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Abstract In this paper some existence results for a first kind Volterra differential equation of
fractional order with fractional anti-periodic boundary conditions are presented. The main tool
of the study is Leray-schauder degree theory. Some illustrative examples are discussed.

1 Introduction

The subject of fractional calculus has recently gained much momentum and a variety of prob-
lems involving differential equations and inclusions of fractional order have been addressed by
several researchers. Fractional differential equations appear naturally in a number of fields such
as physics, polymer rheology, regular variation in thermodynamics, biophysics, blood flow phe-
nomena, aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode analysis of
feedback amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biology,
control theory, fitting of experimental data, etc.[2]-[4].

For some recent work on fractional differential equations and inclusions, anti-periodic bound-
ary value problems occur in the mathematical modeling of a variety of physical processes and
have recently received considerable attention. For examples and details of anti-periodic bound-
ary conditions, see [5]-[15].

In this paper we study the existence and uniqueness solution for the following anti-periodic
fractional boundary value problem:

cDqu(t) =

∫ t

−∞
K(t, s)φ(t, s, u(s))ds, t ∈ [0, T ], 1 < q ≤ 2

u(0) = −u(T ) , D(q−1)/2u(0) = −D(q−1)/2u(T ) (1.1)

where cDq denotes the Caputo fractional derivative of order q,K(t, s) is a continuous given
kernel,φ : [0, T ] × [0, T ] × R → R is a given continuous function and T is a fixed positive
constant .

2 Preliminaries

We need the following definitions:

Definition 2.1. diffinition 2.1: For a continuous function g : [0,∞) → R the Caputo derivative
of fractional order q is defined as:

cDqg(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1g(n)(s)ds

n− 1 < q < n, n = [q] + 1 where [q] denotes the integer part of the real number q [2].
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Definition 2.2. diffinition 2.2: The Riemann–Liouville fractional integral of order q is defined
as:

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q ds, q > 0

provided the integral exists [2] .

Definition 2.3. diffinition 2.3: The Riemann–Liouville fractional derivative of order q for a
function g(t) is defined by:

Dqg(t) =
1

Γ(n− q)

(
d

dn

)n ∫ t

0

g(s)

(t− s)q−n+1 ds, n = [q] + 1

provided the right-hand side is pointwise defined on(0,∞) [7] .

Theorem 2.4. Let X be a Banach space, assume that Ω is an open bounded subset of X with
θ ∈ Ω and let T : Ω→ X be a completely continuous operator such that:

‖Tu‖ ≤ ‖u‖,∀u ∈ ∂Ω

then T has a fixed point in Ω [1] .

Lemma 2.5. For q > 0 the general solution of the fractional differential equation Dqx(t) = 0 is
given by :

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

where ci ∈ R, i = 0, 1, 2, ..., n− 1, (n = [q] + 1) [1] .

In view of lemma 2.2, it follows that

Iq cDqx(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1 (2.1)

for some ci ∈ R, i = 0, 1, 2, ..., n− 1, (n = [q] + 1).

Rewrite problem (1.1) as :

cDqu(t) = σ(t, u(t)) 0 < t < T, 1 < q ≤ 2

u(0) = −u(T ) , D(q−1)/2u(0) = −D(q−1)/2u(T ) (2.2)

Where

σ(t, u(t)) =

∫ t

−∞
K(t, s)φ(t, s, u(s))ds

To study the nonlinear problem (2.2), we need the following lemma :

Lemma 2.6. For any σ ∈ C[0, T ] there exists exactly one solution u for problem (2.2), moreover
a function u is a solution for problem (2.2) if and only if:

u(t) =

∫ T

0
G(t, s)σ(t, s, u(s))ds

where G(t, s) is the Green’s function given by

G(t, s) =


t(3−q)−2T
T (1+q) + (3−q)Γ(3−q/2)(T−2t)

(1+q)T 3−q/2 , if 0 ≤ t < s ≤ T

(t−s)q−1

Γ(q) + t(3−q)−2T
T (1+q) + (3−q)Γ(3−q/2)(T−2t)

