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Abstract For a connected graph G, an injective function π : V (G) → N such that for every
distinct vertices u and v of G, d(u, v) + |π(u)− π(v)| ≥ 1 + diam(G) is called a radio labeling
of G. The radio number of π, rn(π) is the highest number allotted to any vertex of G. The radio
number of G, rn(G) is the minimum value of rn(π) taken over all radio labeling π of G. Let
G be a connected graph and π : V (G) → N is an injective function. Then π is called a radio
mean labeling if for every distinct vertex u and v of G, d(u, v) + dπ(u)+π(v)2 e ≥ 1 + diam(G).
The highest number allotted to any vertex of G is called radio mean number of π and is denoted
by rmn(π). The least value of rmn(π) taken over all radio mean labeling π of G is called radio
mean number of G and is denoted by rmn(G). The upper bound of radio number and radio
mean number for honeycomb and honeycomb torus networks are found.

1 Introduction

Radio labeling is inspired by Hale’s problem of channel assignment. If we are given a set of radio
stations, then the job will be to assign a channel (non-negative integer) to each station (or trans-
mitter) to avoid interference. The interference is intricately linked to the station’s geographical
position, the closer the stations are uncommon the greater the interference that may occur. Also
the packing coloring problem arise from the restrictions concerning the assignment of broadcast
frequencies to radio stations, which is similar to radio labeling [1, 2, 3]. The division of channels
allocated to the neighbouring stations must be wide enough to prevent interference. To model
this problem, the researchers have constructed a graph such that each station is represented by a
vertex and two vertices are adjacent when their respective stations are close. The ultimate objec-
tive is to find a valid label that reduces the period (range) of the channels used [4, 5] . The radio
labeling of different graphs are discussed in [1, 4, 5, 6, 7, 10, 11, 12].

An interconnection network can be modelled by a simple graph whose vertices mean com-
ponents of network and whose edges mean the connections between them. This idea has been
broadly perceived and utilized by computer researchers and engineers. Graph theory is a effec-
tive mathematical technique for the design and analysis of topological interconnection network
structures. A system’s interconnection network logically offers a basic means of linking all de-
vice components. For example, hypercubes, butterfly networks, benes networks, honeycomb
networks, honeycomb torus networks and grids are some interconnection networks [6, 7, 8, 13].

The definitions of radio number and radio mean number are taken from [5] and [10]. In this
paper, the upper bounds of radio numbers and radio mean numbers for honeycomb and honey-
comb torus networks are determined.

2 Honeycomb Network

Definition 2.1. An n-dimensional honeycomb network is denoted as HCnwhere n is the number
of hexagons between central and boundary of hexagon. Honeycomb networkHCn is constructed
from HCn−1 by adding a layer of hexagons around the boundary of HCn−1. The number of
vertices in the honeycomb network HCn are 6n2 and the number of edges is 9n2 − 3n. The
diameter of the honeycomb network is 4n− 1 [8, 13].
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Theorem 2.2. For, HCn, n ≥ 2, rn(HCn) ≤ 24n3 − 16n2 − 2n+ 3.

Proof. The vertices of HCn are labeled as we see in Figure 1. We know that diam(HCn) =
4n− 1.

Define a mapping π : V (HCn)→ N as follows
π(vi) = 4n(i− 1)− 2i+ 3, 1 ≤ i ≤ 6n2 − n
π(ui) = 4n(i− 1)− 2i+ 4, 1 ≤ i ≤ n.

Claim: The mapping π is a radio labeling and need to prove that d(u, v) + |π(u) − π(v)| ≥
1 + diam(HCn) = 4n holds for all pairs of vertices (u, v), where u 6= v.

Case I: Suppose u = vk and v = vl, 1 ≤ k 6= l ≤ 6n2 − n, |k − l| > 1.
Then,

π(u) = 4n(k − 1)− 2k + 3
π(v) = 4n(l − 1)− 2l+ 3 and d(u, v) ≥ 1.

Hence, d(u, v) + |π(u)− π(v)| ≥ 1 + |(4n− 2)(k − l)| ≥ 4n.

Case II: Suppose u = uk and v = ul, 1 ≤ k 6= l ≤ n.
Then,

π(u) = 4n(k − 1)− 2k + 4
π(v) = 4n(l − 1)− 2l+ 4 and d(u, v) ≥ 2.

