Vol. 12(1)(2023), 778-783

Sufficient Conditions for Univalence

Gurwinder Kaur, Sukhwinder Singh Billing and Sukhjit Singh

Communicated by R. K. Raina

MSC 2010 Classifications: Primary 30C45, Secondary 30C80.

Keywords and phrases: Analytic function, Univalent function, Starlike function, Convex function.

The authors are thankful to the referee for his/her valuable suggestions which helped in technical improvement of this paper.

Abstract Let \mathcal{A} denote the class of all functions f defined and analytic in the open unit disc $\mathbb{E} = \{z : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. In the present paper, we obtain sufficient conditions for f to be starlike, Bazilevic or bounded turning of some order $\beta, 0 < \beta < 1$ in \mathbb{E} . Our result extends an earlier such result which is available only for the range [1/2, 1) of the parameter β .

1 Introduction

Let \mathcal{H} denote the class of functions which are analytic in the open unit disc $\mathbb{E} = \{z : |z| < 1\}$ in the complex plane \mathbb{C} . For some $a \in \mathbb{C}$ and $n \in \mathbb{N}$ (the set of positive integers), let $\mathcal{H}(a, n)$ represents family of all functions f in \mathcal{H} which are of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$$

We denote by \mathcal{A} the class of all those functions f in \mathcal{H} which are normalized by the conditions f(0) = 0 and f'(0) = 1. Further, we also let S denote the subclass of all univalent functions in \mathcal{A} . For a real number $\beta, 0 \leq \beta < 1$, let

$$\mathcal{R}(\beta) = \{ f \in \mathcal{A} : \Re f'(z) > \beta, z \in E \},\$$

$$S^*(\beta) = \left\{ f \in \mathcal{A} : \Re \frac{zf'(z)}{f(z)} > \beta, z \in E \right\}$$

and

$$\mathcal{K}(\beta) = \left\{ f \in \mathcal{A} : \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \beta, z \in E \right\}.$$

Functions in the class $\mathcal{R}(\beta)$, $S^*(\beta)$ and $\mathcal{K}(\beta)$ are called, respectively, functions of bounded turning of order β , starlike functions of order β and convex functions of order β . It is well known that functions in $\mathcal{R}(\beta)$, $S^*(\beta)$ and $\mathcal{K}(\beta)$ are univalent and $\mathcal{K}(\beta) \subseteq S^*(\beta)$, $0 \le \beta < 1$. Further note that $S^*(0) := S^*$ and $\mathcal{K}(0) := \mathcal{K}$ are the usual classes of starlike (with respect to the origin) functions and convex functions in *S*, respectively. For more details on these classes of functions we refer the reader to [3].

Following Babalola [1], we say that a function $f \in A$ is Bazilevic function of order β , $0 \le \beta < 1$ and type $\lambda + 1$, $\lambda \ge -1$, if it satisfies the condition

$$\Re\left\{f'(z)\left(\frac{f(z)}{z}\right)^{\lambda}\right\} > \beta, z \in E.$$
(1.1)

It is known that functions satisfying (1.1) are univalent for $\lambda \ge -1$ in *E* [6]. Note that functions of bounded turning of order β are Bazilevic functions of order β and type 1, whereas starlike functions of order β are Bazilevic functions of order β and type 0. Babalola [1] proved the following sufficient condition for $f \in A$ to be Bazilevic function of order β , $\frac{1}{2} \le \beta < 1$ and type $\lambda + 1$.

Theorem 1.1. *If* $f \in A$ *satisfies,*

$$\Re\left\{\left(1+\frac{zf''(z)}{f'(z)}\right)+\lambda\frac{zf'(z)}{f(z)}\right\}>\lambda+\frac{3\beta-1}{2\beta}, z\in E,$$

then

$$\Re\left\{f'(z)\left(\frac{f(z)}{z}\right)^{\lambda}\right\} > \beta, \frac{1}{2} \le \beta < 1.$$

The main objective of the present article is to extend Theorem 1.1 by including the range $(0, \frac{1}{2})$ in the set of values taken by the parameter β .

Before we state and prove our main result, we inform the reader that, in 2017, a general class of functions which contains starlike functions of order β , functions of bounded turning of order β and Bazilevic functions of order β is defined and characterized by Jimoh and Babalola [4] and a recent paper of Babalola and Jimoh [2] constitutes another interesting reading related to this general class.

2 Main Result

To prove our main result, we shall need the following lemma:

Lemma 2.1 (Miller and Mocanu [5]). Let Ω be a set in the complex plane \mathbb{C} and suppose that ϕ is a mapping from $C^2 \times \mathbb{E}$ to \mathbb{C} which satisfies $\phi(ix, y; z) \notin \Omega$ for $z \in \mathbb{E}$ and for all real x, y such that $y \leq -\frac{n(1+x^2)}{2}$. If the function $p \in \mathcal{H}[1, n]$ and $\phi(p(z), zp'(z); z) \in \Omega$ for all $z \in \mathbb{E}$, then $\Re\{p(z)\} > 0$ in \mathbb{E} .