(1+q)T 3−q/2 , if 0 ≤ s ≤ t ≤ T
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Proof. Using (2.1) we have :

u(t) = Iqσ(t)− b0 − b1t =

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds− b0 − b1t

for arbitrary constants b0 and b1 , in view of the relations cDqIqu(t) = u(t) and IqIpu(t) =
Iq+pu(t) for q, p > 0, u∈ C[0, T ] and from the boundary conditions of problem (1.1) we obtain:

b0 =
1
2

∫ T

0

(T − s)q−1

Γ(q)
σ(s)ds− b1T

2
(2.3)

b1 =
Γ(5− q/2)
T 3−q/2

∫ T

0

(T − s)q−1/2)

Γ(q + 1/2)
σ(s)ds− b0Γ(5− q/2)

T
(2.4)

Solving (2.3) , (2.4) for b0 and b1 we find:

b0 =
2

1 + q

∫ T

0

(T − s)q−1

Γ(q)
σ(s)ds− (3− q)Γ(3− q/2)

T 1−q/2(1 + q)

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
σ(s)ds

b1 =
2(3− q)Γ(3− q/2)
T 3−q/2(1 + q)

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
σ(s)ds− (3− q)

T (1 + q)

∫ T

0

(T − s)q−1

Γ(q)
σ(s)ds

Thus the unique solution of (2.2) is:

u(t) =

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds+

t(3− q)− 2T
T (1 + q)

∫ T

0

(T − s)q−1

Γ(q)
σ(s)ds

+
(3− q)Γ(3− q/2)(T − 2t)

(1 + q)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
σ(s)ds =

∫ T

0
G(t, s)σ(s)ds

3 Existence results

Let ω = C([0, T ],R) denote the Banach space of all continuous functions from [0, T ] → R
endowed with the norm defined by :

‖u‖ = sup{|u(t)|, t ∈ [0, T ]}

Define an operator Ψ : ω → ω as :

(Ψu)(t) =

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds+

t(3− q)− 2T
T (1 + q)

∫ T

0

(T − s)q−1

Γ(q)
σ(s)ds

+
(3− q)Γ(3− q/2)(T − 2t)

(1 + q)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
σ(s)ds , t ∈ [0, T ] (3.1)

Observe that problem (1.1) has a solution if and only if the operator Ψ has a fixed point.

Lemma 3.1. The operator Ψ : ω → ω is completely continuous.

Proof. Let Ω ⊂ ω be bounded then ∀t ∈ [0, T ], u ∈ Ω there exist a positive constant M such that
|φ(t, s, u(t))| ≤M and λ, δ ∈ R , such that |K(s, t)| ≤ δe−λ(t−s) , thus we have :

|(Ψu)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)

(∫ t

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

+
|t(3− q)− 2T |
|T (1 + q)|

∫ T

0

(T − s)q−1

Γ(q)

(∫ T

−∞
|K(t, s)‖φ(t, s, u(s))|ds(s)

)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

|(1 + q)T 3−q/2|

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

(∫ T

−∞
|K(t, s)|φ(t, s, u(s)) | ds(s)

)
ds



794 Faraj Y. Ishak

≤ δM

λ

[∫ t

0

(t− s)q−1

Γ(q)
ds+

|t(3− q)− 2T |
|T (1 + q)|

∫ T

0

(T − s)q−1

Γ(q)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

|(1 + q)T 3−q/2|

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
ds

]

≤ δM

λ

[
tq

Γ(q + 1)
+

(t(3− q)− 2T )T q

T (1 + q)Γ(q + 1)
+

(3− q)Γ(3− q/2)(T − 2t)T q+1/2

(1 + q)T 3−q/2Γ(q + 3/2)

]

≤ δM

λ

(
2T q

(1 + q)Γ(q + 1)
− (3− q)Γ(3− q/2)T q

(1 + q)Γ(q + 3/2)

)
≤M1

Which implies that ‖Ψu‖ ≤M1, furthermore for t1, t2 ∈ [0, T ] we have :

|(Ψu) (t2)− (Ψu) (t1)|

≤
∫ t2

0

(t2 − s)q−1

Γ(q)

(∫ t2

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

+
|(t2(3− q)− 2T )|

T (1 + q)

∫ T

0

(T − s)q−1

Γ(q)

