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Abstract We study some new inequalities by using bounded function Ã, involving Berezin
radius inequalities and the Berezin norm for operators acting on the reproducing kernel Hilbert
space. In particular, it is proved for arbitrary bounded linear operator A that

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber
(
A2) ,

where ber (·) is the Berezin radius of operator A.

1 Introduction

Let L (H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
(H, 〈., .〉) with the identity operator 1H in L (H). Throughout this paper we work in reproducing
kernel Hilbert space (RKHS). These spaces are complete inner-product spaces comprised of
complex-valued functions defined on a set Ω, where point evaluation is bounded. Formally, that
is, if Ω is a set and H = H (Ω) is a subset of all functions Ω → C, then H is an RKHS on Ω

if it is a complete inner product space and point evaluation at each λ ∈ Ω is a bounded linear
functional on H. Via the classical Riesz representation theorem, we know if H is an RKHS on
Ω, there is a unique element kλ ∈ H such that h(λ) = 〈h, kλ〉H for every λ ∈ Ω and all h ∈ H.
The element kλ is called the reproducing kernel at λ. Further, we will denote the normalized
reproducing kernel at λ as k̂λ := kλ

‖kλ‖H
.

The Berezin transform associates smooth functions with operators on Hilbert spaces of ana-
lytic functions.

Definition 1.1. Let H be an RKHS on a set Ω and let A be a bounded linear operator on H.
(i) For λ ∈ Ω, the Berezin transform of A at λ (or Berezin symbol of A) is

Ã (λ) :=
〈
Ak̂λ, k̂λ

〉
H
.

(ii) The Berezin range of A (or Berezin set of A) is

Ber(A) := Range(Ã) =
{
Ã(λ) : λ ∈ Ω

}
.

(iii) The Berezin radius of A (or Berezin number of A) is

ber(A) := sup
λ∈Ω

∣∣∣Ã(λ)∣∣∣ .
We also define the following so-called Berezin norm of operators A ∈ L (H) :

‖A‖Ber := sup
λ∈Ω

∥∥∥Ak̂λ∥∥∥ .
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It is easy to see that actually ‖A‖Ber determines a new operator norm in L (H (Ω)) (since the
set of reproducing kernels {kλ : λ ∈ Ω} span the space H (Ω)). It is also trivial that ber (A) ≤
‖A‖Ber ≤ ‖A‖ .

For each bounded operator A onH, the Berezin transform Ã is a bounded real-analytic func-
tion on Ω. Properties of the operator A are often reflected in properties of the Berezin transform
Ã. The Berezin transform itself was introduced by F. Berezin in [8] and has proven to be a crit-
ical tool in operator theory, as many foundational properties of important operators are encoded
in their Berezin transforms. The Berezin set and number, also denoted by Ber(A) and ber(A),
respectively, were purportedly first formally introduced by Karaev in [22].

An important inequality for ber (A) is the power inequality stating that

ber (An) ≤ ber (A)n (1.1)

for n = 1, 2, ...; more generally, if A is not nilpotent, then

C1ber (A)n ≤ ber (An) ≤ C1ber (A)n

for some constants C1, C2 > 0.
In an RKHS, the Berezin range of an operator A is a subset of the numerical range of A,

W (A) := {〈Ax, x〉 : x ∈ H (Ω) and ‖x‖ = 1} .

Hence
ber(A) ≤ w(A) := sup {|〈Ax, x〉| : x ∈ H (Ω) and ‖x‖ = 1}

(the numerical radius of operator A ). The numerical range of an operator has some interesting
properties. For example, it is well known that the spectrum of an operator is contained in the
closure of its numerical range. For basic properties of the numerical radius, we refer to [1, 17,
18, 24, 25, 26, 27, 33].

Berezin range and Berezin radius of operators are new numerical characteristics of operators
on the RKHS which are introduced by Karaev in [22]. For the basic properties and facts on these
new concepts, see [3, 4, 5, 15, 16, 23, 28, 29].