Theorem 2.2. Let $f \in \mathcal{A}$, $\frac{f(z)}{z} \neq 0$ in \mathbb{E} and

$$\alpha(\beta) = \begin{cases} \frac{2-3\beta}{2(1-\beta)} & \text{for } 0 < \beta < \frac{1}{2} \\ \frac{3\beta-1}{2\beta} & \text{for } \frac{1}{2} \le \beta < 1. \end{cases}$$

If

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)} + \mu\left(1 - \frac{zf'(z)}{f(z)}\right)\right\} > \alpha(\beta), z \in \mathbb{E},$$
(2.1)

then

$$\Re\left\{f'(z)\left(\frac{z}{f(z)}\right)^{\mu}\right\} > \beta,$$

where $0 < \beta < 1$ *.*

Proof. Define a function p by

$$f'(z)\left(\frac{z}{f(z)}\right)^{\mu} = \beta + (1-\beta)p(z), \qquad (2.2)$$

Then, clearly, p is analytic in \mathbb{E} and $p \in \mathcal{H}[1, 1]$. A simple calculation yields

$$\frac{zf''(z)}{f'(z)} + \mu \left(1 - \frac{zf'(z)}{f(z)}\right) = \frac{(1 - \beta)zp'(z)}{\beta + (1 - \beta)p(z)}$$
$$1 + \frac{zf''(z)}{f'(z)} + \mu \left(1 - \frac{zf'(z)}{f(z)}\right) = 1 + \frac{(1 - \beta)zp'(z)}{\beta + (1 - \beta)p(z)}$$
$$= \psi(p(z), zp'(z); z)$$

where $\psi(u, v; z) = 1 + \frac{(1-\beta)v}{\beta + (1-\beta)u}$ is continuous in $\mathbb{D} = \left[\mathbb{C} \setminus \left(\frac{-\beta}{1-\beta}\right)\right] \times \mathbb{C} \times \mathbb{E}$. Let $u = u_1 + iu_2$, $v = v_1 + iv_2$, where u_1, u_2, v_1, v_2 are reals with $v_1 \le -\frac{1 + u_2^2}{2}$. Then $\Re \psi(iu_2, v_1; z) = 1 + (1 - \beta)\beta v_1$

$$\begin{aligned} \Re \,\psi(iu_2, v_1; z) &= 1 + \frac{1}{\beta^2 + (1 - \beta)^2 u_2^2} \\ &\leq 1 - \frac{(1 - \beta)\beta(1 + u_2^2)}{2[\beta^2 + (1 - \beta)^2 u_2^2]} \\ &= \phi(u_2)(say) \\ &\leq \max \phi(u_2). \end{aligned}$$

Define

$$\Omega = \{ w : \Re w > \alpha(\beta) \}.$$

From (2.1), $\psi(p(z), zp'(z); z) \in \Omega$ for all $z \in \mathbb{E}$. Further, since the function $\phi(u_2)$ is symmetrical with respect to u_2 , so it is sufficient to consider its behaviour for $u_2 \ge 0$. We can readily see that

$$\phi'(u_2) = \frac{\beta(1-\beta)(1-2\beta)u_2}{[\beta^2 + (1-\beta)^2 u_2^2]^2}.$$

As $0 < \beta < 1$, so $\phi'(u_2) > 0$ for $0 < \beta < \frac{1}{2}$ and $\phi'(u_2) \le 0$ for $\frac{1}{2} \le \beta < 1$. Thus $\phi(u_2)$ is an increasing function of u_2 for $0 < \beta < \frac{1}{2}$ and decreasing function of u_2 for $\frac{1}{2} \le \beta < 1$. Behaviour of $\phi(u_2)$ for $\beta = 0.25$ and $\beta = 0.75$ is depicted in Figure 1 and Figure 2, respectively (using MATHEMATICA version 12.0).

Therefore,

$$\max \phi(u_2) = \begin{cases} \lim_{u_2 \to \infty} \phi(u_2) = \frac{2 - 3\beta}{2(1 - \beta)} & \text{for } 0 < \beta < \frac{1}{2} \\ \phi(0) = \frac{3\beta - 1}{2\beta} & \text{for } \frac{1}{2} \le \beta < 1. \end{cases}$$
(2.3)

Thus $\Re \psi(iu_2, v_1; z) \leq \alpha(\beta)$, where $\alpha(\beta)$ is given by (2.3). Hence, $\psi(iu_2, v_1; z) \notin \Omega$. Therefore, by Lemma 2.1, $\Re p(z) > 0, z \in \mathbb{E}$. Finally, by (2.2),

$$\Re\left\{f'(z)\left(\frac{z}{f(z)}\right)^{\mu}\right\} > \beta, \ 0 < \beta < 1, z \in \mathbb{E}.$$

Remark 2.3. Theorem1.1 corresponds to $\mu = -\lambda$ and $\frac{1}{2} \le \beta < 1$ in Theorem 2.2.

Selecting $\mu = 0$ in Theorem 2.2, we obtain the following sufficient condition for $f \in A$ to be in $\mathcal{R}(\beta)$ for $0 < \beta < 1$. (Compare with Corollary 2.5, [1]).