(∫ t2

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

+
|(3− q)Γ(3− q/2) (T − 2t2)|

(1 + q)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

(∫ t2

−∞
|K(t, s)‖φ(t, s, u(s))|ds(s)

)
ds

−
∫ t1

0

(t1 − s)q−1

Γ(q)

(∫ t1

−∞
|K(t, s)‖φ(t, s, u(s))|ds(s)

)
ds

− |(t1(3− q)− 2T )|
T (1 + q)

∫ T

0

(T − s)q−1

Γ(q)

(∫ t1

−∞
|K(t, s)‖φ(t, s, u(s))|ds(s)

)
ds

− |(3− q)Γ(3− q/2) (T − 2t1)|
(1 + q)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

(∫ t1

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

≤
δM (tq2 − t

q
1)

λΓ(q + 1)
+
δMT q−1(3− q) (t2 − t1)

λ(q + 1)Γ(q + 1)
+

2δMT q−1(3− q)Γ(3− q/2) (t1 − t2)
λΓ (q + 3/2)(q + 1)

Obviously the right-hand side of the above inequality tends to zero independently of u ∈ Ω

as t2 → t1, therefore it follows by the Arzelá-Ascoli theorem that Ψ : ω → ω is completely
continuous.

Theorem 3.2. Let φ : [0, T ]× [0, T ]×R→ R and

lim
u→0

φ(t, s, u(t))

u
= 0

then problem (1.1) has at least one solution .

Proof. Since limu→0
φ(t,s,u(t))

u = 0, there exists a constant ε > 0 such that |φ(t, s, u)| ≤ ξ|u| for
0 < |u| < ε , where ξ > 0 is :

max
t∈[0,T ]

δ

λ

[
|tq|

Γ(q + 1)
+
|t(3− q)− 2T |T q

T (1 + q)Γ(q + 1)
+
|(3− q)Γ(3− q/2)(T − 2t)|T q−1

(1 + q)Γ(q + 3/2)

]
ξ ≤ 1 (3.2)

define Ω1 = {u ∈ ω : ‖u‖ < ε} and take u ∈ ω such that ‖u‖ = ε that is u ∈ ∂Ω1 , by lamma
(3.1) we know that Ψ is completely continuous and :
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|(Ψu)(t)| ≤ max
t∈[0,T ]

δ

λ

[
|tq|

Γ(q + 1)
+
|t(3− q)− 2T |T q

T (1 + q)Γ(q + 1)
+
|(3− q)Γ(3− q/2)(T − 2t)|T q−1

(1 + q)Γ(q + 3/2)

]
ξ‖u‖

Thus in view of (3.2) we obtain ‖Ψ(u)‖ ≤ ‖u‖, u ∈ ∂Ω1 , hence by theorem (2.1) the
operator Ψ has at least one fixed point which in turn implies that problem (1.1) has at least one
solution .

Theorem 3.3. Assume that φ : [0, T ]× [0, T ]×X → X is a jointly continuous function satisfying
the condition :

‖φ(u)− φ(v)‖ ≤ L‖u− v‖, ∀t ∈ [0, T ], u, v ∈ X

with

L ≤ λ(q + 1)Γ(q + 1)Γ(q + 3/2)
2T qδ((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2)− (3− q)Γ(3− q/2)Γ(q + 1))

Then the anti-periodic boundary value problem (1.1) has a unique solution.

Proof. Setting supt∈[0,T ] φ(t, s, 0) =M, |K(s, t)| ≤ δe−λ(t−s) and selecting:

r ≥ 2 (T qMδ((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2)− (3− q)Γ(3− q/2)Γ(q + 1)))
λ(q + 1)Γ(q + 1)Γ(q + 3/2)

We show that ΨBr ⊂ Br where Br = {u ∈ C[0, T ] : ‖u‖ ≤ r}, for u ∈ Br we have :

|(Ψu)(t)|

≤ max
t∈[0,T ]

[∫ t

0

(t− s)q−1

Γ(q)

(∫ t

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

+
|t(3− q)− 2T |

T (q + 1)

∫ T

0

(T − s)q−1

Γ(q)

(∫ T

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

(q + 1)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

(∫ T

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

]

≤ max
t∈[0,T ]

[∫ t

0

(t− s)q−1

Γ(q)