It is well-known that
ber (T ) ≤ w (T ) ≤ ‖T‖ (1.2)

for any T ∈ L (H (Ω)) .
In [7], Başaran et al. obtained the following result.

ber (A) ≤
1
2

(
‖A‖ber +

∥∥A2∥∥1/2
ber

)
. (1.3)

It has been shown in [20] and [21], respectively, that if A ∈ L (H (Ω)), then

1
4

∥∥∥|A|2 + |A∗|2∥∥∥
ber
≤ ber2 (A) ≤

1
2

∥∥∥|A|2 + |A∗|2∥∥∥
ber

(1.4)

where |A| = (A∗A)
1/2 is the absolute value of A, and

ber2r (A) ≤
1
2

∥∥∥|A|2r + |A∗|2r∥∥∥
ber

(1.5)

where r ≥ 1.
The purpose of this paper is to establish several refinements of the above Berezin radius

inequalities for reproducing kernel Hilbert space operators. Some other related questions are
also discussed.

2 New estimates for the Berezin radius

2.1 Lemmas

In order to achieve our goal, we need the following sequence of corollaries.
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Recall that an operator A ∈ L (H) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H. In this
case we will write A ≥ 0. The classical operator Jensen inequality for the positive operators
A ∈ B (H) is

〈Ax, x〉r ≤ (≥) 〈Arx, x〉 , r ≥ 1 (0 ≤ r ≤ 1) (2.1)

for any unit vector x ∈ H.
The following lemma is known as Cauchy-Buzano inequality (see [9]).

Lemma 2.1. Let x, y, e ∈ H with ‖e‖ = 1. Then

|〈x, e〉 〈e, y〉| ≤ 1
2
(|〈x, y〉|+ ‖x‖ ‖y‖) . (2.2)

Next lemma is a corollary of Cauchy-Buzano inequality (see [27, Lemma 2.2]).

Lemma 2.2. Let x, y, e ∈ H with ‖e‖ = 1. Then

|〈x, e〉 〈e, y〉| ≤ 1
2

√
3 ‖x‖2 ‖y‖2 + ‖x‖ ‖y‖ |〈x, y〉|. (2.3)

The following lemma which can be found in [2, Theorem 2.3] gives a norm inequality in-
volving convex function of positive operators.

Lemma 2.3. Let f be a non-negative non-decreasing convex function on [0,∞) and A,B ∈
L (H). Then ∥∥∥∥f (A+B

2

)∥∥∥∥ ≤ ∥∥∥∥f (A) + f (B)

2

∥∥∥∥ . (2.4)

In particular, ∥∥∥∥(A+B

2

)r∥∥∥∥ ≤ ∥∥∥∥Ar +Br

2

∥∥∥∥ , (r ≥ 1) .

The next lemma is found in [18].

Lemma 2.4. Let A ∈ L (H) be a positive operator. Then

|〈Ax, x〉| ≤
√
〈|A|x, x〉 〈|A∗|x, x〉 (2.5)

for any unit vector x ∈ H.

2.2 Main Results

Now, we are ready to present the main results of this section.

Theorem 2.5. Let A ∈ L (H (Ω)). Then

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber
(
A2) . (2.6)

Proof. Let k̂λ be a normalized reproducing kernel. By setting e = k̂λ, x = Ak̂λ and y = A∗k̂λ
in (2.3), we have∣∣∣〈Ak̂λ, k̂λ〉∣∣∣4 ≤ 3

4

∥∥∥Ak̂λ∥∥∥2 ∥∥∥A∗k̂λ∥∥∥2
+

1
4

∥∥∥Ak̂λ∥∥∥∥∥∥A∗k̂λ∥∥∥ ∣∣∣〈Ak̂λ, A∗k̂λ〉∣∣∣
=

3
4

〈
Ak̂λ, Ak̂λ

〉〈
A∗k̂λ, A

∗k̂λ

〉
+

1
4

√〈
Ak̂λ, Ak̂λ

〉〈
A∗k̂λ, A∗k̂λ

〉 ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
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=
3
4