Hence, d(u, v) + |π(u)− π(v)| ≥ 2 + |(4n− 2)(k − l)| ≥ 4n.

Case III: Suppose u = uk and v = vl, 1 ≤ k, l ≤ n.
Then,

π(u) = 4n(k − 1)− 2k + 4
π(v) = 4n(l − 1)− 2l+ 3 and d(u, v) ≥ 4n− 1.

Hence, d(u, v) + |π(u)− π(v)| ≥ 4n− 1 + |(4n− 2)(k − l) + 1| ≥ 4n.

Case IV: Suppose u = uk and v = vl, 1 ≤ k ≤ n, n+ 1 ≤ l ≤ 6n2 − n, |k − l| > 1.
Then,

π(u) = 4n(k − 1)− 2k + 4
π(v) = 4n(l − 1)− 2l+ 3 and d(u, v) ≥ 1.

Hence, d(u, v) + |π(u)− π(v)| ≥ 1 + |(4n− 2)(k − l) + 1| ≥ 4n.

Case V: Suppose u = vk and v = vl, 1 ≤ k 6= l ≤ 6n2 − n, |k − l| = 1.
Then,

π(u) = 4n(k − 1)− 2k + 3
π(v) = 4n(l − 1)− 2l+ 3 and d(u, v) ≥ 2.

Hence, d(u, v) + |π(u)− π(v)| ≥ 2 + |(4n− 2)(k − l)| ≥ 4n.

Thus d(u, v) + |π(u)− π(v)| ≥ 4n for all u, v ∈ V (HCn), n ≥ 2. These five cases establish
the claim that π is a radio labeling of HCn. Since the vertex v6n2−n receives the maximum label,
the radio number of honeycomb HCn satisfies rn(HCn) ≤ 24n3 − 16n2 − 2n+ 3.

Theorem 2.3. For, HCn, n ≥ 2, rmn(HCn) ≤ 6n2 + 4n− 6.

Proof. The vertices of HCn are labeled as we see in Figure 2. We know that diam(HCn) =
4n− 1.

Define a mapping π : V (HCn)→ N as follows

π(vi) =


4(n− 1) + i, 1 ≤ i ≤ 3n2

4, i = 3n2 + 1
4(n− 1) + (i− 1), 3n2 + 2 ≤ i ≤ 6n2 − 1
1, i = 6n2.
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Figure 1. Radio Labeling of HC2

Claim: The mapping π is a radio labeling and need to prove that d(u, v) + dπ(u)+π(v)2 e ≥
1 + diam(HCn) = 4n is true for every pair of vertices (u, v), where u 6= v.

Case I: Suppose u = v6n2 and v = v3n2+1.
Then,

π(u) = 1
π(v) = 4 and d(u, v) = 4n− 3.

Hence, d(u, v) + dπ(u)+π(v)2 e ≥ 4n− 3 + d 5
2e = 4n.

Case II: Suppose u = vk and v = vl, 1 ≤ k 6= l ≤ 3n2, 3n2 + 2 ≤ k 6= l ≤ 6n2 − 1.
Then,

π(u) = 4(n− 1) + k
π(v) = 4(n− 1) + (l − 1) and d(u, v) ≥ 1.

Hence, d(u, v) + dπ(u)+π(v)2 e ≥ 1 + d 8n−9+k+l
2 e ≥ 4n.

Case III: Suppose u = vk and v = vl, 1 ≤ k 6= l ≤ 3n2.
Then,

π(u) = 4(n− 1) + k
π(v) = 4(n− 1) + l and d(u, v) ≥ 1.

Hence, d(u, v) + dπ(u)+π(v)2 e ≥ 1 + d 8n−8+k+l
2 e ≥ 4n.

Case IV: Suppose u = vk and v = vl, 3n2 + 2 ≤ k 6= l ≤ 6n2 − 1.
Then,

π(u) = 4(n− 1) + (k − 1)
π(v) = 4(n− 1) + (l − 1) and d(u, v) ≥ 1.

Hence, d(u, v) + dπ(u)+π(v)2 e ≥ 1 + d 8n−10+k+l
2 e ≥ 4n.