Corollary 2.4. *Let* $f \in A$ *and*

$$\begin{aligned} \alpha(\beta) &= \begin{cases} \frac{2-3\beta}{2(1-\beta)} & \text{for } 0 < \beta < \frac{1}{2} \\ \frac{3\beta-1}{2\beta} & \text{for } \frac{1}{2} \le \beta < 1. \end{cases} \\ & \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha(\beta), \end{aligned}$$

then

If

$$\Re(f'(z)) > \beta, 0 < \beta < 1, z \in \mathbb{E}.$$

Taking $\mu = 1$ in Theorem 2.2, we obtain the following sufficient condition for $f \in A$ to be in $S^*(\beta)$ for $0 < \beta < 1$. (Compare with Corollary 2.2, [1]).

Corollary 2.5. *Let* $f \in A$ *and*

$$\alpha(\beta) = \begin{cases} \frac{2-3\beta}{2(1-\beta)} & \text{for } 0 < \beta < \frac{1}{2} \\ \frac{3\beta-1}{2\beta} & \text{for } \frac{1}{2} \le \beta < 1 \end{cases}$$

If

$$\Re\left\{2+\frac{zf''(z)}{f'(z)}-\frac{zf'(z)}{f(z)}\right\} > \alpha(\beta),$$

then

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta, 0 < \beta < 1, z \in \mathbb{E}.$$

Putting $\mu = -1$ in Theorem 2.2, we obtain the following result.

Corollary 2.6. *Let* $f \in A$ *and*

$$\alpha(\beta) = \begin{cases} \frac{2-3\beta}{2(1-\beta)} & \text{for } 0 < \beta < \frac{1}{2} \\ \frac{3\beta-1}{2\beta} & \text{for } \frac{1}{2} \le \beta < 1. \end{cases}$$

If

$$\Re\left\{\frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{f(z)}\right\} > \alpha(\beta),$$

then

$$\Re\left\{\frac{f'(z)f(z)}{z}\right\} > \beta, 0 < \beta < 1.$$

Therefore, f *is Bazilevic function of order* β *and type 2 in* \mathbb{E} *.*

Choosing $\mu = \frac{1}{2}$ in Theorem 2.2, we obtain the following. (Compare with Corollary 2.3, [1]). Corollary 2.7. Let $f \in A$ and

$$\alpha(\beta) = \begin{cases} \frac{2-3\beta}{2(1-\beta)} & \text{for } 0 < \beta < \frac{1}{2} \\ \frac{3\beta-1}{2\beta} & \text{for } \frac{1}{2} \le \beta < 1. \end{cases}$$

If

$$\Re\left[2\left(1+\frac{zf''(z)}{f'(z)}\right)+\left(1-\frac{zf'(z)}{f(z)}\right)\right]>2\alpha(\beta), z\in\mathbb{E},$$

then

$$\Re \frac{z^{\frac{1}{2}} f'(z)}{f^{\frac{1}{2}}(z)} > \beta.$$

Therefore, f is Bazilevic of order β and type $\frac{1}{2}$ in \mathbb{E} .

Example 2.8. If we take $\beta = \frac{1}{4}$ in Corollary 2.7, we have the following result. If

$$\Re\left[2\left(1+\frac{zf''(z)}{f'(z)}\right)-\frac{zf'(z)}{f(z)}\right]>\frac{2}{3}, z\in\mathbb{E},$$

then

$$\Re\left(\frac{z^{1/2}f'(z)}{f^{1/2}(z)}\right) > \frac{1}{4}.$$

Remark 2.9. We are unable to include the value 0 in the set of values taken by β in Theorem 2.2 as in that case $\alpha(0) = 1$ and this violates the normalization condition in inequality (2.1).

References

- [1] Babalola K. O., *Combinations of Geometric Expressions Implying Schlichtness*, Analele Universitătii Oradea Fasc. Matematica, Tom XXI (1), 2014, 1, 91-94.
- Babalola K. O. and Jimoh F. M., A radius problem for a certain class of Schlicht Functions, Jordan Journal of Mathematics and Statistics, 13(4), 2020, 477-485.
- [3] Duren P. L., Univalent Functions, Springer-Verlag, New York Berlin, Heidelberg Tokyo, 1983.
- [4] Jimoh F. M. and Babalola K. O., *Analytic functions defined by a product of expressions having geometric meaning*, Journal of classical Analysis, 10(1), 2017, 39-47.
- [5] Miller S. S. and Mocanu P. T., Differential Subordination: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, new York and Basel, 2000.
- [6] Singh R., On Bazilevic Functions, Proc. Amer. Math. Soc., 38(2), 1973, 261-271.

782

Author information

Gurwinder Kaur, Department of Mathematics, GSSDGS Khalsa College, Patiala, 147001, India. E-mail: kaurgurwinder090gmail.com

Sukhwinder Singh Billing, Department of Mathematics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140407, India. E-mail: ssbilling@gmail.com

Sukhjit Singh, Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Deemed University, Longowal, 148106, India. E-mail: sukhjit_d@yahoo.com

Received: October 10th, 2021 Accepted: April 15th, 2022