〈
|A|2 k̂λ, k̂λ

〉〈
|A∗|2 k̂λ, k̂λ

〉
+

1
4

√〈
|A|2 k̂λ, k̂λ

〉〈
|A∗|2 k̂λ, k̂λ

〉 ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
≤ 3

8

(〈
|A|2 k̂λ, k̂λ

〉2
+
〈
|A∗|2 k̂λ, k̂λ

〉2
)

+
1
8

(〈
|A|2 k̂λ, k̂λ

〉
+
〈
|A∗|2 k̂λ, k̂λ

〉) ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
(by the AM-GM inequality)

≤ 3
8

(〈
|A|4 k̂λ, k̂λ

〉
+
〈
|A∗|4 k̂λ, k̂λ

〉)
+

1
8

(〈
|A|2 k̂λ, k̂λ

〉
+
〈
|A∗|2 k̂λ, k̂λ

〉) ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
(by the inequalities (2.1))

=
3
8

〈(
|A|4 + |A∗|4

)
k̂λ, k̂λ

〉
+

1
8

〈(
|A|2 + |A∗|2

)
k̂λ, k̂λ

〉 ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣ .
By taking the supremum over all λ ∈ Ω, we have

sup
λ∈Ω

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣4 ≤ sup
λ∈Ω

3
8

〈(
|A|4 + |A∗|4

)
k̂λ, k̂λ

〉
+ sup
λ∈Ω

1
8

〈(
|A|2 + |A∗|2

)
k̂λ, k̂λ

〉 ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
and

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber
(
A2) ,

which proves the theorem.

Next corollary, based on Lemma 2.3, is refinement of the inequality (1.5) when r = 2.

Corollary 2.6. Let A ∈ L (H (Ω)). Then

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber
(
A2)

≤ 1
2

∥∥∥|A|4 + |A∗|4∥∥∥
ber

.

Proof. Let k̂λ be a normalized reproducing kernel. Notice that if T ∈ L (H (Ω)) and f is a
non-negative increasing function [0,∞), then ‖f (|T |)‖ber = f (‖T‖ber). Thus, we have

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber
(
A2)

≤ 3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber2 (A)

(by the inequality (1.1))

≤ 3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
16

∥∥∥|A|2 + |A∗|2∥∥∥2

ber

(by the inequality (1.4))
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=
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
16

∥∥∥∥(|A|2 + |A∗|2)2
∥∥∥∥

ber

(by the inequality (2.4))

=
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
16

∥∥∥∥∥∥
(

2 |A|2 + 2 |A∗|2

2

)2
∥∥∥∥∥∥

ber

≤ 3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

=
1
2

∥∥∥|A|4 + |A∗|4∥∥∥
ber

.

Hence we get

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber
(
A2)

≤ 1
2

∥∥∥|A|4 + |A∗|4∥∥∥
ber

,

and the proof is complete.

By applying the inequality (2.3), we obtain the following refinement.

Theorem 2.7. Let A,B ∈ L (H (Ω)). Then for any λ ∈ Ω, we have∣∣∣Ã (λ) B̃ (λ)
∣∣∣2 ≤ 3

8

(
˜|A|4 + |B∗|4

)
(λ) +

1
8

(
˜|A|2 + |B∗|2

)
(λ)
∣∣∣B̃A (λ)

∣∣∣ . (2.7)

Proof. Let λ ∈ Ω be arbitrary. Putting e = k̂λ, x = Ak̂λ and y = A∗k̂λ in the inequality (2.3)
we have∣∣∣Ã (λ) B̃ (λ)

