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Abstract.
The aim of our present work here is to present few results in the theory of Mellin transforms

using the method that S. Ramanujan used in proving his Master Theorem. Further applications of
our results for some special functions such as the prime counting function and the zeta function
are established.

1 Introduction

1.1. This is a technical paper which is an application based extension of Ramanujan’s Master
Theorem which is a powerful tool for evaluating Mellin type integrals [1129, pg. [5]]. It states
that if f has expansion of the form

f (x) =
∞
∑

n=0

(−1)n
φ (n)

n!
xn (1.1)

whereφ(n) has a natural and continuous extension such thatφ(0) 6= 0, then fors > 0, we have

∞
∫

0

xs−1

(

∞
∑

n=0

(−1)n
φ (n)

n!
xn

)

dx = Γ (s)φ (−s) . (1.2)

wheres is any positive integer. Eqn. (1.2) was communicated by Ramanujan in hisQuarterly
Reports[[1], p.298][2] and was used by him in computing the values of certain definite integrals
[3]. We kindly request readers to make themselves familiar with the derivation of Ramanujan’s
Master Theorem from [[1], p.298][2] whose method of proof is frequently used throughout the
paper. Now, for the purpose of application, consider the following binomial expansion fora, v >
0

(1+ ax)
−v

=
∞
∑

n=0

an
Γ (v + n)

Γ (v)

(−x)
n

n!
. (1.6)

Employing Eqn. (1.2) yields

∞
∫

0

xn−1(1+ ax)
−v
dx =

Γ (n)Γ (v − n)

anΓ (v)
. (1.7)

Further applications and examples of Eqn. (1.2) can be found in [2][4][8].
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2 On certain Mellin transforms and their analytic expressions

2.1. In this section, few theorems are established that are motivated by Ramanujan’s method of
deriving Eqn. (1.2). Furthermore, certain applications of respective theorems are studied and
applied in calculating the Mellin transform of certain infinite series. Throughout this section, it
is assumed thatφ(n) has a natural and continuous extension such thatφ(0) 6= 0.

Theorem 2.1. If 0< ℜ(s) < 1, then
(i)

∞
∫

0

xs−1
∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!
x2n+1dx = φ (−s)Γ (s) sin

πs

2
, (2.1)

(ii)
∞
∫

0

xs−1
∞
∑

n=0

φ (2n)
(−1)n

(2n)!
x2ndx = φ (−s)Γ (s) cos

πs

2
, (2.2)

Proof. Consider the following Mellin transform of sin(ax) [[7], pg. 332]

∞
∫

0

xs−1 sin(ax)dx = a−sΓ (s) sin
(πs

2

)

. (2.3)

Substitutinga = rk with r > 0 in the above equation and expand sin(ax) in its Maclaurin series
to get

∞
∫

0

xs−1
∞
∑

n=0

(−1)n

(2n+ 1)!

(

rkx
)2n+1

dx = Γ (s) r−sk sin
(πs

2

)

.

Multiply both sides byf
(k)(a)hk

k! wheref shall be specified later and sum onk, 0≤ k <∞ to get

∞
∑

k=0

f (k) (a)hk

k!

∞
∫

0

xs−1
∞
∑

n=0

(−1)n

(2n+ 1)!

(

rkx
)2n+1

dx

=
∞
∑

k=0

f (k) (a) (hr−s)
k

k!
Γ (s) sin

(πs

2

)

,

∞
∫

0

xs−1
∞
∑

n=0

∞
∑

k=0

f (k) (a)
(

hr2n+1
)k
(−1)n

k! (2n+ 1)!
x2n+1dx

=
∞
∑

k=0

f (k) (a) (hr−s)
k

k!
Γ (s) sin

(πs

2

)

.

Now, let

φ (−s) = f
(

hr−s + a
)

=
∞
∑

k=0

f (k) (a) (hr−s)
k

k!
.

Therefore, after further simplification we get

∞
∫

0

xs−1
∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!
x2n+1dx = φ (−s)Γ (s) sin

(πs

2

)

.

Proof of (ii) can be obtained by a similar method using [[6], pg. 332]

∞
∫

0

xs−1 cos(ax)dx = Γ (s) a−s cos
(πs

2

)

.2.4 (2.4)
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Eqn. (2.2) is also derived by Ramanujan himself in his quarterly reports [[1], Pg. 318,
Corollary (i)] but his proof is quite different from the one we have presented. However, There is
no account of Eqn. (2.1) is his work.

Corollary 2.2. For 0< ℜ(s) < 1 ands 6= 1
2,

1
4 we have

(i)

∞
∫

0

xs−1
(

ζ (4)x− ζ (8)
1
3!
x3 + ζ (12)

1
5!
x5 + ...