(∫ t

−∞
|K(t, s)||φ(t, s, u(s))− φ(t, s, 0) + φ(t, s, 0)|ds(s)

)
ds

+
|t(3− q)− 2T |

T (q + 1)

∫ T

0

(T − s)q−1

Γ(q)

(∫ T

−∞
|K(t, s)||φ(t, s, u(s))− φ(t, s, 0) + φ(t, s, 0)|ds(s)

)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

(q + 1)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

(∫ T

−∞
|K(t, s)| | φ(t, s, u(s))− φ(t, s, 0)

+ φ(t, s, 0) | ds(s))ds]

≤ δ(Lr +M)

λ
max
t∈[0,T ]

[∫ t

0

(t− s)q−1

Γ(q)
ds+

|t(3− q)− 2T |
T (q + 1)

∫ T

0

(T − s)q−1

Γ(q)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

(q + 1)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
ds

]

≤ δT q(Lr +M)

λ

[
2((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2)− (3− q)Γ(3− q/2)Γ(q + 1))

2(q + 1)Γ(q + 1)Γ(q + 3/2)

]
≤ r
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for u, v ∈ C[0, 1] and for t ∈ [0, T ] we obtain :

‖(Ψu)(t)− (Ψv)(t)‖

≤ max
t∈[0,T ]

[∫ t

0

(t− s)q−1

Γ(q)

(∫ t

−∞
‖K(t, s)‖‖φ(t, s, u(s))− φ(t, s, v(s))‖ds(s)

)
ds

+
|(t(3− q)− 2T )|

T (q + 1)

∫ T

0

(T − s)q−1

Γ(q)

(∫ T

−∞
‖K(t, s)‖‖φ(t, s, u(s))− φ(t, s, v(s))‖ds(s)

)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

(q + 1)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

∫ t

−∞
‖K(t, s)‖‖φ(t, s, u(s))

− φ(t, s, v(s))‖ds(s)ds]

≤ δL‖u− v‖
λ

[
T q

Γ(q + 1)
+

(1− q)T q

(q + 1)Γ(q + 1)
+

(3− q)Γ(3− q/2)T q

(q + 1)Γ(q + 3/2)

]

≤ ΛLr,q,δ,λ‖u− v‖

where

ΛL,T,q,δ,λ =
δL

λ

[
T q

Γ(q + 1)
+

(1− q)T q

(q + 1)Γ(q + 1)
+

(3− q)Γ(3− q/2)T q

(q + 1)Γ(q + 3/2)

]
Which depends only on the parameters involved in the theorem. As ΛL,T,q,δ,λ < 1,Ψ is con-
traction. Thus the conclusion of the theorem follows by contraction mapping principle (Banach
fixed point theorem).

Theorem 3.4. Let φ : [0, T ]× [0, T ]×R→ R, assume that there exist constant 0 ≤ k < 1
ξ where

ξ =
δT q((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2) + (3− q)Γ(3− q/2)Γ(q + 1))

λ(q + 1)Γ(q + 1)Γ(q + 3/2)

and M > 0 such that |φ(t, s, u(t))| ≤ k|u| +M for all t ∈ [0, T ], u ∈ R problem (1.1) has as
least one solution .

Proof. Let us define a fixed point problem by :

u = Ψu (3.3)

Where Ψ is define by (3.1) then we just need to prove the existence of at least one solution
u ∈ [0, T ] satisfying (3.3) . Define a suitable ball BR ⊂ C[0, T ] with radius R > 0 as:

BR =

{
u ∈ C[0, T ] : max

t∈[0,T ]
|u(t)| < R

}
Where R well be fixed later , then it’s sufficient to show that Ψu : BR → C[0, T ] satisfies:

u 6= λΨu,∀u ∈ ∂BR and ∀λ ∈ [0, T ] (3.4)

Let us define H(λ, u) = λΨu, u ∈ C(R), λ ∈ [0, T ] ,then by Arzesla’-Ascoli theorem
hλ(u) = u − H(λ, u) = u − λΨu is completely continuous if (3.4) is true then the following
Leray-Schauder degree are well define and by the homotopy invariance of topological degree it
follows that:

deg (hλ, BR, 0) = deg (I− λΨu, BR, 0) = deg (h1, BR, 0) = deg (h0, BR, 0) = deg (I, BR, 0) =
1 6= 0, 0 ∈ BR.