∣∣∣2 = ∣∣∣〈Ak̂λ, k̂λ〉〈Bk̂λ, k̂λ〉∣∣∣2
=
∣∣∣〈Ak̂λ, k̂λ〉〈k̂λ, B∗k̂λ〉∣∣∣2

≤ 3
4

∥∥∥Ak̂λ∥∥∥2 ∥∥∥B∗k̂λ∥∥∥2
+

1
4

∥∥∥Ak̂λ∥∥∥∥∥∥B∗k̂λ∥∥∥ ∣∣∣〈Ak̂λ, B∗k̂λ〉∣∣∣
=

3
4

〈
|A|2 k̂λ, k̂λ

〉〈
|B∗|2 k̂λ, k̂λ

〉
+

1
4

√〈
|A|2 k̂λ, k̂λ

〉〈
|B∗|2 k̂λ, k̂λ

〉 ∣∣∣〈BAk̂λ, k̂λ〉∣∣∣
≤ 3

8

(〈
|A|2 k̂λ, k̂λ

〉2
+
〈
|B∗|2 k̂λ, k̂λ

〉2
)

+
1
8

(〈
|A|2 k̂λ, k̂λ

〉
+
〈
|B∗|2 k̂λ, k̂λ

〉) ∣∣∣〈BAk̂λ, k̂λ〉∣∣∣
(by the AM-GM inequality)

≤ 3
8

(〈
|A|4 k̂λ, k̂λ

〉
+
〈
|B∗|4 k̂λ, k̂λ

〉)
+

1
8

〈(
|A|2 + |B∗|2

)
k̂λ, k̂λ

〉 ∣∣∣B̃A (λ)
∣∣∣

=
3
8

(〈(
|A|4 + |B∗|4

)
k̂λ, k̂λ

〉)
+

1
8

(
˜|A|2 + |B∗|2

)
(λ)
∣∣∣B̃A (λ)

∣∣∣ .
Thus, we have∣∣∣Ã (λ) B̃ (λ)

∣∣∣2 ≤ 3
8

(
˜|A|4 + |B∗|4

)
(λ) +

1
4

(
˜|A|2 + |B∗|2

)
(λ)
∣∣∣B̃A (λ)

∣∣∣ .
This completes the proof.

The following corollary is an easy consequence of Theorem 2.7.
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Corollary 2.8. Let A,B ∈ L (H (Ω)). Then

ber4 (B∗A) ≤
3
8

∥∥∥|A|8 + |B|8∥∥∥
ber

+
1
8

∥∥∥|A|4 + |B|4∥∥∥
ber

ber
(
|B|2 |A|2

)
. (2.8)

Proof. Let k̂λ be a normalized reproducing kernel. Considering A = |A|2 and B = |B|2 in the
inequality (2.7), we have that(〈

|A|2 k̂λ, k̂λ
〉〈
|B|2 k̂λ, k̂λ

〉)2

≤ 3
8

〈(
|A|8 + |B|8

)
k̂λ, k̂λ

〉
+

1
8

〈(
|A|4 + |B|4

)
k̂λ, k̂λ

〉 ∣∣∣〈|B|2 |A|2 k̂λ, k̂λ〉∣∣∣ . (2.9)

It follows from the Cauchy-Schwarz inequality that∣∣∣〈B∗Ak̂λ, k̂λ〉∣∣∣4 = ∣∣∣〈Ak̂λ, Bk̂λ〉∣∣∣4
≤
∥∥∥Ak̂λ∥∥∥4 ∥∥∥B∗k̂λ∥∥∥4

=
(〈
Ak̂λ, Ak̂λ

〉〈
Bk̂λ, Bk̂λ

〉)2

=
(〈
|A|2 k̂λ, k̂λ

〉〈
|B|2 k̂λ, k̂λ

〉)2
. (2.10)

Now, on making use of the inequalities (2.9) and (2.10), we get the inequality∣∣∣〈B∗Ak̂λ, k̂λ〉∣∣∣4 ≤ 3
8