)

dx = ζ (2− 2s)Γ (s) sin
(πs

2

)

, (2.5)

(ii)

∞
∫

0

xs−1
(

ζ (2)− ζ (6)
1
2!
x2 + ζ (10)

1
4!
x4 + ...

)

dx = ζ (2− 2s)Γ (s) cos
(πs

2

)

, (2.6)

whereζ(s) is the zeta function.

Proof. Let
φ (n) = ζ (2n+ 2)

which yields
φ (2n+ 1) = ζ (4n+ 4)

and
φ (2n) = ζ (4n+ 2) .

Now, use Eqn. (2.1) and (2.2) to get the desired result.

Corollary 2.3. We have
(i)

∞
∫

0

ζ (4)− ζ (8)
1
3!
x2 + ζ (12)

1
5!
x4 + ...dx =

π3

12
, (2.8)

(ii)
∞
∫

0

logx
x

(

ζ (2)− ζ (6)
1
2!
x2 + ζ (10)

1
4!
x4 + ...

)

dx =
π4

24
, (2.9)

whereζ(s) is the zeta function.

Proof. We have mentioned earlier that 0< ℜ(s) < 1, but their is a particular case where we
can apply Theorem 2.1 ats = 0. This can be done as follows. Using reflection formula for the
gamma function of the right hand side of Eqn. (2.5) and taking the limit ons the both sides to
zero, we get

∞
∫

0

ζ (4)− ζ (8)
1
3!
x2 + ζ (12)

1
5!
x4 + ...dx =

π2

6
lim
s→0

π sin
(

πs
2

)

Γ (1− s) sin(πs)
.

Using L’Hospital’s rule, we get

∞
∫

0

ζ (4)− ζ (8)
1
3!
x2 + ζ (12)

1
5!
x4 + ...dx =

π3

12
.

Similarly, after calculating the value of integral (2.6), Eqn. (2.9) readily follows. A detailed
proof can be found in Appendix A.1.
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Corollary 2.4. for |t| < |a|, 0< ℜ(s) < 1 andc > 0 We have

1
2

∞
∫

0

xs−1 [ζ (c, a+ x)− ζ (c, a− x)] dx

=
(−1)−sΓ (s)Γ (c− s)ζ (c− s, a)

Γ (c)
sin
(πs

2

)

. (2.10)

Proof. From [[9], pg. 412] we have

∞
∑

k=o

(c)2k+1

(2k + 1)!
ζ (c+ 2k + 1, a) t2k+1 =

1
2
[ζ (c, a− t)− ζ (c, a+ t)] (2.11)

where

(c)2k+1 =
Γ (c+ 2k + 1)

Γ (c)
.

Letting t = x and applying Eqn. (2.1) yields the desire result.

Theorem 2.5. We have
∞
∫

0

logx
x

∞
∑

n=0

cnx
2ndπ (x) =

∞
∑

n=0

cnAn (2.12)

where

cn = ζ (4n+ 2)
(−1)n

(2n)!
, (2.13)

An =
∞
∑

k=1

µ (k)

(1− 2n) k − 1
+ f (1− 2n), (2.14)

andπ(x) is the prime counting function.

Proof. Compress the sum in the integrand of Eqn. (2.8) and instead of integrating from all values
from 0 to∞, integrate only on primes [[7], pg. 118, Eqn. (9.2)], that is

∞
∫

0

logx
x

∞
∑

n=0

ζ (4n+ 2)
(−1)n

(2n)!
x2ndπ (x)

whereπ(x) is the prime counting function. Therefore, we get

∞
∫

0

logx
x

∞
∑

n=0

ζ (4n+ 2)
(−1)n

(2n)!
x2ndπ (x) =

∑

p

logp
p

∞
∑

n=0

ζ (4n+ 2)
(−1)n

(2n)!
p2n.

Now, let

cn = ζ (4n+ 2)
(−1)n

(2n)!

then substitute the value ofcn and inverting the order of summation, we get

∞
∫

0

logx
x

∞
∑

n=0

cnx
2ndπ (x) =

∞
∑

n=0

cn
∑

p

logp
p

p2n =
∞
∑

n=0

cn
∑

p

logp
p1−2n . (2.15)

Now, using Eqn. (6.1) from [[7], pg. 116], forℜ(s) > 1, we have

∑

p

logp
ps

=
∞
∑

k=1

µ (k)

sk − 1
+ f (s)
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whereµ(k) is the Mobius function,f(k) is analytic and is given by

f (s) = −

∞
∑

k=1

µ (k)

{

ζ′ (ks)

ζ (ks)
+

1
ks− 1

}

.

