z) = g(∇XTY, TQZ) + g(h(X,TY ), NZ)

which implies that g(∇̃XY, Z) = 0 if and only if (4.9) holds.

Again, applying (2.2) we have g(∇̃XY, V ) = g(∇̃XφY, φV ) on which using (2.6), (2.10) and
(2.20) we obtain

g(∇̃XY, V ) = g(∇XTY, tV ) + g(h(X,TY ), nV ).

Hence we have g(∇̃XY, V ) = 0 if and only if (4.10) holds.

Thus the proof is completed. 2

Theorem 4.9. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the slant distribution Dθ does not define a totally geodesic foliation on M .

Proof. Let X,Y ∈ Γ(Dθ). Applying (2.5) and the fact that X ∈ Γ(Dθ) on g(∇̃XY, ξ) =
−g(Y, ∇̃Xξ) we get g(∇̃XY, ξ) = −βg(X,Y ) + αg(φX, Y ) 6= 0.

Hence the proof is completed. 2

Theorem 4.10. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the distribution Dθ⊕ < ξ > defines a totally geodesic foliation on M if and only if
∀X,Y ∈ Γ(Dθ⊕ < ξ >), Z ∈ Γ(D ⊕D⊥), V ∈ Γ(T⊥M),

g(∇XTQY −ANQYX,TPZ) + g(h(X,TQY ) +∇⊥XNQY,NRZ) = 0, (4.11)

g(∇XTQY −ANQYX, tV ) + g(h(X,TQY ) +∇⊥XNQY, nV ) = 0. (4.12)

Proof. Applying (2.2) we have g(∇̃XY,Z) = g(∇̃XφY, φZ) on which using (2.6), (2.7) and
(2.20) we get

g(∇̃XY,Z) = g(∇XTQY −ANQYX,TPZ) + g(h(X,TQY ) +∇⊥XNQY,NRZ)

which implies that g(∇̃XY, Z) = 0 if and only if (4.11) holds.

Again, applying (2.2) we have g(∇̃XY, V ) = g(∇̃XφY, φV ) on which using (2.6), (2.7),
(2.10) and (2.20) we obtain

g(∇̃XY, V ) = g(∇XTQY −ANQYX, tV ) + g(h(X,TQY ) +∇⊥XNQY, nV ),

which implies that g(∇̃XY, V ) = 0 if and only if (4.12) holds.
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Thus the proof is completed. 2

Theorem 4.11. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then the anti-invariant distribution D⊥ defines a totally geodesic foliation on M if and
only if ∀X,Y ∈ Γ(D⊥), Z ∈ Γ(D ⊕Dθ), V ∈ Γ(T⊥M),

g(ANYX,TZ) = g(∇⊥XNY,NQZ), (4.13)

g(ANYX, tV ) = g(∇⊥XNY, nV ). (4.14)
Proof. Applying (2.2) we have g(∇̃XY,Z) = g(∇̃XφY, φZ) on which using (2.7) and (2.20) we
obtain

g(∇̃XY, Z) = −g(ANYX,TZ) + g(∇⊥XNY,NQZ)

which implies that g(∇̃XY, Z) = 0 if and only if (4.13) holds.

Now, applying (2.2) we have g(∇̃XY, V ) = g(∇̃XφY, φV ) on which using (2.7), (2.10) and
(2.20) we get

g(∇̃XY, V ) = −g(ANYX, tV ) + g(∇⊥XNY, nV )

which implies that g(∇̃XY, V ) = 0 if and only if (4.14) holds.

Thus the proof is completed. 2

From theorems 4.8, 4.10 and 4.11, we reach to the following conclusion−

Conclusion 4.1. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of
type (α, β), then M is a local product Riemannian manifold of the form MD ×MDθ

×MD⊥

if and only if equations (4.9)-(4.14) hold, where MD, MDθ
, MD⊥ are leaves of the distributions

D, Dθ, D
⊥ respectively.

Next, theorems 4.1 and 4.3 give us the following conclusion−

Conclusion 4.2. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then both of the invariant distribution D and the slant distribution Dθ are not integrable.

Again, observing theorems 4.7 and 4.9 we can conclude the following−

Conclusion 4.3. Let M be a proper QHS submanifold of a trans-Sasakian manifold M̃ of type
(α, β), then both of the invariant distribution D and the slant distribution Dθ do not define a
totally geodesic foliation on M .

Example. Now, we construct an example of a QHS submanifold of a trans-Sasakian mani-
fold.

Let R2n+1 = Cn×R be the (2n+ 1)-dimensional Euclidean space endowed with the almost
contact metric structure (φ, ξ, η, g) defined by

φ(x1, x2, ..., x2n, t) = (−xn+1,−xn+2, ...,−x2n, x1, x2, ..., xn, 0),

ξ = et ∂∂t , η = e−tdt, g = e−2tk,

where (x1, x2, ..., x2n, t) are cartesian coordinates and k is the Euclidean Riemannian metric
on R2n+1. Then (φ, ξ, η, g) is a trans-Sasakian structure on R2n+1 which is neither cosymplectic
nor Sasakian.

For θ ∈
(
0, π2

)
, we have, the map given by
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x(u1, u2, u3, u4, u5, u6, u7) = (u1, u2 cos θ, 0, u2 sin θ, u3, u4, u5, u6, 0, 0, u7)

defines a 7-dimensional submanifold M of R11 with the trans-Sasakian structure described
above. Further, let

E1 = et ∂
∂x1 , E2 = et ∂

∂x6 ,

E3 = et
(

cos θ ∂
∂x2 + sin θ ∂

∂x4

)
, E4 = et ∂

∂x7 ,

E5 = et ∂
∂x5 , E6 = et ∂

∂x8 , E7 = et ∂∂t = ξ,

then {Ei}7
i=1 is an orthonormal frame of TM .

If we define the distributions as

D =< E1, E2 >, Dθ =< E3, E4 >, D
⊥ =< E5, E6 >,

then it is clear that
TM = D ⊕Dθ ⊕D⊥⊕ < ξ >

and D is an invariant distribution since φE1 = E2 and φE2 = −E1, Dθ is a slant distribution
with slant angle θ ∈

(
0, π2

)
since g(φE3, E4) = cos θ = −g(E3, φE4), D⊥ is an anti-invariant

distribution since φE5 = et ∂
∂x10 and φE6 = −et ∂

∂x3 .

Therefore, M is a QHS submanifold of the trans-Sasakian manifold (R11, φ, ξ, η, g).
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