(〈
|A|8 k̂λ, k̂λ

〉
+
〈
|B|8 k̂λ, k̂λ

〉)
+

1
8

〈(
|A|4 + |B|4

)
k̂λ, k̂λ

〉 ∣∣∣〈|B|2 |A|2 k̂λ, k̂λ〉∣∣∣ .
Therefore, taking the supremum over λ ∈ Ω we deduce

sup
λ∈Ω

∣∣∣〈B∗Ak̂λ, k̂λ〉∣∣∣4 ≤ 3
8

sup
λ∈Ω

〈(
|A|8 + |B|8

)
k̂λ, k̂λ

〉
+

1
8

sup
λ∈Ω

〈(
|A|4 + |B|4

)
k̂λ, k̂λ

〉 ∣∣∣〈|B|2 |A|2 k̂λ, k̂λ〉∣∣∣
and

ber4 (B∗A) ≤
3
8

∥∥∥|A|8 + |B|8∥∥∥
ber

+
1
8

∥∥∥|A|4 + |B|4∥∥∥
ber

ber
(
|B|2 |A|2

)
,

as desired.

It follows from Theorem 3.11 in [20] that if A,B ∈ L (H (Ω)) and r ≥ 1, then

berr (B∗A) ≤
1
2

∥∥∥|A|2r + |B|2r∥∥∥
ber

. (2.11)

Remark 2.9. If r = 4 is taken in the inequality (2.11) in particular, then Corollary 2.8 improves
the inequality

ber4 (B∗A) ≤
1
2

∥∥∥|A|8 + |B|8∥∥∥
ber
.

Next we prove the following inequality.

Corollary 2.10. Let A ∈ L (H (Ω)), then

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber (|A∗| |A|) . (2.12)
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Proof. Let λ ∈ Ω be arbitrary. Replacing A = |A| and B = |A∗| in Theorem 2.7, we have

(〈
|A| k̂λ, k̂λ

〉〈
|A∗| k̂λ, k̂λ

〉)2

≤ 3
8

〈(
|A|4 + |A∗|4

)
k̂λ, k̂λ

〉
+

1
8

〈(
|A|2 + |A∗|2

)
k̂λ, k̂λ

〉 ∣∣∣〈|A∗| |A| k̂λ, k̂λ〉∣∣∣ . (2.13)

On the other hand, it follows from Lemma 2.4 that

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣4 ≤ (〈|A| k̂λ, k̂λ〉〈|A∗| k̂λ, k̂λ〉)2
. (2.14)

Now, on making use of the inequalities (2.13) and (2.14), we get the inequality

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣4 ≤ 3
8

〈(
|A|4 + |A∗|4

)
k̂λ, k̂λ

〉
+

1
8

〈(
|A|2 + |A∗|2

)
k̂λ, k̂λ

〉 ∣∣∣〈|A∗| |A|λ , k̂λ〉∣∣∣ .
Taking the supremum over λ ∈ Ω in the above inequality, we obtain

sup
λ∈Ω

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣4 ≤ 3
8

sup
λ∈Ω

(〈(
|A|4 + |A∗|4

)
k̂λ, k̂λ

〉)
+

1
8

sup
λ∈Ω

(〈(
|A|2 + |A∗|2

)
k̂λ, k̂λ

〉 ∣∣∣〈|A∗| |A| k̂λ, k̂λ〉∣∣∣) .

and

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber (|A∗| |A|) .

We deduce the desired inequality (2.12).

If we choose of A a normal operator we get on both on (2.12) the same quantify ‖A‖4.

Corollary 2.11. For any A ∈ L (H (Ω)) , we have the inequality

ber (|A∗| |A|) ≤
1
2

∥∥∥|A|2 + |A∗|2∥∥∥
ber

.

Proof. Let k̂λ be a normalized reproducing kernel. By the Schwarz inequality in the Hilbert
space we have

∣∣∣〈|A∗| |A| k̂λ, k̂λ〉∣∣∣ = ∣∣∣〈|A| k̂λ, |A∗| k̂λ〉∣∣∣ ≤ ∥∥∥|A|2 k̂λ∥∥∥∥∥∥|A∗|2 k̂λ∥∥∥
=

√〈
|A|2 k̂λ, k̂λ

〉〈
|A∗|2 k̂λ, k̂λ

〉
≤ 1

2

〈(
|A|2 + |A∗|2

)
k̂λ, k̂λ

〉
.