Therefore, we get
∑

p

logp
p1−2n =

∞
∑

k=1

µ (k)

(1− 2n) k − 1
+ f (1− 2n)

and

f (1− 2n) = −

∞
∑

k=1

µ (k)

{

ζ′ (k (1− 2n))
ζ (k (1− 2n))

+
1

k (1− 2n)− 1

}

.

Substituting the above values in Eqn. (2.15) yields the following result

∞
∫

0

logx
x

∞
∑

n=0

cnx
2ndπ (x) =

∞
∑

n=0

cnAn

where

An =
∞
∑

k=1

µ (k)

(1− 2n) k − 1
+ f (1− 2n).

Theorem 2.6. If p, k, s > 0, then
(i)

∞
∫

0

xs−1
∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!p2n+1x
(2n+1)kdx = φ

(

−s

k

)

pΓk (s) sin
(πs

2k

)

, (2.16)

(ii)

∞
∫

0

xs−1
∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!k2n+1x
(2n+1)kdx = φ

(

−s

k

)

Γk (s) sin
(πs

2k

)

, (2.17)

(iii)
∞
∫

0

xs−1
∞
∑

n=0

φ (2n)
(−1)n

(2n)!p2nx
(2n)kdx = φ

(

−s

k

)

pΓk (s) cos
(πs

2k

)

, (2.19)

(iv)
∞
∫

0

xs−1
∞
∑

n=0

φ (2n)
(−1)n

(2n)!k2nx
(2n)kdx = φ

(

−s

k

)

Γk (s) cos
(πs

2k

)

, (2.20)

wherepΓk (s) is thep-k gamma function [10] and Γk (s) is thek gamma function [11][ 12] 1

defined as follows

pΓk(s) =
(p

k

)
s

k Γk(s) =
p(

s

k )

k
Γ
( s

k

)

.

Proof. Replacex with xk/p in Eqn. (2.16) to get

∞
∫

0

xsk−k

ps−1

∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!p2n+1x
(2n+1)k kx

k−1

p
dx = φ (−s)Γ (s) sin

(πs

2

)

,

1
pΓk(x) ⇒ kΓk(x) = Γk(x) asp = k andpΓk(x) ⇒ 1Γ1(x) = Γ(x) asp, k → 1.
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∞
∫

0

xsk−1

ps

∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!p2n+1x
(2n+1)kkdx = φ (−s)Γ (s) sin

(πs

2

)

.

Now, replacings with s/k yields

∞
∫

0

xs−1
∞
∑

n=0

φ (2n+ 1)
(−1)n

(2n+ 1)!p2n+1x
(2n+1)kdx = φ

(

−s

k

)

p
s

k

k
Γ
( s

k

)

sin
(πs

2k

)

.

By further simplification, the desired result readily follows. (iii) can be derived in a similar
manner. (ii) and (iv) are special cases of (i) and (iii) whenp = k respectively.

3 Appendix

A.1. Take the derivatives both the sides of Eqn. (2.6) with respect tos and then multiply and
divide right hand side of the equation withΓ(s) to get

∞
∫

0

xs−1 logx
(

ζ (2) − ζ (6)
1
2!
x2 + ζ (10)

1
4!
x4...

)

dx = ζ′ (2− 2s)Γ (s) cos
(πs

2

)

1
Γ (s)

ζ (2− 4s)ψ (s) cos
(πs

2

)

+
π

2
ζ (2− 2s)Γ (s) sin

(πs

2

)

.

Using the reflection formula for gamma function, we get

∞
∫

0

xs−1 logx
(

ζ (2)− ζ (6)
1
2!
x2 + ζ (10)

1
4!
x4...

)

dx = ζ′ (2− 2s)
π cos

(

πs
2

)

Γ (1− s) sinπs

+
1
π
ζ (2− 2s)Γ (1− s) sin(πs)ψ (s) cos

(πs

2

)

+
π

2
ζ (2− 2s)

π sin
(

πs
2

)

Γ (1− s) sinπs
.

Now, taking limit both the sides ofs from s→ 0, and applying L’ Hospital’s rule, we get

∞
∫

0

logx
x

(

ζ (2)− ζ (6)
1
2!
x2 + ζ (10)

1
4!
x4...

)

dx

= lim
s→0

ζ′ (2− 2s)
π cos

(

πs
2

)

Γ (1− s) sinπs
+ lim

s→0

π

2
ζ (2− 2s)

π sin
(

πs
2

)

Γ (1− s) sinπs
,

= ζ′ (2) lim
s→0

π cos
(

πs
2

)

Γ (1− s) sinπs
+
π2

4
ζ (2) lim

s→0

cos
(

πs
2

)

cosπs

= 0+
π2

2
ζ (2) =

π4

24
.

Therefore,
∞
∫

0

logx
x

(

ζ (2)− ζ (6)
1
2!
x2 + ζ (10)

1
4!
x4...

)

dx =
π4

24
.
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