Case V: Suppose u = v3n2+1 and v = vl, 1 ≤ l ≤ 3n2.
Then,

π(u) = 4
π(v) = 4(n− 1) + l and d(u, v) ≥ 1.

Hence, d(u, v) + dπ(u)+π(v)2 e ≥ 1 + d 4n+l
2 e ≥ 4n.

Case VI: Suppose u = v3n2+1 and v = vl, 3n2 + 2 ≤ l ≤ 6n2 − 1.
Then,

π(u) = 4
π(v) = 4(n− 1) + (l − 1) and d(u, v) ≥ 1.

Hence, d(u, v) + dπ(u)+π(v)2 e ≥ 1 + d 4n+l−1
2 e ≥ 4n.

Therefore, for all u, v ∈ V (HCn), n ≥ 2, d(u, v) + dπ(u)+π(v)2 e ≥ 4n. Hence these cases
verify the claim that π is a radio mean labeling of HCn. Since the vertex v6n2−1 receives the
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maximum label, the radio number of honeycombsHCn satisfies rmn(HCn) ≤ 6n2+4n−6.

Figure 2. Radio Mean Labeling of HC2

3 Honeycomb Torus Network

Definition 3.1. The honeycomb torus network is created by linking pairs of honeycomb mesh
nodes of degree two. HCT (r) is obtained by adding a layer of hexagons around the boundary
of HC(r − 1), with wraparound edges. The number of vertices and edges of HCT (r) are 6r2

and 9r2 respectively [9].

Theorem 3.2. For, HCTn, n ≥ 2, rn(HCTn) ≤ 12n3 − 6n2 − 2n+ 2.

Proof. The vertices ofHCTn are labelled as we see in Figure 3. We know that diam(HCTn) =
2n.

Define a mapping π : V (HCTn)→ N as follows,
π(vi) = 2n(i− 1)− i+ 2, 1 ≤ i ≤ 6n2.

Claim: The mapping π is a radio labeling and we need to prove that d(u, v)+|π(u)−π(v)| ≥
1 + diam(HCTn) = 2n+ 1 is true for every pair of vertices (u, v), where u 6= v.

Case I: Suppose u = vk and v = vl, 1 ≤ k 6= l ≤ 6n2, |k − l| > 1.
Then,

π(u) = 2n(k − 1)− k + 2
π(v) = 2n(l − 1)− l+ 2 and d(u, v) ≥ 1.

Hence, d(u, v) + |π(u)− π(v)| ≥ 1 + |(2n− 1)(k − l)| ≥ 2n+ 1.

Case II: Suppose u = v1 and v = vl, 2 ≤ l ≤ 6n2.
Then,

π(u) = 2n(1− 1)− k + 2 = 1
π(v) = 2n(l − 1)− l+ 2 and d(u, v) ≥ 1.

Hence, d(u, v) + |π(u)− π(v)| ≥ 1 + |(2n− 1)(1− l)| ≥ 2n+ 1.

Case III: Suppose u = vk and v = vl, 1 ≤ k 6= l ≤ 6n2, |k − l| = 1.
Then,

π(u) = 2n(k − 1)− k + 2
π(v) = 2n(l − 1)− l+ 2 and d(u, v) ≥ 2.

Hence, d(u, v) + |π(u)− π(v)| ≥ 2 + |(2n− 1)(k − l)| ≥ 2n+ 1.

Thus for all (u, v) ∈ V (HCTn), n ≥ 2, d(u, v) + |π(u) − π(v)| ≥ 2n + 1. Here all the
three cases confirm the claim that π is a radio labeling of HCTn. Since the vertex v6n2 accepts
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the maximum label, the radio number of honeycomb torus satisfies rn(HCTn) ≤ 12n3 − 6n2 −
2n+ 2.

Figure 3. Radio Labeling of HCT2

Theorem 3.3. For, HCTn, n ≥ 2, rmn(HCTn) ≤ 6n2 + n− 2.

Proof. The proof is closely connected to the Theorem 2.3. Radio mean labeling of honeycomb
torus HCT2 is shown in Figure 4.

Figure 4. Radio Mean Labeling of HCT2

Conclusion

We have found the upper bounds of radio numbers and radio mean numbers for honeycomb
and honeycomb torus networks. The radio and radio mean number of Benes network is under
investigation.
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