Taking the supremum λ ∈ Ω in the above inequality, we have

ber (|A∗| |A|) ≤
1
2

∥∥∥|A|2 + |A∗|2∥∥∥
ber
. (2.15)
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Now, on making use of the inequalities (2.12), we deduce that

ber4 (A) ≤
3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|2 + |A∗|2∥∥∥
ber

ber (|A∗| |A|)

≤ 3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1

16

∥∥∥|A|2 + |A∗|2∥∥∥2

ber

(by the inequality (2.15))

≤ 3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1

16

∥∥∥∥∥∥
(

2 |A|2 + 2 |A∗|2

2

)2
∥∥∥∥∥∥

ber

≤ 3
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

+
1
8

∥∥∥|A|4 + |A∗|4∥∥∥
ber

(by the inequality (2.4))

=
1
2

∥∥∥|A|4 + |A∗|4∥∥∥
ber

.

So, our inequality (2.12) improves the inequality (1.5) when r = 2.
Now, we present Berezin norm inequalities and a related Berezin radius inequality for the

sum of two operators.

Theorem 2.12. Let A,B ∈ L (H (Ω)). Then

ber2 (A+B) ≤ ber2 (A) + ber2 (B) + ‖A‖Ber ‖B‖Ber + ber (A) .

Proof. Let λ ∈ Ω be arbitrary. Then we have∣∣∣〈(A+B) k̂λ, k̂λ
〉∣∣∣2 ≤ (∣∣∣〈Ak̂λ, k̂λ〉∣∣∣+ ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣)2

(by the triangle inequality)

=
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + 2

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣ ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣
=
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + 2

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣ ∣∣∣〈k̂λ, Bk̂λ〉∣∣∣
≤
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + ∥∥∥Ak̂λ∥∥∥∥∥∥Bk̂λ∥∥∥+ ∣∣∣〈Ak̂λ, Bk̂λ〉∣∣∣

(by the inequality (2.2))

=
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + ∥∥∥Ak̂λ∥∥∥ ∥∥∥Bk̂λ∥∥∥+ ∣∣∣〈B∗Ak̂λ, k̂λ〉∣∣∣ .

This implies that∣∣∣〈(A+B) k̂λ, k̂λ
〉∣∣∣2 ≤ ∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + ∥∥∥Ak̂λ∥∥∥ ∥∥∥Bk̂λ∥∥∥+ ∣∣∣〈B∗Ak̂λ, k̂λ〉∣∣∣ .

By taking the supremum over all λ ∈ Ω in the above inequality, we get

sup
λ∈Ω

∣∣∣〈(A+B) k̂λ, k̂λ
〉∣∣∣2 ≤ sup

λ∈Ω

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + sup
λ∈Ω

∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + sup
λ∈Ω

∥∥∥Ak̂λ∥∥∥ ∥∥∥Bk̂λ∥∥∥
+ sup
λ∈Ω

∣∣∣〈B∗Ak̂λ, k̂λ〉∣∣∣ .
Therefore,

ber2 (A+B) ≤ ber2 (A) + ber2 (B) + ‖A‖Ber ‖B‖Ber + ber (B∗A) .

This completes the proof.
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The following theorem gives a Berezin radius inequality for the sum of two operators.

Theorem 2.13. Let A,B ∈ L (H (Ω)). Then

ber2 (A+B) = ber2 (A) + ber2 (B) +
1
2

∥∥∥|A|2 + |B∗|2∥∥∥
ber

+ ber (BA) . (2.16)

Proof. Let λ ∈ Ω be arbitrary. By using the triangle inequality and the arithmetic-geometric
mean inequality, we have∣∣∣〈(A+B) k̂λ, k̂λ

〉∣∣∣2 ≤ (∣∣∣〈Ak̂λ, k̂λ〉∣∣∣+ ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣)2