Where I denotes the unit operator , by non zero property of the Leray -Schauder degree h1(u) =
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u− λΨu = 0 for at least one u ∈ BR in order to prove (3.4) we assume that u = λΨu for some
λ ∈ [0, T ] and for all t ∈ [0, T ] so that :

|u(t)| = |λΨu(t)|

≤
[∫ t

0

(t− s)q−1

Γ(q)

(∫ t

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)

)
ds

+
|(t(3− q)− 2T )|

T (q + 1)

∫ T

0

(T − s)q−1

Γ(q)

(∫ T

−∞
|K(t, s)‖φ(t, s, u(s))|ds(s)

)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

(q + 1)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)

∫ t

−∞
|K(t, s)||φ(t, s, u(s))|ds(s)ds

≤ δ(k|u|+M)

λ

(∫ t

0

(t− s)q−1

Γ(q)
ds+

|(t(3− q)− 2T )|
T (q + 1)

∫ T

0

(T − s)q−1

Γ(q)
ds

+
|(3− q)Γ(3− q/2)(T − 2t)|

(q + 1)T 3−q/2

∫ T

0

(T − s)q−1/2

Γ(q + 1/2)
ds

)

≤ δ(k|u|+M)

λ

[
T q

Γ(q + 1)
+

(1− q)T q

T (q + 1)Γ(q + 1)
+

(3− q)Γ(3− q/2)T q

(q + 1)Γ(q + 3/2)

]
≤ (k|u|+M)

[
δT q((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2) + (3− q)Γ(3− q/2)Γ(q + 1))

λ(q + 1)Γ(q + 1)Γ(q + 3/2)

]
≤ (k|u|+M)ξ

Which on taking norm (supt∈[0,T ] |u| = ‖u‖) and solving for‖u‖ yields :

‖u‖ ≤ Mξ

1− kξ

letting R = Mξ
1−kξ + 1 (3.4) hold , this complete the proof .

Example 1: Consider the following anti-periodic fractional boundary value problem

D7/4u(t) =

∫ t

−∞
(t− 5)(t+ u(s))ds

u(0) = −u(1) D3/8u(0) = −D3/8u(1) (3.5)

Where q = 7/4, T = 1 and L = 2 as ‖φ(t, u) − φ(t, v)‖ ≤ 2‖u − v‖, further for δ =
3.25, λ = −1 we have :

λ(q + 1)Γ(q + 1)Γ(q + 3/2)
2T qδ((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2)− (3− q)Γ(3− q/2)Γ(q + 1))

= 1.8923 < 2

Thus all the assumptions of theorem (3.3) are satisfied hence the fractional boundary value prob-
lem (3.5) has a unique solution on [0, 1].

Example 2: Consider the following anti-periodic fractional boundary value problem:

D3/2u(t) =

∫ t

−∞
e−2t(0.75u(s)− cos(t))ds

u(0) = −u(2) D1/4u(0) = −D1/4u(2) (3.6)

Where q = 3/2, T = 2, for δ = 1, λ = 2 we have e−2t ≤ δe−λ(t−s) , further :

ξ =
δT q((q + 1)Γ(q + 3/2) + (1− q)Γ(q + 3/2) + (3− q)Γ(3− q/2)Γ(q + 1))

λ(q + 1)Γ(q + 1)Γ(q + 3/2)
≤ 1.313
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for 0 ≤ k = 0.75 < 1/ξ and M = cos(t) we have |0.75u(t) − cos(t)| ≤ 0.75|u|+M , thus
all the assumptions of theorem (3.4) are satisfied, hence the fractional boundary value problem
(3.6) has at least one solution on [0,2] .

Conclusion: In this research paper, we have proven the existence and uniqueness of solution
for the first kind of fractional Volterra equation with anti-periodic boundary value conditions by
selecting 1 < q ≤ 2. The boundary value conditions have been chosen to be fractional as we have
shown in (1.1) for which have never been used before in any article as far as we know. Existence
of solutions have been shown by Leray–Schauder degree theory, and uniqueness solutions have
been investigated by Banach’s fixed-point theorem.
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