=
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + 2

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣ ∣∣∣〈k̂λ, B∗k̂λ〉∣∣∣
≤
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + ∥∥∥Ak̂λ∥∥∥∥∥∥B∗k̂λ∥∥∥+ ∣∣∣〈Ak̂λ, B∗k̂λ〉∣∣∣

(by the inequality (2.2))

≤
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 +√〈|A|2 k̂λ, k̂λ〉〈|B∗|2 k̂λ, k̂λ〉

+
∣∣∣〈BAk̂λ, k̂λ〉∣∣∣
≤
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + 1

2

(〈
|A|2 k̂λ, k̂λ

〉
+
〈
|B∗|2 k̂λ, k̂λ

〉)
+
∣∣∣〈BAk̂λ, k̂λ〉∣∣∣

=
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + ∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + 1

2

〈
|A|2 + |B∗|2 k̂λ, k̂λ

〉
+
∣∣∣〈BAk̂λ, k̂λ〉∣∣∣ .

Taking the supremum over λ ∈ Ω, we have

sup
λ∈Ω

∣∣∣〈(A+B) k̂λ, k̂λ
〉∣∣∣2 ≤ sup

λ∈Ω

∣∣∣〈Ak̂λ, k̂λ〉∣∣∣2 + sup
λ∈Ω

∣∣∣〈Bk̂λ, k̂λ〉∣∣∣2 + 1
2

sup
λ∈Ω

〈
|A|2 + |B∗|2 k̂λ, k̂λ

〉
+ sup
λ∈Ω

∣∣∣〈BAk̂λ, k̂λ〉∣∣∣
and

ber2 (A+B) ≤ ber2 (A) + ber2 (B) +
1
2

∥∥∥|A|2 + |B∗|2∥∥∥
ber

+ ber (BA) ,

hence, we get (2.16) as required.

Now, we are ready to present our new improvement of the inequality in ber (A) ≤ ‖A‖ .

Corollary 2.14. Let A ∈ L (H (Ω)). Then

ber2 (A) ≤
1
4

∥∥∥|A|2 + |A∗|2∥∥∥
ber

+
1
2

ber
(
A2) . (2.17)

Proof. Let k̂λ be a normalized reproducing kernel of space H (Ω) and θ ∈ R. First of all, we
note that

ber (A) = sup
θ∈R

∥∥Re
(
eiθA

)∥∥
ber , (2.18)

since
sup
θ∈R

Re
{
eiθ
〈
Ak̂λ, k̂λ

〉}
=
∣∣∣〈Ak̂λ, k̂λ〉∣∣∣

and
sup
θ∈R

∥∥Re
(
eiθA

)∥∥
ber = sup

θ∈R
ber
(
Re
(
eiθA

))
= ber (A) .
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Then by (2.18), we have

ber (A) = sup
θ∈R

∥∥Re
(
eiθA

)∥∥
ber

=
1
2

sup
θ∈R

∥∥eiθA+ e−iθA∗
∥∥

ber

=
1
2

sup
θ∈R

∥∥∥(eiθA+ e−iθA∗
)2
∥∥∥1/2

ber

=
1
2

sup
θ∈R

∥∥∥|A|2 + |A∗|2 + 2 Re
(
e2iθA2)∥∥∥1/2

ber

≤ 1
2

√∥∥∥|A|2 + |A∗|2∥∥∥
ber

+ 2 sup
θ∈R
‖Re (e2iθA2)‖ber

=
1
2

√∥∥∥|A|2 + |A∗|2∥∥∥
ber

+ 2ber (A2),

which proves the inequality in (2.17). Hence we have the desired inequality.

For more recent results concerning Berezin radius inequalities for operators and other related
results, we suggest [6, 11, 12, 13, 14, 15, 16, 28, 30, 31, 32].

References
[1] A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to

involution operators, Rocky Mountain J. Math. 45 1055–1064 (2015).

[2] J. Aujla and F. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369
217–233, (2003).

[3] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J. 68 997–
1009 (2018).

[4] M. Bakherad and M. T. Garayev, Berezin number inequalities for operators, Concr. Oper. 6 33–43 (2019).
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